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CpG methylation in exon 1 of transcription factor 4 increases with age in normal gastric
mucosa and is associated with gene silencing in intestinal-type gastric cancers
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Transcriptional factor 4 (TCF4), encoding a basic helix-loop-helix
transcriptional factor, has recently been demonstrated as a causative
gene for Pitt-Hopkins syndrome, a neurodevelopmental disease. Ex-
amination of gastric cancers using the restriction landmark genomic
scanning technique revealed methylation at a NotI enzyme site in
TCF4 intron 8 and further identified CpG dinucleotide hyperme-
thylation in TCF4 exon 1, strongly associated with gene silencing in
gastric cancer cell lines. Treatment with 5-aza-2#-deoxycytidine and/
or trichostatin A restored TCF4 expression in TCF4-silenced gastric
cancer cell lines. Real-time reverse transcription–polymerase chain
reaction analysis of 77 paired primary gastric tumor samples re-
vealed that 38% of analyzed tumors had a >2-fold decrease in TCF4
expression compared with adjacent normal-appearing tissue, and
the decrease significantly correlated with increased CpG methyla-
tion in TCF4 exon 1. Clinicopathologic data showed that decreased
TCF4 expression occurred significantly more frequently in intesti-
nal-type (22/37, 59%) than in diffuse-type (7/37, 19%) gastric can-
cers (P5 0.0004) and likewise more frequently in early (12/18, 67%)
than in advanced (17/59, 29%) gastric cancers (P 5 0.004). CpG
methylation markedly increased with patient age among normal-
appearing tissues, suggesting that CpG methylation in gastric
mucosa may be one of the earliest events in carcinogenesis of in-
testinal-type gastric cancers. Furthermore, ectopic expression of
TCF4 decreased cell growth in a gastric cancer cell line, and the
knock down of TCF4 using small interfering RNA increased cell
migration. Based on these results, we propose that the observed
frequent epigenetic-mediated TCF4 silencing plays a role in tumor
formation and progression.

Introduction

The basic helix-loop-helix (bHLH) family of transcription factors is
categorized into distinct classes on the basis of biochemical and func-
tional criteria and each member protein contains an HLH domain

composed of two amphipathic helixes separated by a loop and a basic
DNA-binding domain (1–3). These proteins can form homodimers
and heterodimers with other classes of bHLH proteins through the
HLH domain to facilitate binding to DNA (4,5). This basic DNA-
binding domain is located N-terminal to the HLH domain and makes
specific contacts with consensus DNA sequences known as E-boxes
(CANNTG) (6). E-box sequences have been found in the promoters of
a wide variety of genes, driving their specific activation (7,8). Among
the several classes of bHLH families, the class I transcription factors
(also called E proteins) are critical regulators in a diverse array of
biological processes such as cell growth, differentiation, tissue-
specific gene expression and programmed cell death (9–11).

The Transcription factor 4 (TCF4; also known as ITF2, E2-2, ME2 or
SEF2) gene product is a member of the class I bHLH family together
with the TCF12 (HEB) gene product and the alternatively spliced prod-
ucts E12 and E47 of TCF3 (ITF1, E2A) (9). This gene should not be
confused with T-cell transcription factor 4 on human chromosome
10q25.3, which was previously termed TCF4, but is now designated
as TCF7L2. Dimerization of TCF4 with other classes of bHLH proteins
regulates tissue-specific gene expression through E-box sites and this
process, in part, controls differentiation and proliferation in a wide
range of cell types such as myocytes (12), osteoblasts (13), B and
T lymphocytes (14) and neuronal cells (15). A previous study showed
that TCF4 is a downstream target of the WNT/b-catenin/TCF pathway
and, like cMYC and cyclin D1, functions as an oncogene when deregu-
lated in human colon cancers (16). In contrast, it has been shown that
the enforced expression of TCF4 suppresses the colony-forming effi-
ciency of cells in several cell lines, suggesting that the gene acts as
a negative regulator of cell proliferation (11). Very recently, genetic
studies demonstrated that loss of one copy of TCF4 causes Pitt-Hopkins
syndrome (17–19), a neurodevelopmental disease characterized by
mental retardation, seizures and hyperventilation (20–21), suggesting
that TCF4 is also critical for human nervous system development.

Epigenetic alterations such as DNA methylation and modification of
chromatin structure often occur in neoplasia. It has been firmly estab-
lished that aberrant methylation of CpG islands in the promoter regions
and in the initial exons of many genes occurs in the early stages of
carcinogenesis and results in suppressed expression of a variety of genes
in a diverse array of cancers (22,23). Many reports have also shown that
aberrant methylation of CpG islands leads to inactivation of many genes,
particularly in gastric cancers (24–28). Although gastric cancer is the
fourth most frequent human cancer and the second leading cause of
cancer death in almost every country (29), it is still too often not di-
agnosed until at an advanced stage. Therefore, identification of effective
biomarkers for early stage detection of gastric cancers is an urgent matter.

In this study, we identify TCF4 as a hypermethylated gene in gas-
tric cancers using restriction landmark genomic scanning (RLGS)
analysis. We demonstrate prominent hypermethylation of CpG dinu-
cleotides in TCF4 exon 1, which significantly correlates with gene
inactivation in early stage gastric cancers and in intestinal-type gastric
cancers. Further, the effect of TCF4 on cell growth and migration in
gastric cancer cells is investigated.

Materials and methods

Cell lines and tissue samples

Eleven human gastric cancer cell lines, SNU-001, -005, -016, -216, -484, -520,
-601, -620, -638, -668, and -719, were obtained from the Korean Cell Line
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Bank (http://cellbank.snu.ac.kr/index.htm). These different cell lines were
maintained at 37�C in humidified air containing 5% CO2 in RPMI 1640 me-
dium (Gibco BRL, Gaithersburg, MD) supplemented with 10% fetal bovine
serum. We obtained tissue samples from the Tissue Bank Program started at
Chungnam National University Hospital, Daejeon, Korea, in 2001. Specimens
from gastric cancer patients were originally obtained from tumors immediately
after resection and adjacent normal mucosa specimens were obtained at least
3 cm away from the tumor edge. When the fresh specimens were resected, a
portion of the tumor specimen was processed in a formalin-fixed paraffin block
for pathologic observation and the remaining specimen was stored in a �80�C
deep freezer in the Tissue Bank. Within 3 months, a portion of each frozen
specimen was moved to a molecular biology laboratory for isolation of DNA
and RNA from the frozen tissues. The purified DNAs and RNAs were stored in
ethanol solution at �80�C until use. For this study, DNAs and RNAs from 77
gastric tumors and paired adjacent normal mucosa tissues were retrospectively
identified from the surgical pathology files of Chungnam National University
Hospital from 2001 to 2002. All specimens were obtained with informed
consent and their use was approved by the Hospital’s internal review board.

Formalin-fixed paraffin samples

Thirty-five archival samples of surgically resected gastric carcinomas, 35 ar-
chival samples of endoscopically resected gastric adenomas and 70 archival
samples of endoscopically obtained non-neoplastic gastric mucosa (35 intes-
tinal metaplasia and 35 chronic gastritis) were obtained from Seoul National
University Hospital. After identifying the samples as gastric carcinoma, ade-
noma, intestinal metaplasia or chronic gastritis on hematoxylin and eosin-
stained slides, a region corresponding to the identified lesion was scraped from
20 lm thick paraffin sections. The materials collected were dewaxed by wash-
ing in xylene and then by rinsing in ethanol. The dried tissues were digested
with proteinase K and subjected to the standard method of DNA extraction
using phenol/chloroform/isoamyl alcohol and ethanol precipitation.

RLGS assays and cloning of a methylated NotI locus

High molecular weight DNA was extracted from cultured cell lines or frozen
clinical samples as described (30). RLGS was performed using paired tumor
and mucosa DNA samples as described (31). For cell lines, RLGS was also
performed in pairs consisting of cell line DNA alone and a cell line DNA
sample mixed with gastric mucosa DNA. Differences between RLGS profiles
from the paired samples were examined as described (32). Once a difference in
spot intensity was detected, the spot position was compared with our Standard
RLGS profile (32) or the Master RLGS profile (33) to determine the DNA
fragment identity and access its sequence.

RNA isolation and real-time quantitative reverse transcription–polymerase
chain reaction

Total RNA was extracted from each sample using the RNeasy kit (Qiagen,
Valencia, CA) according to the manufacturer’s instructions and treated with
DNase I (Promega, Madison, WI). DNase-treated total RNA (1 lg) was reverse
transcribed using the Superscript II Reverse Transcriptase kit (Invitrogen)
according to the manufacturer’s instructions and a portion of the resulting
cDNAs were amplified by standard polymerase chain reaction (PCR) to verify
the presence of TCF4 messenger RNAs (mRNAs) in gastric cancer cell lines.
The reverse transcription (RT) product (100 ng) was amplified in a 15 ll re-
action using f-Taq polymerase (SolGent, Daejeon, Korea) on a GeneAmp PCR
System 9700 (PerkinElmer). The following RT–PCR primers were designed to
anneal to TCF4 cDNA and produce a product of 378 bp using the Primer3
program (http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi): forward
primer, 5#-TGAGAACCTGCAAGACACGA-3# and reverse primer, 5#-
GGAGGCTCTGAGGACACCTT-3#. All PCRs were performed using the fol-
lowing conditions: 95�C for 2 min, 30 cycles of 95�C for 30 s, 60�C for 30 s
and 72�C for 30 s, with a final extension at 72�C for 5 min. PCR products were
subjected to 2% agarose gel electrophoresis and visualized by ethidium bro-
mide staining. b-Actin was used as an internal control. Next, real-time RT–
PCR analysis was performed using an Exicycler Quantitative Thermal Block
(BiONEER, Daejeon, Korea) to quantitatively measure TCF4 mRNA levels
from cell line samples or from clinical samples. About 100 ng of each RT
reaction was amplified in a 15 ll reaction containing forward and reverse
primers as above and 2� SYBR Premix EX Taq (Takara, Shiga, Japan) accord-
ing to the manufacturer’s instructions. The real-time RT–PCR was analyzed
under the same conditions for RT–PCR, but for 45 cycles instead of 30 cycles
for RT–PCR as amplification step. To minimize errors arising from variation in
the amount of starting RNA among samples, b-actin mRNA was used as an
internal reference against which other RNA values could be normalized. The
Ct value of internal reference b-actin in gastric tissue samples and cell lines is
shown in supplementary Figure 1 (available at Carcinogenesis Online). Nor-
malized results were expressed as the ratio of the copy number of each gene to
the copy number of the b-actin gene.

Methylation-specific polymerase chain reaction

Genomic DNA (1 lg) from cancer cells or clinical samples was modified by
sodium bisulfite using the EZ DNA Methylation kit (ZYMO Research, Orange,
CA) according to the manufacturer’s instructions. Two regions of genomic
DNA were targeted for methylation-specific polymerase chain reaction
(MSP) analysis: the NotI-linked region in TCF4 intron 8 and the CpG-clustered
region in TCF4 exon 1, as shown in Figure 1A. The following MSP primer sets
were designed with the MethPrimer program (http://www.urogene.org/
methprimer/index.html): for the methylated DNA in TCF4 intron 8, the forward
primer 5#-TTAATTTTAGAGTGGAGAACGTGC-3# and the reverse primer 5#-
AAATAACAATACGACCCGCC-3# were designed to yield a 198 bp product;
for the unmethylated DNA in TCF4 intron 8, the forward primer 5#-TT-
TTAGAGTGGAGAATGTGTGT-3# and the reverse primer 5#-AAACAAAA
TAACAATACAACCCACC-3# were designed to yield a 199 bp product; for
the methylated DNA in TCF4 exon 1, the forward primer 5#-GAATTTGTAAT-
TTCGTGCGTTTC-3# and the reverse primer 5#-AAAAAAAACTCTCCGTA-
CACCG-3# were designed to yield a 258 bp product and for the unmethylated
DNA in TCF4 exon 1, the forward primer 5#-TGAATTTGTAATTTTGTGTGT-
TTTG-3# and the reverse primer 5#-AAAAAAAACTCTCCATACACCACC-3#
were designed to yield a 259 bp product. MSPs were performed with 25 ng
bisulfite-modified genomic DNA as follows: 94�C for 5 min, 35 cycles of
94�C for 45 s, 58�C for 30 s and 72�C for 60 s for TCF4 intron 8 or 94�C for
45 s, 59�C for 30 s and 72�C for 60 s for TCF4 exon 1, followed by 72�C for 7
min. PCR products were subjected to 2% agarose gel electrophoresis and visu-
alized by ethidium bromide staining.

Bisulfite sequencing

Sequence analysis of bisulfite-modified DNA was performed on 76 CpG sites
covering parts of exon 1 and intron 1 of TCF4, as shown in Figure 1A. Bisulfite-
modified DNA (25 ng) was amplified by PCR in a 20 ll reaction containing
a forward primer (5#-TTTAGGTTTTAGATTGTAATTGA-3#) and a reverse
primer (5#-AAAAAAAATATCTCTTCTAAAAAC-3#) designed to yield a 617
bp product. All amplification reactions were performed as follows: 95�C for
1 min, 40 cycles of 95�C for 45 s, 51�C for 45 s, 72�C for 1 min, followed by
72�C for 5 min. PCR products were cloned into the pGEM-T Easy Vector
(Promega), and four to seven clones were randomly chosen for sequencing.

Pyrosequencing

Within TCF4 exon 1, seven CpG sites were selected for quantitative determi-
nation of methylation status (Figure 1A). Bisulfite-modified DNA (100 ng) was
amplified by PCR in a 25 ll reaction containing a forward primer (5#-GAA-
GAGAGTTGGTGTTAAGAGTTAG-3#) and a biotinylated reverse primer
(5#-CCACCAAAAAAAACTCTCC-3#) designed to yield a 192 bp product.
All amplification reactions were performed as follows: 95�C for 1 min, 50
cycles of 95�C for 30 s, 56�C for 40 s, 72�C for 40 s, followed by 72�C for
5 min. Pyrosequencing was performed according to the manufacturer#s in-
structions using the sequencing primer 5#-TGTGTGTTTGAGGATTTG-3#
on the PSQ HS 96A System (Biotage AB, Kungsgatan, Sweden).

5-aza-2#-deoxycytidine and trichostatin A treatment

Gastric cancer cells (SNU-601, -620 and -638) were seeded in 10 cm dishes at
a density of 1 � 106 cells 1 day before drug treatment. The cells were treated
with either 1 lM 5-aza-2#-deoxycytidine (5-aza-dC; Sigma, St Louis, MO)
every 24 h for 3 days and then harvested or with 250 nM trichostatin A (TSA;
Sigma) for 1 day and then harvested. To test the combined effect of 5-aza-dC
and TSA, cells were treated with 1 lM 5-aza-dC every 24 h for 3 days followed
by treatment with 250 nM TSA for 1 day. Total RNA was prepared and TCF4
expression was examined by real-time RT–PCR. The average relative mRNA
levels were calculated from three independent experiments and from a total of
six independent PCR analyses.

MethyLight analysis

DNAs from lesions of gastric carcinomas, gastric adenomas, intestinal meta-
plasia or chronic gastritis from hematoxylin and eosin-stained slides were
modified by sodium bisulfite using the EZ DNA Methylation kit and analyzed
according to the previously published MethyLight procedure (34). Briefly,
bisulfite-modified DNA (100 ng) was amplified in a 30 ll reaction containing
0.3 lM locus-specific PCR primers (forward, 5#-TCGGAGAAGAGAGTTG-
GTGTT-3#; reverse, 5#-CTCCCGCGCCTACTACCT-3#), 0.2 lM oligonucle-
otide probe (6FAM5#-CGCCGCCACTACAAATCCGC-3#TAMRA), with 200
lM dNTPs, 3.5 mM MgCl2, 0.01% Tween 20, 0.05% gelatin and 0.5 U Am-
pliTaq Gold polymerase (Applied Biosystems, Foster City, CA). The reporter’s
fluorescence was detected with an Exicycler Quantitative Thermal Block. A
standard curve for the Alu repeat control reaction was generated from 1:25
serial dilutions of bisulfite-converted, M. SssI-treated DNA for the methylated
MethyLight reactions. The data for methylated DNA were expressed as percent
of methylated reference values. The percent of methylated reference value was
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calculated by dividing the TCF4:Alu ratio of a sample by the TCF4:Alu ratio of
M. SssI-treated human genomic DNA and multiplying by 100.

Chromatin immunoprecipitation assay

Chromatin immunoprecipitation (ChIP) assays were performed using a ChIP
assay kit (Upstate Biotechnology, Lake Placid, NY) according to the manufac-
turer’s protocol with some modifications. Briefly, proteins were cross-linked to
DNA by addition of formaldehyde directly to the culture medium and the reaction
was quenched with glycine. Cells were then collected and washed twice with ice-
cold phosphate-buffered saline containing proteinase inhibitors and resuspended

in sodium dodecyl sulfate lysis buffer. To produce DNA fragments ranging from
200 to 500 bp, lysates were sonicated 21 times for 5 s with 30 s intervals on ice at
power setting 3 using a Fisher Sonicator Dismembrator 100 and centrifuged at
13 000 r.p.m. for 10 min at 4�C. The supernatants were diluted in nine volumes of
ChIP dilution buffer and precleared with salmon sperm DNA/protein A agarose
beads and immunoprecipitated with either 5 lg anti-acetyl-histone H3 antibody
(K9, K14) (Upstate Biotechnology, catalog no. 06-599), 5 lg anti-acetyl-histone
H4 antibody (K5, K8, K12, K16) (Upstate Biotechnology, catalog no. 06-866) or
5lg anti-trimethyl-histone H3 (K9) antibody (Upstate Biotechnology, catalog no.
07-442) or with no antibody, according to the manufacturer’s recommendations.

Fig. 1. RLGS analysis of human TCF4 in gastric tumors and gastric cancer cell lines. (A) Schematic diagram of the TCF4 structure at human chromosome
18q21.2 derived from the UCSC Genome Browser (http://genome.ucsc.edu). TCF4 consists of 20 exons (exons 1 and 20 are non-coding) and spans 363 kb. The
previously cloned NotI-linked 6B54 sequence (GenBank accession no. CG464927) was found in intron 8. The regions of CpG dinucleotides in exon 1 selected for
bisulfite sequencing, MSP, pyrosequencing and MethyLight analysis are indicated below the CpG map. The location of the DNA fragment amplified by the ChIP
assay is also indicated. N, NotI enzyme site; TSS, transcription start site. (B) Representative examples of decreased spot 6B54 (TCF4 intron 8) intensities from
NotI–EcoRV–HinfI RLGS profiles. The uppermost panels show two cell lines in which the intensity of spot 6B54 relative to its neighboring spots was not different
from the master profile. The arrow indicates the position of spot 6B54 in each RLGS profile; the upper right panel shows the Master RLGS profile (31). The middle
set of panels show gastric cancer cell lines with a decreased intensity of spot 6B54 relative to its neighboring spots. ‘Cells lacking spot 6B54 þ normal mucosa’
indicates samples in which DNA from cells lacking spot 6B54 were mixed with DNA from normal mucosa. The lower set of panels show RLGS profiles of gastric
tumor tissues compared with those of adjacent normal mucosa tissues from five patients. (C) RT–PCR and methylation-sensitive PCR (MSP) analyses of TCF4. In
the upper set of panels, TCF4 mRNA expression was analyzed in the 11 gastric cancer cell lines indicated using RT–PCR. b-Actin was used as an internal control.
N, normal mucosa control. In the lower set of panels, TCF4 methylation in exon 1 or intron 8 was analyzed using MSP analysis. M, methylated DNA; U,
unmethylated DNA, amplified by specific primers. DW, distilled water used as a negative control.
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Immunoprecipitated DNA was recovered using the QIAquick PCR Purification
kit (Qiagen) and amplified in 15 ll reactions containing SYBR Premix EX Taq
(Takara) using the primers 5#-TAAACTTGCTTTGCCGTGTG-3# and 5#-
TCGAGCACCTCATTTTTCCT-3# (located in TCF4 exon 1, product size 183
bp). Real-time PCR was performed as follows: 95�C for 1 min and 45 cycles of
95�C for 30 s, 60�C for 30 s and 72�C for 30 s. The amount of immunopreci-
pitated DNA was normalized to the input DNA. The average relative amount of
each amplified product was calculated from two independent ChIP experiments
and a total of four independent PCR analyses.

Generation of TCF4 expression constructs

Full-length TCF4 cDNA was amplified by PCR from the pBluescriptR-TCF4
plasmid (KUGI clone ID no. hMU003024) provided by Korean UniGene Infor-
mation (http://kugi.kribb.re.kr/KUGI/index.html) and then cloned into the pGEM-
T Easy vector (Promega). The resulting TCF4 cDNA clone was confirmed by
sequence analysis and then subcloned into the EcoRI sites of the pEGFP-C1
vector (Clontech). The expression of green fluorescence protein (GFP)-TCF4
from the resulting pEGFP-C1-TCF4 plasmid was confirmed by western blotting
using an anti-GFP antibody (Santa Cruz Biotechnology, Santa Cruz, CA).

Colony-forming assay

To analyze anchorage-dependent growth, a colony formation assay was per-
formed on cell monolayers. pEGFP-C1-TCF4 or empty control vector
(pEGFP-C1) was transfected into SNU-638 cells in six-well plates using Lip-
ofectamine Plus reagent (Invitrogen) according to the manufacturer’s protocol.
The cells were selected with G418 (300 lg/ml) for 2 weeks and then plated into
fresh six-well plates at a density of 4 � 104 cells per well. After 2 weeks of
incubation with G418, colonies were then stained with crystal violet and
counted. To analyze anchorage-independent growth, colony formation assays
in soft agar were also performed. SNU-638 cells were transfected and selected
as above. The cells were suspended in top agar medium containing G418 (300
lg/ml) and 0.35% (wt/vol) agarose and 4 � 104 cells were overlaid into each
well of a six-well plate containing bottom agar[0.6% (wt/vol) agarose]. Every
5 days, 500 ll fresh medium with G418 was applied to the top layer. Two weeks
after seeding, the size of the colonies was measured in four randomly chosen
microscopic fields. The value of each point was calculated as the average ±
standard deviation from three independent experiments performed in duplicate.

Small interfering RNA and transfection

The following small interfering RNAs (siRNAs) were designed to inhibit
expression of TCF4: sense sequence (5#-CAAGCACUGCCGACUA-
CAAUAGGdGdA-3#) and antisense sequence (5#-UCCCUAUUGUAGUCGG-
CAGUGCUUGUU-3#). The 27 nucleotide synthetic siRNA duplex was
synthesized and purified by Samchully Pharmaceutical (Seoul, Korea). The
day before transfection, SNU-484 and SNU-668 cells were seeded at a density
of 5 � 105 cells per well in six-well plates. TCF4-siRNA was then transfected
into the cells using Lipofectamine Plus reagent (Invitrogen) according to the
manufacturer’s instructions. Total RNA was extracted 48 h after transfection and
TCF4 mRNA expression was analyzed via RT–PCR as described above.

Cell migration assay

Cell migration was examined using transwell chambers (Corning Costar, Corn-
ing, NY) with an 8 lm pore diameter membrane coated with fibronectin
(F2006, Sigma) at a concentration of 25 mg/ml. SNU-484 and SNU-638 cells
transfected with TCF4-siRNA or mock transfected were seeded into 24-well
transwell plates (5 � 104 cells per chamber) and incubated for 20 and 26 h,
respectively, at 37�C in a humidified atmosphere under 5% CO2. After remov-
ing the cells from the upper chamber, the cells that had migrated to the lower
chamber were fixed with methanol for 1.5 min and stained with crystal violet
for over 1 h. The membrane was mounted onto glass slides for viewing. The
number of cells in four randomly chosen microscopic fields was counted. The
value of each point was calculated as the average ± standard deviation from
three independent experiments performed in duplicate.

Statistical methods for analysis

The Student’s paired t-test was performed to measure the differences in TCF4 ex-
pression or TCF4 CpG methylation between primary gastric tumors and adjacent
normal tissues. The clinicopathologic factors in various groups of patients with neg-
ative or positive TCF4 expression were compared by means of v2 test or Stu-
dent’s t-test. Results withP values of,0.05 were considered statistically significant.

Results

Identification of a previously unidentified epigenetic target in gastric
cancers by RLGS analysis

We identified in RLGS analysis a spot of NotI-linked genomic DNA
with significantly decreased intensity in 8 of 11 (73%) gastric cell

lines examined (Figure 1B, arrows, upper and middle panels). The
same spot was also decreased in samples from primary gastric tumors
compared with those from adjacent normal tissues (Figure 1B, bottom
panel) and corresponded to spot number 5C23 from the Master RLGS
profile (33) or to spot number 6B54 from the Standard RLGS profile
(32) (Figure 1B, upper panel). The sequence corresponding to this
DNA spot (GenBank accession no. CG464927) was mapped to intron
8 of TCF4 on human chromosome 18q21.1 in our previous RLGS
study (32). To further examine epigenetic control of TCF4 expression,
RT–PCR and MSP analysis of gastric cancer cell lines were used in
tandem to compare TCF4 mRNA expression and TCF4 CpG methyl-
ation near the NotI sites in intron 8 (spot 6B54). Additional MSP
analysis (Figure 1A and C) was also performed to examine methyla-
tion of the CpG dinucleotides in exon 1 of the gene because no CpG
islands were found within 1 kb of the TCF4 transcription start site in
the UCSC Genome Browser. We found little or no TCF4 expression in
8 of 11 gastric cancer cell lines by RT–PCR (Figure 1C, upper panel)
and this observed silencing correlated with the pattern of increased
CpG methylation observed in TCF4 exon 1, but not in intron 8 (Figure
1C, lower panel).

CpG methylation and histone acetylation regulate transcriptional
silencing of TCF4 in gastric cancer cells

Bisulfite sequencing in exon 1 and intron 1 revealed extensive hyper-
methylation (75–98%) in the eight cell lines with little or no TCF4
expression, whereas hypomethylation (0.8–18%) was detected in the
three TCF4-expressing cell lines (Figure 2A). Pyrosequencing anal-
ysis of seven CpG dinucleotides within exon 1 of TCF4 was used to
confirm the bisulfite sequencing results (Figure 2A, right panel). The
methylation status of the seven CpG sites examined by pyrosequenc-
ing analysis was representative of the 76 CpG sites examined by bi-
sulfite sequencing. Real-time RT–PCR analysis also revealed that
silencing of TCF4 expression correlated with the methylation status
of exon 1 determined by pyrosequencing (Figure 2B), suggesting that
CpG methylation at exon 1 is associated with the inactivation of TCF4
in human gastric cancer cell lines. We next determined that TCF4
mRNA expression was restored in SNU-601, -620 and -638 cells after
5-aza-dC and/or TSA treatment (Figure 2C). This result suggests that
TCF4 mRNA expression in gastric cancer cells may be regulated by
both CpG methylation and histone acetylation. We therefore exam-
ined histone acetylation and methylation in chromatin associated with
TCF4 exon 1 using ChIP analysis. Histone-associated DNA fragments
immunoprecipitated with antibodies against acetyl-H3 (acetylated at
residues K9 and K14), acetyl-H4 (acetylated at residues K5, K8, K12
and K16) or H3K9me3 (acetylated at residue K9 and methylated at
residue 3) were subjected to PCR analysis using primers designed to
amplify a region of TCF4 exon 1. The acetylation of histones H3 and
H4 within TCF4 exon 1 was elevated in SNU-484 cells, in which
TCF4 is unmethylated and transcriptionally active, compared with
SNU-601 or -638 cells, in which TCF4 is hypermethylated and tran-
scriptionally silent (Figure 2D). In contrast, anti-H3K9me3 immuno-
precipitation enriched amplification of TCF4 exon 1 in SNU-601 and
-638 cells (Figure 2D). These results clearly indicate that histone
modification is also likely involved in transcriptional silencing of
TCF4 in gastric cancers.

The status of TCF4 expression in primary gastric tumors

To test whether CpG methylation in TCF4 exon 1 is abnormally in-
creased in primary tumors compared with the corresponding normal
tissue, we next performed MSP analysis on clinical samples. Figure 3A
shows that a single PCR product was amplified using primers for
unmethylated CpG sequence from all gastric tumors, as well as from
normal tissues, suggesting the presence of normal mucosa or stromal
cells in the gastric tumor specimens that may have contributed to the
amplification of unmethylated products. Nonetheless, a prominent
PCR product for methylated CpG sequence was detected in all tumors
except for 2 (samples 18 and 410) of 20 tumors, whereas no or weak
bands were observed in 16 of the corresponding normal tissue
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specimens. This result suggests that CpG methylation in TCF4 exon 1
may be a feature of gastric tumors.

To elucidate the status of TCF4 expression during gastric tissue
carcinogenesis, we investigated TCF4 mRNA expression in 77 paired
clinical tissues using real-time quantitative RT–PCR and examined
the associated clinicopathologic parameters. TCF4 mRNA expression
in tumor tissues was significantly lower than in adjacent normal tis-
sues (P, 0.0001) after normalization to b-actin (Figure 3B). Loss of
expression (LOE) was assigned to tumors in which the expression of
TCF4 mRNA was less than or equal to half of that in adjacent normal
tissues. TCF4 LOE was detected in 38% (29 of 77) of primary tumors.
Quantitative methyl-CpG analysis of the same seven CpG sites in
TCF4 exon 1 described in Figure 1A was performed on the 77 paired
clinical tissues via pyrosequencing. The mean percent methylation
was 10.9, 13.8, 13.5, 15.1, 12.4, 13.3 and 13.3% for each of the seven
CpG sites examined in TCF4 exon 1 from normal tissues. The overall
mean percent methylation was calculated from the average of these

individual values and was determined to be 13.2. In the same manner,
the overall mean percent methylation in TCF4 exon 1 from tumor
tissues was 34.7%, revealing a significant difference compared with
normal tissues (P , 0.0001) (Figure 3C). As shown in Table I, the
mean percent methylation was significantly higher in tumors with
TCF4 LOE (43.0 ± 23.2%) than in those with TCF4 expression com-
parable with their matched normal tissue (29.8 ± 19.1%) (P5 0.006),
indicating that increased CpG methylation correlated with decreased
TCF4 expression in primary gastric tumors. Clinicopathologic char-
acteristics of patients with respect to tumor TCF4 expression levels
are also shown in Table I. TCF4 LOE was more frequent among
females (14/26, 53.8%) than males (15/51, 29.4%) (P 5 0.04). In
particular, TCF4 LOE was significantly more common in intestinal-
type than diffuse-type gastric cancers (P 5 0.0004) and in early
gastric cancers than in advanced gastric cancers (P5 0.004), suggest-
ing that TCF4 LOE may be an early event in the multistep process
leading to gastric carcinogenesis.

Fig. 2. TCF4 CpG methylation and histone modifications correlate with TCF4 silencing in gastric cancer cell lines. (A) Quantitative measurement of CpG
dinucleotide methylation in TCF4 exon 1. In the upper panels, each horizontal row of boxes represents a single clone analyzed by bisulfite sequencing. Each small
square box represents a CpG site. Filled and open square boxes indicate methylated and unmethylated CpG sites, respectively. The bar with an asterisk indicates
the seven CpG sites used for pyrosequencing analysis. Representative pyrograms for SNU-001 and SNU-668 cells are shown in the lower set of panels. Numerical
values at right represent the average percent methylation of the indicated CpG sites determined by bisulfite sequencing (bisulfite) or by pyrosequencing (pyro).
(B) Relative TCF4 expression in gastric cancer cell lines. Relative TCF4 expression was obtained using real-time RT–PCR, and results from three independent
analyses are expressed relative to b-actin mRNA levels. (C) Restoration of TCF4 expression in gastric cancer cells after treatment with the indicated drugs. Three
gastric cancer cell lines, SNU-601, SNU-620 and SNU-638, were treated with 5-aza-dC, TSA or both. For each cell line, TCF4 expression was measured using
real-time RT–PCR and results from three independent analyses are expressed relative to b-actin mRNA levels. (D) ChIP assays of the TCF4 exon 1. Chromatin
DNA was immunoprecipitated with antibodies specific for acetyl-H3 (AcH3), acetyl-H4 (AcH4) or trimethyl-H3-K9 (H3K9me3). DNA fragments corresponding
to 183 bp in the TCF4 exon 1 (see Figure 1A) were amplified by PCR. The amount of immunoprecipitated DNA was normalized to the input DNA.
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Age-related TCF4 CpG methylation in gastric tumors and adjacent
normal mucosa

No mean age differences were found between patients with tumors
having TCF4 LOE and those having non-LOE tumors. When patient
ages were subdivided into four age groups, however, the mean percent
TCF4 methylation determined by pyrosequencing of the seven CpG

sites in exon 1 in age group 1 (�50 years, n 5 17) was �1.7 and
24.5% in gastric mucosa and tumors, respectively. The mean percent
TCF4 methylation in gastric mucosa and tumors was 9.5 and 30.9%,
respectively, in age group 2 (51–60 years, n 5 22), 18.2 and 41.0%,
respectively, in age group 3 (61–70 years, n 5 26) and 25.3 and
42.5%, respectively, in age group 4 (.70 years, n 5 12), as shown

Fig. 3. Reduced TCF4 expression correlates with CpG methylation in primary gastric tumors. (A) MSP analysis in TCF4 exon 1 of primary gastric tumors.
Amplified PCR products for 20 gastric tumors and adjacent normal tissues from the indicated patients are shown. M, methylated DNA; U, unmethylated DNA
amplified by specific primers. N, normal mucosa; T, gastric tumor. (B) Quantitative real-time RT–PCR analysis of TCF4 in 77 gastric tumors and adjacent normal
tissues. TCF4 mRNA levels in primary gastric tumors (right) and in matched adjacent normal tissue control (left) are shown. Each sample was normalized to the
b-actin internal control. (C) Pyrosequencing analysis at seven CpG sites in TCF4 exon 1 from 77 gastric tumors and adjacent normal tissues. (D) Average percent
CpG methylation inTCF4 exon 1 with respect to age. Patients were subdivided into four groups by age (�50 years, n5 17; 51–60 years, n5 22; 61–70 years, n5 26;
.70 years, n 5 12) and the average percent CpG methylation in gastric tumors or adjacent normal tissues within each age group was estimated. The box plot
analysis shows the median, 25th and 75th percentiles and outliers. (E) Box plot of relative TCF4 expression with respect to age. Patients were subdivided into
four groups by age as above, and the relative TCF4 expression in gastric tumors or adjacent normal tissues within each age group was plotted. NS with an asterisk
indicates a statistically insignificant difference. (F) Quantitative measurement of CpG dinucleotide methylation in TCF4 exon 1 in gastric tumors and adjacent
normal tissues by bisulfite sequencing analysis. The results from younger and older patients are presented in the upper and the lower panels, respectively. The open
and filled boxes and numerical values at the right are the same as for Figure 2A. The bar with an asterisk indicates the seven CpG sites used for pyrosequencing
analysis.
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in Figure 3D. Thus, CpG methylation was significantly higher in
tumors than in gastric mucosa within every age group and gradually
increased with increasing age in both gastric mucosa and primary
tumors, suggesting that increased CpG methylation in exon 1 of
TCF4 correlates with both age and tumorigenesis. Interestingly,
CpG methylation was not detected in any of the normal gastric mu-
cosa samples taken from patients younger than age 50 (n 5 14),
whereas TCF4 CpG methylation in normal gastric mucosa from pa-
tients over age 70 (n5 12) was 25.3%, very similar to that observed in
tumors from patients younger than age 50 (24.5%, n 5 17). To de-
termine whether TCF4 CpG methylation in normal gastric mucosa
affects TCF4 expression in normal tissue from older patients, we
compared the relative TCF4 expression levels between the four age
groups and between normal mucosa and gastric tumors (Figure 3E).
No significant difference in TCF4 expression was detected between
age groups for the normal mucosa, suggesting that methylation at the
seven CpG sites of TCF4 tested may not be critical in regulating TCF4
expression in normal-appearing tissues.

In addition, Figure 3F shows that the gastric tumors used in this
study consisted of two types of clones based on the proportion of CpG
methylation: one clone type is a cell with extensive hypermethylation
(over 95% of the 76 CpG sites were methylated) and the other was
methylation free at almost all CpG sites. Given that the bisulfite
sequencing analysis revealed extensive hypermethylation in the gas-
tric cancer cell lines expressing little or no TCF4, the extensively
hypermethylated clone may be responsible for reduced TCF4 expres-
sion in gastric tumors from both younger and older patients and in
some gastric cancer cell lines. Although TCF4 CpG methylation at the
seven CpG sites in normal tissues of older patients is similar to that in
tumors of younger patients, we suggest that a significant reduction in

TCF4 mRNA levels could not be detected in normal tissues of older
patients because these tissues do not contain the extensively hyper-
methylated clone.

TCF4 CpG methylation during gastric carcinogenesis

To elucidate the methylation status of TCF4 during gastric carcino-
genesis, we performed MethyLight analysis on the CpG sites in exon
1 (shown in Figure 1A) on 35 sets of paraffin-embedded tissues of
chronic gastritis, intestinal metaplasia, gastric adenomas and gastric
carcinomas. No CpG methylation in TCF4 exon 1 was found in the
chronic gastritis samples but a gradual increase in CpG methylation
from intestinal metaplasia (mean percent of methylated reference
0.5%, range of 0.0–11.5%) to gastric adenomas (mean 2.4%, range
of 0.0–31.8%) or gastric carcinomas (mean 3.3%, range of
0.0–49.7%). This result suggests that CpG methylation in TCF4 exon
1 is initiated at an early stage such as intestinal metaplasia during
gastric carcinogenesis and tends to accumulate along the multistep
carcinogenesis.

In vitro effects of TCF4 on cell growth and migration in gastric cancer
cells

To determine whether TCF4 is involved in cell growth in gastric
cancer cells, we introduced a TCF4 expression vector into SNU-638
cells, where methyl-CpG-associated endogenous TCF4 silencing was
demonstrated (see Figure 2). TCF4 expression in cells transfected
with the pEGFP-C1-TCF4 expression plasmid, but not in the parental
SNU-638 cells or in cells transfected with the control pEGFP-C1
vector, was confirmed by western blotting using a monoclonal anti-
GFP antibody (Figure 4A). In the monolayer assay used to evaluate
anchorage-dependent growth, the number of colonies from pEGFP-
C1-TCF4 transfectants was much smaller than that of control pEGFP-
C1 transfectants (P , 0.0499) (Figure 4B). A soft agar assay for
anchorage-independent growth also showed decreased colony size
in pEGFP-C1-TCF4 transfectants compared with control pEGFP-C1
transfectants (P , 0.0001) (Figure 4C). We also addressed whether
transfection with pEGFP-C1-TCF4 resulted in any morphological
alterations but did not note any morphological change or apoptosis
at 24 h after transfection. We further examined whether reducing
TCF4 expression by RNA interference altered cell migration in gas-
tric cancer cells. RT–PCR analysis of SNU-484 and SNU-668 cells
transfected with a broad range of TCF4-siRNA concentrations indi-
cated that 60 nM TCF4-siRNA reduced TCF4 transcript levels in both
cell lines compared with mock-transfected controls (Figure 4D).
Transwell assays also demonstrated increased cell migration in
SNU-484 (P , 0.0037) and SNU-668 cells (P , 0.0002) transfected
with TCF4-siRNA compared with mock-transfected cells (Figure 4E).
These results suggest that TCF4 silencing may be associated with cell
growth and migration in gastric cancer cells.

Discussion

In this study, we identified epigenetic silencing of TCF4 in human
gastric cancers and demonstrated that this process is linked to cell
growth and migration. Genetic and epigenetic alterations in tumor
suppressor genes are a prerequisite of cancer development and pro-
gression. In particular, epigenetic alterations within tumors are inev-
itable and often promote further genetic modifications (35). Similar to
the findings in this study, CpG methylation of promoter regions or the
first exon of tumor suppressor genes has been established as an im-
portant mechanism for gene silencing (36). Moreover, silencing of
TCF4 was relieved in several gastric cancer cell lines upon treatment
with a DNA methyltransferase and/or a histone deacetylase inhibitor.
Thus, our data demonstrate epigenetic regulation of TCF4 in gastric
cancers.

Although our understanding of the molecular mechanisms of the
pathology of sporadic gastric cancers is increasing, the cellular events
that trigger initiation of carcinogenesis in human gastric mucosa cells
remain unclear (37). It is widely accepted, however, that epigenetic

Table I. Relative TCF4 mRNA expression in tumors with respect to
clinicopathologic characteristics

Clinicopathologic parameter Gastric tumors with decreased
relative TCF4 expressiona

P valueb

�50%
decrease
(n 5 29)

,50%
decrease
(n 5 48)

Mean patient age (in years ± SD) 61.1 ± 11.4 58.9 ± 11.5 0.41
Gender

Male 15 36 0.04
Female 14 12

Tumor size in cmc (mean ± SD) 5.2 ± 2.4 5.7 ± 2.3 0.39
Histology

Intestinal 22 15 0.0004
Diffuse 7 30
Mixedd 0 3

Tumor progressione

EGC 12 6 0.004
AGC 17 42

Lymph node metastasis
Negative 14 14 0.09
Positive 15 34

TCF4 methylationf (mean % ± SD) 43.0 ± 23.2 29.8 ± 19.1 0.006

aAll tumors were classified into two subtypes: those in which the decrease in
TCF4 mRNA expression was 50% or more compared with adjacent normal
tissue (�50% decrease) and those in which the decrease in TCF4 mRNA
expression was ,50% compared with adjacent normal tissue (,50%
decrease).
bAnalyzed by Student’s t-test or by v2 test.
cSize was calculated based on the largest diameter measured for each tumor.
dMixed type tumors were excluded from this analysis because of a small
sample number (n 5 3).
eEGC, early gastric cancer; AGC, advanced gastric cancer.
fThe percent methylation at seven distinct CpG sites in TCF4 exon 1 was
determined by pyrosequencing analysis. The percentages were then averaged
to calculate TCF4 methylation.
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alterations are a prerequisite of virtually all tumors and that epigenetic
alterations facilitate the accumulation of further genetic modifications
that result in cancer progression through clonal expansion of cells
with a resulting proliferative advantage (35). In this study, we dem-
onstrated that 38% of the gastric tumors examined displayed TCF4
silencing and we significantly correlated this effect with CpG dinu-

cleotide methylation in TCF4 exon 1. Gastric cancers are histologi-
cally classified into two main types, intestinal and diffuse (38).
Intestinal-type gastric cancers are thought to be derived from gastric
mucosa cells, and patients progress through well-characterized se-
quential stages such as chronic gastritis, atrophy, intestinal metaplasia
and dysplasia, whereas diffuse-type gastric cancers are presumed
to develop from gastric epithelial cells through a shorter, less well-
characterized sequence of events (39). In this study, examination of
clinicopathologic characteristics of tumors showed that TCF4 silenc-
ing was significantly more prevalent in intestinal type and in early
stage gastric cancers than in diffuse type or in advanced stage gastric
cancers. Recent results have shown that promoter hypermethylation in
many genes occurs in the non-cancerous tissues adjacent to gastric
cancer tumors (40,41) and in non-neoplastic gastric mucosa of
patients without gastric cancer (42), indicating that an overall dereg-
ulation of the DNA methylation machinery may be an early event in
the formation of gastric cancers and may become more severe as
carcinogenesis progresses.

Because the normal gastric mucosa and tumor tissues used in this
study were not dissected by a technique such as laser-captured mi-
crodissection, the normal gastric mucosa may have actually been
normal-appearing precancerous gastric mucosa, and likewise, the tu-
mor tissues may have included some normal mucosa or precancerous
cells. Although our samples may have contained these possible mix-
tures, our data showed that CpG methylation in TCF4 exon 1 gradu-
ally increased in an age-dependent manner in all normal-appearing
gastric mucosa samples examined—the average percent of methyl-
ated CpG sites ranging from 1.7% in age group 1 (,50 years) to
25.3% in age group 4 (over 70 years). These data are highly relevant
to gastric neoplasia because the incidence of sporadic gastric tumors
is strongly age related (43). In agreement with this, it is worthwhile
to note that the mean percent TCF4 CpG methylation in normal-
appearing gastric mucosa of older patients (25.3% for patients over
age 70) was similar to that in gastric tumor tissues from younger
patients (24.5% for patients younger than age 50), suggesting that
gastric mucosa from patients over age 70 may be predisposed to neo-
plasia. However, it is unlikely that TCF4 CpG methylation contributes
to decreased TCF4 expression in normal gastric mucosa in older
patients based on our observation that normal gastric mucosa from
older patients contains no extensively hypermethylated clone, which
may be correlated with TCF4 expression, in contrast to its presence in
gastric tumors from younger and older patients and in some gastric
cancer cell lines. In fact, no significant difference in TCF4 expression
in the normal mucosa was detected between age groups. Although
CpG methylation in TCF4 exon 1 was not found in chronic gastritis,
a gradual increase in CpG methylation from intestinal metaplasia to
neoplastic gastric mucosa, such as gastric adenomas or gastric carci-
nomas, was noted. Therefore, it is reasonable to propose that increased
TCF4 CpG methylation in normal-appearing gastric mucosa may be
due to local methylation of CpG sites initiated at an early stage during
gastric carcinogenesis (such as in intestinal metaplasia), rather than due
to extensive CpG methylation as proposed in the ‘field cancerization
effect’ in an epithelial carcinogenesis model in which the development
of a field of genetically altered cells plays a central role (44).
TCF4 consists of 20 exons (exons 1 and 20 are non-coding), spans

363 kb, and encodes at least two isoforms of the TCF4 protein that
differ with respect to the presence of four amino acids (RSRS) located
17 residues N-terminal to the HLH domain (19). Although previous
studies have presented controversial cellular roles for TCF4 (11,16),
our data show that overexpression of TCF4 reduced colony formation
in an anchorage-dependent and -independent manner, supporting
a role for TCF4 as a negative regulator of cell proliferation (16).
Because it has also been shown that the functional patterns of TCF4
are very similar to those of TCF3, another member of the bHLH
transcriptional factor family, and that TCF3 acts act as a tumor sup-
pressor in several cancer cell lines (11), TCF4 may be associated with
the induction of apoptosis. Furthermore, no significant correlation
between b-catenin mutations and expression of TCF4 in hepatoblas-
tomas has been demonstrated (45), although b-catenin-binding

Fig. 4. Ectopic expression or siRNA knockdown of TCF4. (A) Immunoblot
analysis of exogenous TCF4 expression in gastric cancer cells. SNU-638
cells were transfected with pEGFP-C1-TCF4 or control pEGFP-C1 vector
and GFP-TCF4 or GFP expression was confirmed by western blotting using
an anti-GFP antibody. Mr, molecular mass markers. (B) Anchorage-
dependent colony formation assay in monolayer cultures. SNU-638 cells
selected for transfection with pGFP-C1-TCF4 or control plasmid were
cultured for 25 days and stained with crystal violet to visualize colony
formation. The bar graph indicates the number of colonies formed. Values
represent the mean ± SD from three separate experiments performed in
duplicate. (C) Anchorage-independent colony formation assay in soft agar.
SNU-638 cells transfected with pGFP-C1-TCF4 or control plasmid were
seeded in soft agar and examined for colony formation after 2 weeks. The bar
graph indicates the relative size of the colonies formed with average size of
the control colonies arbitrarily set to 100%. Values represent the mean ± SD
from three separate experiments performed in duplicate. (D) TCF4
knockdown by TCF4-siRNA in two TCF4-expressing cell lines, SNU-484
and SNU-668. Cells transfected with 60 nM TCF4-siRNA were analyzed for
TCF4 expression using RT–PCR. b-Actin was analyzed as an internal
control. (E) Transwell cell migration assay. Cells transfected with TCF4-
siRNA or mock-transfected cells were seeded in fibronectin-coated transwell
plates and allowed to migrate for 20 h (SNU-484 cells) or 26 h (SNU-668
cells) (left panel). The bar graph indicates the number of migrated cells.
Values represent the mean ± SD from three independent experiments
performed in duplicate. Scale bar, 65 lm.
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proteins, such as ICAT or Chibby, may regulate b-catenin function and
its ability to activate TCF7L2-regulated transcription (46,47). A pos-
sible explanation for the observed variation in TCF4 expression is that
the expression may be controlled by other signaling pathways in a cell
type-specific manner. We showed that knock down of TCF4 using
TCF4-siRNA significantly increased cell migration in vitro, also sug-
gesting an inhibitory effect of TCF4 on cell migration. Thus, our
results suggest that TCF4 has a possible negative effect on both cell
growth and migration in gastric cancer cells. In this study, however,
because no correlation was found between lymph node metastasis and
TCF4 silencing in clinical samples and because we found that TCF4
silencing was significantly more frequent in early stage gastric can-
cers than in advanced stage gastric cancers, further analysis is needed
to resolve the role of TCF4 silencing in carcinogenesis. However,
CpG methylation of TCF4 may prove to be a useful molecular bio-
marker for assessing the risk of gastric cancer development and drug
therapies targeting TCF4 expression in gastric cancers may improve
prognosis for gastric cancer patients.
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Supplementary Figure 1 can be found at http://carcin.oxfordjournals.
org/
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