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Abstract
Purpose To develop a videofluoroscopy-based predictive model of radiation-induced dysphagia (RID) by incorporating
DVH parameters of swallowing organs at risk (SWOARs) in a machine learning analysis.
Methods Videofluoroscopy (VF) was performed to assess the penetration-aspiration score (P/A) at baseline and at 6 and
12 months after RT. An RID predictive model was developed using dose to nine SWOARs and P/A-VF data at 6 and
12months after treatment. A total of 72 dosimetric features for each patient were extracted from DVH and analyzed with
linear support vector machine classification (SVC), logistic regression classification (LRC), and random forest classification
(RFC).
Results 38 patients were evaluable. The relevance of SWOARs DVH features emerged both at 6months (AUC 0.82 with
SVC; 0.80 with LRC; and 0.83 with RFC) and at 12months (AUC 0.85 with SVC; 0.82 with LRC; and 0.94 with RFC).
The SWOARs and the corresponding features with the highest relevance at 6months resulted as the base of tongue (V65
and Dmean), the superior (Dmean) and medium constrictor muscle (V45, V55; V65; Dmp; Dmean; Dmax and Dmin), and the parotid
glands (Dmean and Dmp). On the contrary, the features with the highest relevance at 12months were the medium (V55;
Dmin and Dmean) and inferior constrictor muscles (V55, V65 Dmin and Dmax), the glottis (V55 and Dmax), the cricopharyngeal
muscle (Dmax), and the cervical esophagus (Dmax).
Conclusion We trained and cross-validated an RID predictive model with high discriminative ability at both 6 and
12months after RT. We expect to improve the predictive power of this model by enlarging the number of training datasets.
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Introduction

Radiation-induced dysphagia (RID) represents the real
Achille’s heel of radiation-based organ preservation treat-
ment in head and neck cancer (HNC). It contributes to
a malnutritional status often requiring enteral nutrition and
an increased risk of life-threatening aspiration pneumonia
[1].

During and shortly after radio- (RT) or radiochemother-
apy (RTCT), almost all HNC patients suffer from a certain
degree of acute dysphagia mainly due to the high grade of
mucositis and laryngeal edema that usually recovers within
3–4 months after treatment. However, in some cases, dys-
phagia may deteriorate over time (beyond 6 months) due
to progressive fibrosis of the upper aerodigestive tract that,
together with muscular disuse (usually due to the absence
or significant reduction of oral intake), leads to permanent
fibroatrophic damage causing many patients to suffer from
a certain degree of RID for years after treatment [2, 3].

To date, clinicians are unable to accurately predict which
patients will experience long-term RID. Recently, a mul-
tivariable clinical normal tissue complication probability
model (NTCP) of swallowing dysfunction at 6 months fol-
lowing RT was externally validated by correlating the grade
of dysphagia according to the Radiation Therapy Oncology
Group (RTOG) and European Organization for Research
and Treatment of Cancer (EORTC) late radiation morbidity
score (a clinical primary endpoint) and average mean dose
(Dmean) to the Swallowing Organs at Risk (SWOARs) and
salivary glands, reporting a good overall performance, dis-
crimination, and goodness of fit [4]. In this regard, five pat-
terns of clinical swallowing dysfunction related to RT doses
to the upper and lower pharyngeal region as well as to the
larynx and salivary glands were revealed (low, intermediate,
and severe persistent; transient and progressive), suggesting
different underlying radiobiological mechanisms [5].

SWOARs-sparing Intensity and Modulated Radiother-
apy (SWOARs-IMRT) might reduce the probability of RID
by generating highly conformal dose distributions that avoid
these critical structures, thus achieving better functional
outcomes [6]. Despite the small amount of data available
in the current literature, a significant reduction of grade
2–4 swallowing dysfunction at 6 months after treatment has
been observed by using SWOARs-sparing compared with
a standard parotid-sparing IMRT [4]. We recently reported
our prospective longitudinal study on nasopharyngeal and
oropharyngeal cancers to assess the impact of RT or RTCT
on swallowing function through an objective instrumental
assessment from before treatment to 6 and 12 months af-
ter treatment using SWOARs-sparing IMRT (primary end-
point). We proved that better swallowing outcomes can be
achieved with respect to standard approaches [7]. However,
at present, it is unknown which SWOARs mostly contribute

to RID so the prediction of its occurrence as well as its cor-
relation with specific RT dose features is lacking.

Therefore, based upon the secondary endpoint of our
study aimed to correlate objective instrumental swallowing
outcomes with radiation dose absorbed by the SWOARs,
we developed predictive model of RID from a set of RT
dose metrics by using machine learning methodology.
These classification algorithms have recently been pro-
moted in radiology and are also increasingly being used in
the radiotherapy field [8, 9]. In the study by Dean et al.
[10], these methods were applied with good results to pre-
dict the occurrence of severe acute mucositis resulting from
HNC RT with the aim of determining a predictive model
for this side effect. However, at present, a predictive model
of RID has not yet been created using machine learning
methodology.

In this regard, the purpose of this research was to ob-
tain a VF-based predictive model for RID based upon our
abovementioned study by introducing SWOARs into the
dose–volume histogram (DVH) analysis and by using a ma-
chine learning approach. In particular, the aims of this work
were: 1) to design a classification framework to predict,
with good performance, the onset of dysphagia from the
DVHs of SWOARs; 2) to develop a predictive model of RID
using a machine learning approach; 3) to identify the most
important SWOARs and dosimetric features implicated in
RID in order to guide treatment planning optimization.

Materials andmethods

Patients, radiotherapy planning, and dysphagia
assessment

Details of patients, radiation treatment characteristics, and
the technical aspects of the instrumental swallowing evalu-
ation have been reported previously [11].

Briefly, eligibility criteria included all patients affected
by naso- and oropharyngeal cancers (stage II-IVA) who
were candidates for RT or RTCT with curative intent re-
quiring bilateral neck irradiation. Patients who had under-
gone prior induction CT or HN treatment (surgery and/or
RT) or those with a diagnosis of concomitant comorbid-
ity that might have compromised basic deglutition function
(demyelinating or degenerative diseases and connective tis-
sue diseases) were excluded to specifically address the im-
pact of RT on swallowing function. Radiotherapy planning
was optimized to reduce dose to the SWOARs (SWOARs-
sparing IMRT). These were defined according to Chris-
tianen et al.’s guidelines [12]: the superior, middle, and
inferior constrictor muscles (SPCM, MPCM, and IPCM);
the supraglottic (SL) and glottic larynx (GL); cricopharyn-
geal muscle (CPM); cervical esophagus (CE); and parotid
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glands (PGs). In this regard, target coverage replaced spar-
ing of any SWOARs except for the spinal cord in the IMRT
optimization cost function. The IMRT plans set target pre-
scription goals and spinal cord maximum dose as the high-
est priority, whereas SWOAR constraints were set as sec-
ondary.

According to the study protocol, an objective instrumen-
tal dysphagia assessment including VF was performed to
assess the penetration-aspiration score (PAS score) at base-
line and at 6 and 12months after treatment. Two different
consistencies were used to test the PAS score: 10mL of thin
barium (L= liquid) and 10mL of paste barium (S= solid).
To simplify the interpretation of data, PAS scores were di-
vided into three different categories (1= normal; 2–5: pen-
etration; 6–8: aspiration) and dichotomized (0= normal vs.
1= penetration or aspiration).

Models of RID were developed using RT dose to the nine
SWOARs and the occurrence of penetration or aspiration
(P/A) at 6 and 12months after treatment.

Feature extraction

RT dose distributions for each patient were extracted us-
ing the TPS EclipseTM version 8.6 (Varian Medical Sys-
tems; Palo Alto USA). The RT dose distribution was de-
scribed by differential and cumulative dose–volume his-
tograms (DVHs) of SWOARs. Feature extraction was per-
formed with a pipeline specifically designed using CERR
[3] and MatLab software (R2017b; MathWorks, Inc.). The
following eight features were extracted for each SWOAR
from DVHs: V35, V45, V55, V65, minimum dose (Dmin),
maximum dose (Dmax), mean dose (Dmean) and the dose cor-
responding to the absolute maximum of the differential
DVH, hence the modal dose (Dmp). Therefore, a total of
72 features for each patient were calculated.

Feature classification

Dose distribution features were analyzed using a machine
learning procedure developed using MatLab software and
Statistics and Machine Learning Toolbox (R2017b; Math-
Works, Inc.). Three types of classification models were em-
ployed: linear support vector machines (SVMs) classifier,
logistic regression, and classification ensembles. SVM clas-
sification (SVC) consists of a supervised binary classifica-
tion method that learns the differences between two sample
classes from a training set and uses a test set to quantify
the classification performance on previously unseen data. In
this analysis, as the number of features is quite high with
respect to the number of examples, we only considered lin-
ear-kernel SVMs to prevent overfitting. SVMs are capable
of handling very large feature spaces and have good gen-
eralization properties compared to conventional classifiers

because in training the SVM classifier, the structural mis-
classification risk is to be minimized [13]. Training an SVM
involves the estimation of the maximum margin hyperplane
separating the training examples of the two groups. The
training examples that fit in the margin are called support
vectors. The separating hyperplane w� x+ b= 0 is charac-
terized by the weight vector w and the offset b (where w is
a linear combination of the support vectors), and it is nor-
mal to the hyperplane [9].

In addition, logistic regression classification (LRC) was
used to analyze DVH features. LRC is a linear method for
predicting binary classes. The outcome in logistic regres-
sion analysis is dichotomous (0 or 1, negative or positive,
respectively). In the multiple logistic regression model, the
expected probability, P, that the outcome of interest is 1 can
be written as follows:

P = ef =.1 + ef / (1)

where f= β0+ sumi(βixi), x1 ... xp are the p training examples,
β0 is the bias, and β1 ... βp the estimated coefficients [14].
This model is particularly useful in classical radiobiology
to describe NTCP.

Finally, the classification ensemble method was used
to study the discriminative power of the DVH features
of SWOARs. Ensemble-learning algorithms are supervised
classification methods that aggregate weaker learners into
one high-quality ensemble predictor. The bootstrap aggre-
gation is a technique for reducing the variance of an esti-
mated prediction function. It is used to bag a weak learner
such as a decision tree on the dataset to generate many boot-
strap replicas and grow decision trees on them. Each boot-
strap replica is obtained by a random selection of m training
examples out of N with replacement, where N is the dataset
size. Moreover, every tree in the ensemble can randomly
select predictors for each decision split. This technique is
called random forest classification (RFC) and it improves
the accuracy of bagged trees. Usually, the number of ex-
amples to select for each split is equal to the square root of
the number of predictors p used for classification [14–16].

Performances are evaluated in terms of sensitivity (true
positive ratio, i.e., the percentage of positive subjects cor-
rectly classified) and specificity (i.e., the proportion of neg-
atives that are correctly identified as such). The trade-off
between the sensitivity and the false-positive ratio (one mi-
nus the test specificity), obtained by varying the decisional
threshold of the classifier, is known as the receiver operat-
ing characteristic (ROC) curve [17]. From the ROC curve,
the area under curve (AUC) can be estimated. The AUC
is a global index to compare the ROC curves of differ-
ent classifiers [18]. In all the classification analyses, AUC
was computed in cross-validation (CV), both to guarantee
an unbiased estimate of the classifier performance and to
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Table 1 Mean doses of SWOARs for all patients based on the occurrence of RID (group 0= normal swallowing vs. group 1= penetration or
aspiration) at 6 and 12 months after treatment

SWOARs P/A 6 months P/A 12 months

Group 0 Group 1 Group 0 Group 1

Mean± SD (range), Gy Mean± SD (range), Gy Mean± SD (range), Gy Mean± SD (range), Gy

SPCM 53± 15 (13–66) 61± 4 (53–67) 52± 16 (13–66) 57± 12 (29–67)

MPCM 49± 10 (30–62) 61± 4 (54–67) 48± 10 (30–61) 62± 5 (50–67)

IPCM 40± 13 (20–61) 53± 9 (39–67) 37± 13 (20–61) 56± 8 (42–67)

SL 45± 14 (20–68) 56± 10 (40–68) 44± 15 (20–68) 59± 11 (38–68)

GL 37± 14 (16–63) 47± 9 (37–67) 35± 14 (18–63) 51± 9 (38–67)

CPM 37± 12 (17–58) 48± 8 (38–61) 35± 12 (17–55) 51± 8 (40–61)

CE 24± 11 (2–42) 34± 10 (23–50) 23± 11 (2–42) 36± 9 (26–50)

BOT 52± 10 (30–64) 63± 2 (60–67) 50± 10 (30–64) 62± 4 (55–67)

PGs 25± 8 (9–41) 30± 5 (22–37) 24± 8 (9–42) 30± 6 (22–39)

SWOARs swallowing organs at risk, RID radiation-induced dysphagia, P penetration, A aspiration, SD standard deviation, SPCM superior
constrictor muscle, MPCM medium constrictor muscle, IPCM inferior constrictor muscle, SL supraglottic larynx, GL glottic larynx,
CPM cricopharyngeal muscle, EC cervical esophagus, BOT base of tongue, PGs parotid glands

achieve a good generalizability of the models. The classi-
fiers were trained according to the leave-one-out cross-vali-
dation (LOO-CV) technique, which is usually implemented
when a rather limited dataset is available. This method per-
forms N repetitions, where N is equal to the number of
subjects in the dataset. At each iteration, the training set is
composed of all the examples minus one (N - 1 subjects),
which is used to test the trained model. As a consequence,
the test data never enter the training phase. The prediction
results from the N classifiers can be combined in order to
get an unbiased estimate of the AUC of the classifier, de-
spite the poor number of examples [19–21]. In order to
estimate AUC range, a nested LOO-CV was applied. In
each of N iterations a further LOO-CV was implemented
on the N - 1 training examples to compute AUC.

Feature reduction

In this study, a data dimensionality reduction procedure was
applied with the aim of identifying the features with the
highest discriminative power. Features were ranked by rel-
evance using out-of-bag predictor importance estimates by
permutation. This method measures how influential the pre-
dictor variables in the model are at predicting the response.
The influence of a predictor increases with the value of
this measure. If a characteristic is influential in prediction,
then permuting its values should affect the model error.
If a predictor is not influential, then permuting its values
should have little to no effect on the model error. Out-of-
bag (OOB) error is the mean prediction error on each train-
ing sample xi, using only the trees that did not have xi in
their bootstrap sample. The omitted observations are called
OOB observations [16]. A permutation algorithm can be
used, permuting OOB data across one predictor at a time
and estimating the increase in OOB error due to this ran-

dom permutation. With this method a reliable estimate of
feature importance can be obtained in the training phase.

Results

Between June 2012 and October 2015, 39 patients with
nasopharyngeal (n= 10) and oropharyngeal (n= 29) cancer
were enrolled in our study. 38 were eligible for the evalu-
ation of the study, as 1 patient died due to cardiovascular
disease at 4 months after treatment. Of the 38 eligible pa-
tients, 36 and 30 patients underwent VF at 6 and 12 months,
respectively. The summaries of baseline patient and tumor
characteristics and treatment details are reported elsewhere
[7]. Among the 38 evaluable patients, 7 (18%) experienced
a locoregional recurrence (6 local and 1 both local and re-
gional), of whom 5 underwent subsequent metastatic pro-
gression (4 lung and 1 bone metastasis). Contrastingly,
2 patients (1 nasopharynx and 1 base of tongue) experi-
enced distant metastases progression without locoregional
evidence of recurrence.

P was found in 6/36 patients (17%) and A in 5/36 pa-
tients (14%) at 6 months after treatment, and in 6/30 patients
(20%) and 3/30 patients (10%), respectively, at 12 months
after treatment. Among these patients, only 1 (3%) experi-
enced clinical aspiration pneumonia which required hospi-
talization, protective tracheostomy, and antibiotic therapy.

Among the 11/36 patients (30.5%) who developed RID
at 6 months, 6 patients (55%) still persisted at 12 months,
4 patients (36%) did not receive the exam at 12 months,
whereas only 1 (9%) developed RID at 12 months and not
at 6 months after treatment.
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Fig. 1 Receiver operating char-
acteristics (ROC) curve for
prediction of disturbed swallow-
ing (penetration/aspiration) at
6 months

Fig. 2 Receiver operating char-
actheristics (ROC) curve for
prediction of disturbed swallow-
ing (penetration/aspiration) at
12 months

Feature analysis with machine learningmethods

In this study, dose distribution features of SWOARs were
used as predictor variables in three supervised learning
methods: linear-kernel SVC, LRC, and RFC. Patients were
grouped on the basis of P/A patterns at 6 and 12months:
class label was set to 0 in case of normal deglutition and
to 1 if the event of P or A occurred. Hence, two binary
classifications were designed: at 6months 0 vs 1 0 (number
of patients [N]= 25) vs. 1 (N= 10) and at 12months 0 vs.

1 0 (N= 20) vs. 1 (N= 9). In order to avoid scale-related
dominance, each column of the predictor data was centered
and scaled by the column mean and standard deviation,
respectively.

The mean doses to SWOARs for patients grouped on
the basis of P/A at 6 and at 12months are summarized in
Table 1.

The classifiers were trained according to the LOO-CV
procedure, thus excluding one subject from the training set
at each iteration and validating the trained model on it. Us-
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Fig. 3 Predicator importance
estimates for prediction of dis-
turbed swallowing (penetration/
aspiration) at 6 months

Fig. 4 Predicator importance
estimates for prediction of dis-
turbed swallowing (penetration/
aspiration) at 12 months

ing this method it was possible to estimate AUC in cross-
validation as a unique classification performance index. The
range of AUC values for each classifier and for two sub-
groups at 6 and at 12months was estimated with nested
LOO-CV.

The relevance of SWOAR DVH features in predict-
ing RID emerged both at 6 and 12months. At 6months
AUC was 0.82 with SVC (range [0.80–0.92]), 0.80 with
LRC (range [0.74–0.88]), and 0.83 with RFC (range
[0.79–0.93]). Moreover, at 12months AUC was equal to

0.85 with SVC (range [0.82–0.95]), 0.82 with LRC (range
[0.76–0.95]), and 0.94 with RFC (range [0.91–0.99]). The
ROC curves for all the classifiers are reported in Figs. 1
and 2.

The application of LRC allows the estimation of lo-
gistic regression bias and parameters useful to obtain an
NTCP model of radiation-induced dysphagia. Here, the
model is multivariate and depends simultaneously on many
dose–volume variables computed for a set of SWOARs
(a total of 72 features). The model is given by the fol-

K



Strahlenther Onkol (2021) 197:209–218 215

lowing: NTCP= ef / (1+ ef), where f= β0+ sumi(βixi), where
β0 is the bias, and βi is the estimated coefficient for the
variable xi, centered and scaled. The quality of the model
was evaluated by computing AUC with LOO-CV by com-
bining the prediction results from the N logistic regression
classifiers.

Feature importance analysis

To understand which of the 72 characteristics are the most
relevant in P/A subgroup discrimination, an OOB permuta-
tion algorithm was implemented both at 6 and at 12months.
A number of 10,000 iterations was set and the results are
shown in Figs. 3 and 4, where the features with an esti-
mated importance >0.1 are reported. The SWOARs and the
corresponding features with the highest relevance level in
predicting RID at 6months were the BOT (V65 and Dmean),
SPCM (Dmean), MPCM (V45, V55, V65, Dmp, Dmean, Dmax,
and Dmin), and PGs (Dmean and Dmp). On the contrary, of
highest importance at 12months were MPCM (V55, Dmin

and Dmean), IPCM (V55, V65, Dmin, and Dmax) together with
GL (V55 and Dmax), CPM (Dmax) and EC (Dmax).

Discussion

The purpose of this study was to provide a predictive model
of RID based on VF findings at 6 and 12 months on naso-
and oropharyngeal patients after definitive RT or RTCT
using data from a prospective study conducted in our insti-
tution between June 2012 and July 2015.

Our previously published results [7] showed a signif-
icant worsening of VF-assessed swallowing function for
S (p= 0.039) rather than L bolus (no statistically significant
variations) reporting an overall pattern of post-swallowing
P/A of 31% and 30% at 6 and 12 months after treatment.
Specifically, P was found in 6 patients (17%) and A (14%)
in 5 patients (14%) at 6 months, and in 6 patients (20%) and
3 patients (10%) at 12 months after treatment, respectively.
With these data, we built a predictive model of RID by in-
troducing nine SWOARs into the DVH analysis and extract-
ing eight different dosimetric features for each SWOAR in
order to implement a machine learning analysis.

At first, we found the model to be highly accurate in
predicting the occurrence of RID both at 6 and 12 months
after treatment, reporting an AUC of 0.82 with SVC and
of 0.83 with RFC at 6 months and of 0.85 with SVC and
of 0.94 with RFC at 12 months. Specifically, we discov-
ered that the dose received by the SWOARs located in the
upper HN region (SPCM, BOT, MPCM, and PGs) was ex-
tremely important for predicting RID at 6 months, whereas
the dose received by the SWOARs located in the lower
region (IPCM, GL, CPM, and EC) was extremely impor-

tant for predicting RID at 12 months after treatment. These
findings seem to reflect different pathophysiological mech-
anisms in the impairment of pharyngeal swallowing phase
due to the involvement of different swallowing structures
early and late after treatment. As widely reported, there is
a strict correlation between the severity of post-swallow-
ing residue and the risk of P/A after an RT-based treat-
ment [22, 23], and the restriction of the pharyngeal cran-
iocaudal driving pressure, together with the reduction of
the back–forward movement of the BOT, might explain our
early results. Thus, the persistence of high-grade inflam-
matory edema of both the upper pharyngeal musculature
and the BOT, worsened by the RT-related xerostomia (due
to parotid glands damage), may cause a high-grade post-
swallowing pharyngeal residue that leads to spillage of the
bolus into the airways. Nevertheless, due to the lack of
statistical significance of these SWOARs at 12 months af-
ter treatment, our results seem to determine a reversible
effect of RT on these structures, probably suggesting that
objective swallowing dysfunction at 6 months is related to
prolongation of acute effects rather than to the onset of late
effects. Therefore, the recovery or at least improvement of
the salivary function through the frequent use of substitute
or stimulator products and early deglutitory rehabilitation
(mostly aimed at strengthening the retropulsion movement
of the BOT), together with the total or partial recovery of
oral nutrition in this time interval, might explain the im-
pairment retrieval for these swallowing structures between
6 and 12 months [24–29]. On the contrary, our findings
seem to identify different mechanisms of late RID, because
the SWOARs located in the lower part of the HN region
seem to be those mostly implicated in the occurrence of this
complication. In our experience, the radiation damage of the
most caudal SWOARs played a crucial role in the late swal-
lowing impairment of our patients. These findings are likely
explained by a reduction of the protective mechanisms of
the airways (mainly guaranteed by the early closure of the
true and false vocal cords as well as by the hyolaryngeal
complex elevation) due to post-RT laryngeal damage and
by the hampered opening of the upper aerodigestive tract
(guaranteed by the relaxation of the cricopharyngeal mus-
cle and upper esophageal sphincter) due to CPM and EC
post-RT damage. In addition to the above-described mech-
anisms, the radiation-induced fibroatrophic damage of the
MPCM and IPCM probably contributes to impairing the
craniocaudal pharyngeal peristalsis, leading to an increase
of post-swallowing pharyngeal residue and subsequent in-
halation [30–33].

The histological and biochemical structures of the pha-
ryngeal tract seem to support our findings. A higher sensi-
tivity to radiation damage for the lower rather than the upper
pharyngeal muscular tract (due to a different myofiber com-
position for the inner and outer layers) has been reported
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by the literature [34–37]. As a matter of fact, the inner
layer is composed of a high prevalence of myofibers con-
taining slow-twitch myosin (type I) characterized by slow
contraction, high mitochondrial density, and high oxida-
tive capacity, and is mostly responsible for the tone and
stiffness of the pharynx. On the contrary, the outer layer
is composed of a high prevalence of myofibers containing
fast-twitch myosin (Type IIb) characterized by fast contrac-
tion, low mitochondrial density, and low oxidative capacity,
and is mostly responsible for the contraction of the pharynx
and the propulsion of the bolus. The immunohistochemical
analysis of the pharynx, reported by Liancai et al. [35], has
shown that the ratio between the width of the two layers
changes in a craniocaudal direction, from approximately
2:1 in the cranial portion to 1:2 in the caudal portion. This
might explain the higher radiosensitivity of the caudal com-
pared to the cranial SWOARs and we believe this might
further support our results.

To the best of our knowledge, this is the first analysis that
aims to develop a predictive model of RID and combines
a VF-based swallowing assessment with a quantitative dif-
ferential analysis of DVH for nine different SWOARs using
a machine learning method. The multivariate technique em-
ployed in this study challenges the common practice in RT
planning in which single constraints for each organ at risk
are considered during treatment plan optimization. Here, the
DVH characteristics of nine SWOARs are taken as a unique
object, all contributing at the same time to the RID pre-
dictive model. In this regard, the study by Eisbruch et al.
[38] was the only one that specifically investigated the re-
lationship between VF-based aspiration and dose received
by the pharyngeal constrictor muscles and the supraglot-
tic larynx in a prospective experience on 73 oropharyngeal
cancer patients. In this study, mean doses to each part of
the PC (superior, middle, and inferior) were significantly
correlated with all VF dysphagia measures, with superior
PCs demonstrating the highest correlations. Interestingly,
the lack of a mean dose threshold for these swallowing-
related structures, as well as toxic doses (TD25) of 56Gy
and 39Gy, were detected for pharyngeal constrictors and
supraglottic larynx, respectively.

Despite the fact that our results are very encouraging in
terms of predictive performances, we know that a limitation
of our analysis is the low number of patients. Regarding this
point, it is not unusual to find machine learning studies with
rather small datasets [20, 21], especially if data are robust
and well characterized. Nevertheless, in these cases reliable
results can also be achieved providing that the method is
chosen adequately. For this reason, in our study we decided
to implement LOO-CV, both to guarantee an unbiased es-
timate of classification performances and to maximize the
training set size at each iteration. In fact, LOO-CV offers
a chance of squeezing the maximum out a small dataset

and obtaining an estimate of AUC that is as accurate as
possible [19]. Secondly, we know that the main limitation
of our analysis is the absence of an external validation.
However, we expect to improve the generalization capabil-
ity of this model both by enlarging the number of examples
and by adding a group of patients to use for external val-
idation only. In this regard, we intend to validate the RID
predictive model once the same data from the larger dataset
of the ongoing Italian Multicentric Clinical Study (NCT
03448341) are available. In the meantime, we strongly sug-
gest that clinicians and physicists maximally enforce the
dosimetric constraints of the lower SWOARs in the IMRT
plan optimization process for this specific subset of HNC
patients in order to reduce the risk of late RID. Using a clin-
ical primary endpoint, the influence of RT doses to inferior
SWOARs (especially to the inferior and medium constrictor
muscles) in oropharyngeal patients to determine late RID
has been recently reported by Mogadas et al. [39].

Last but not least, we would like to point out the consid-
erable potential of a machine learning methodology. This
new approach builds upon NTCP models based on the com-
bination of multiple dose metrics for different organs at
risk. These are considered as a unique object rather than
as a standard approach, in which dose values for each or-
gan at risk are taken separately. If so, these NTCP models
could be used in daily practice for treatment planning opti-
mization and clinical decision support. We believe that this
approach should be applied in radiation oncology research
when the occurrence of an organ dysfunction, similarly to
RID, is related to the damage of several rather, than just
one, functional structures that differently concur in physio-
logical processes.

Conclusion

In this study we began to lay the foundations for a future
investigation of the relevance of the different SWOARs in
the occurrence of RID. Our results highlight a major critical
role of the impairment of BOT and PGs for early RID, and
of IPCM, CPM, GL, and CE for late RID. Also, a crucial
role seems to be played by MPCM both for early and late
RID, maybe due to its anatomical location between upper
and lower HN region that makes it difficult to be spared for
tumors located in upper HN region.

Therefore, we would like to draw the attention of the
clinicians to the abovementioned SWOARs, several of
which have been poorly considered until recently and are
worth further investigating in clinical research.
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