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Abstract

The strongest genetic risk factor for idiopathic late-onset Alzheimer’s disease (LOAD)

is apolipoprotein E (APOE) ɛ4,while theAPOE ɛ2allele is protective.However, there are
paradoxicalAPOE ɛ4carrierswho remaindisease-freeandAPOE ɛ2carrierswithLOAD.
We compared exomes of healthy APOE ɛ4 carriers and APOE ɛ2 Alzheimer’s disease

(AD) patients, prioritizing coding variants based on their predicted functional impact,

and identified 216 genes with differential mutational load between these two popula-

tions. These candidate geneswere significantly dysregulated in LOADbrains, andmany

modulated tau- or β42-induced neurodegeneration in Drosophila. Variants in these

genes were associated with AD risk, even in APOE ɛ3 homozygotes, showing robust

predictive power for risk stratification.Network analyses revealed involvement of can-

didate genes in brain cell type-specific pathways including synaptic biology, dendritic

spine pruning and inflammation. These potential modifiers of LOAD may constitute

novel biomarkers, provide potential therapeutic intervention avenues, and support

applying this approach as larger whole exome sequencing cohorts become available.
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1 NARRATIVE

As pathological changes that lead to late-onset Alzheimer’s disease

(LOAD) begin well before the presentation of clinical symptoms,1

predicting those at risk remains an important challenge for developing
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effective prevention, treatment, and clinical trials. Despite the many

loci associated with LOAD so far, we are still short of a robust, unified

methodof risk stratificationbasedongenomevariations. This difficulty

mainly stems from the clinical heterogeneity and polygenic nature of

the disease. Because LOADmanifests late in life, it often overlaps with
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RESEARCH INCONTEXT

1. Systematic review: Despite considerable insight fromgenome-wide association studies (GWAS) and sequencing studies,much of late-

onset Alzheimer’s disease (LOAD) heritability remains unexplained leading to uncertain risk stratification of patients and no available

disease-modifying therapies. To date, the apolipoprotein E (APOE) gene remains the strongest genetic risk factor for LOAD. Carriers

of the APOE ɛ4 allele are at a greater risk, while the APOE ɛ2 allele plays a protective role. However, many APOE ɛ4 carriers remain

disease free and some APOE ɛ2 carriers develop LOAD. Genetic modifiers that override the effects of APOE alleles may explain these

paradoxical cases and suggest attractive candidate biomarkers and therapeutic targets, while pointing to novel risk/protective alleles.

However, to this day the search for suchmodifiers has remained beyond the reach of conventional case-control studies.

2. Interpretation: Using a novel approach that predicts the functional impact of coding variants and a sequential regression analysis on

the largest LOAD whole exome sequencing (WES) dataset (Alzheimer’s Disease Sequencing Project), we identified 216 genes that

showed differential mutational load between healthy APOE ɛ4 carriers and APOE ɛ2 Alzheimer’s disease (AD) patients. These genes

were significantly dysregulated in the AD transcriptome and highly connected to known LOAD genes identified by GWAS. Further-

more, many of the genes were relevant in vivo as they ameliorated neurodegeneration caused by tau and secreted β42 using well-

validatedDrosophilamodels. Some identified geneshadvariants significantly associatedwith riskbeyond theAPOE ɛ2or ɛ4 individuals
extending into the ɛ3 homozygotes. The 216 identified genes could constitute risk/protective factors, biomarkers, and even therapeu-

tic targets, as many of them are druggable. Importantly, variants in the identified genes showed robust predictive power for patient

stratification within the ɛ2 and ɛ4 population.
3. Future directions: Our study has identified specific coding variants in genes not previously known to be associated with LOAD. Our

futureworkwill focus on identifyingwhat the specific effect of each variant is on protein function to better decipher the role they play

in LOADpathogenesis, with particular focus on the druggable targets whose knockdown ameliorated neurodegeneration. As network

analyses reveal a potential involvement of the identified genes in a variety of brain cell type-specific pathways ranging from stress

granules and synaptic biology to dendritic spine pruning and inflammatory response, our future work will focus on deciphering the

specific role of the identified genes in those pathways. As available WES expands, we will be able to replicate this approach in larger

cohort studies and in more diverse populations to identify genes that robustly enhance risk stratification and therapeutic target dis-

covery.

other neuropathologies, vascular disorders, and age-associated cogni-

tive impairments.2,3 Typically, a definitive LOADdiagnosis is performed

postmortembyneuropathological analysis. Here too, there is variability

in the type and number of structures observed (plaques, tangles, and

other protein aggregates) and their diagnostic potential,3 because

these deposits are also observed in normal aging and their frequency

can overlap between non-LOAD and LOAD patients.4–6 One unifying

characteristic of all LOAD patients is the severe loss of synapses

and neurons in the cortex that correlates with the devastating loss

of cognitive capacity.7–12 With respect to the polygenicity of LOAD,

estimates of heritability have been as high as 80% in twin studies,13

with more recent reports using genetic variance analyses being closer

to 50%.14 While genome-wide association studies (GWAS) on increas-

ingly larger cohorts have revealed more than 40 LOAD susceptibility

loci,15–21 much of the LOAD genetic risk remains unaccounted for,22,23

even as we approach the power limit of traditional GWAS methods.

Furthermore, an analysis of the molecular and biological functions of

the LOAD susceptibility loci reveals the involvement of multiple path-

ways and cellular processes. Together, these polygenic phenomena

point tomultiple pathways contributing to dementia.

Among risk factors for LOAD, the apolipoprotein E (APOE) gene

remains the strongest genetic risk factor.24 Clinical and autopsy-based

studies have shown that, among Whites, heterozygous APOE ɛ4 carri-

ers (ɛ4/ɛ2 or ɛ4/ɛ3) are two to three timesmore likely to develop LOAD

than non-carriers while in homozygotes (ɛ4/ɛ4) the risk can be > 14-

fold higher,25 with ≈40% of all LOAD cases carrying the ɛ4 allele.26

Conversely, the ɛ2 allele of APOE (either ɛ2/ɛ3 or ɛ2/ɛ2) plays a protec-
tive role, with≈40%decrease in chance of developing LOAD.However,

whether APOE ɛ4 or ɛ2 result in a loss or a gain of function remains

unclear,27 and the specific biological pathways they affect in the con-

text of AD remain to be fully elucidated. Although APOE status is such

a robust LOAD risk predictor, the pathogenicity of the ɛ4 allele and the
protection of ɛ2 are not completely penetrant.Many ɛ4 carriers remain

disease free and some ɛ2 carriers develop Alzheimer’s disease (AD),

raising the question of what keeps these paradoxical individuals from

manifesting the effects typically associated with their respective alle-

les? The answer may be a combination of environmental and genetic

factors, but to our knowledge, no study has attempted to answer this

question. We hypothesize here that a number of paradoxical individ-

uals harbor variants in other genes that overcome the benefit of ɛ2 or

neutralize the pathogenesis of ɛ4. Identifying these variantswould pro-
vide a rich set of hypotheses that may (1) reveal novel LOAD suscep-

tibility genes and protective alleles, (2) highlight potential therapeutic

targets and pathways, and (3) provide geneticists and neurologistswith

biomarkers for patient prognosis and stratification.

Here, to search for genetic variants underlying the APOE para-

doxical population we tapped into the largest whole exome dataset

currently available for AD, Alzheimer’s Disease Sequencing Project
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(ADSP; dbGaP accession: phs000572.v7.p4; n = 5686). To maximize

power, we included both heterozygotes and homozygotes, assuming ɛ3
is neutral (see Figure S1 in supporting information for demographics).

This resulted in 179 AD patients carrying APOE ɛ2/ɛ2 or ɛ2/ɛ3 (hence-

forth designated AD-ɛ2) and 301 healthy individuals with APOE ɛ4/ɛ4
or ɛ3/ɛ4 (henceforth designated HC-ɛ4). As age is the most important

risk factor for LOAD, we confirmed that healthy individuals were on

average significantly older than AD patients at the time of diagnosis,

in both theAPOE ε4 population and theAPOE ε2 population (Figure S1).
The small size of these populations lacks the power to perform GWAS.

The complex, polygenic nature of LOAD suggests that few additional

susceptibility genes may be identified by searching for a sheer excess

of mutations across a cohort. In addition, most GWAS LOAD loci fall

in non-coding regions, making it hard to decipher the specific genes

affected and therefore the functional consequences. For these reasons,

we focused on the coding sequences using a method that predicts the

functional impact of amino acid (AA) substitutions: evolutionary action

(EA).28

EA is unlikemethods that trainon largedatasets of humanvariations

and apply supervisedmachine learning algorithms toweighmutational

impact. Instead, it interpretsmutations of interest by tapping a vast but

usually unused reservoir of phylogenomic data coupling sequence vari-

ations to functional divergences across species. In practice, EA is com-

puted as a continuous score normalized to range from0 (low impact) to

100 (high impact), andproducedbymultiplying theevolutionary impor-

tance, or weight, of an individual protein sequence position with the

size of the evolutionary perturbation, or move, caused by a mutation

at that position.28 As a product of a force, describing mutational resis-

tance, and of amove, describingmutational displacement, EA becomes

interpretable as the work of a mutation as it pushes a genome along in

the evolutionary landscape. This approach has three main advantages:

(1) EA consistently performs well against state-of-the-art predictors

of mutational impact in objective, blinded challenges;29 (2) multiple

experimental applications confirmed its utility, including in clinical

contexts;30–33 and (3) finally, because EA is based on basic principles

of evolution rather than any specific training datasets, it is general,

unbiased, and broadly applicable, even across different species.

In this study, we used EA to compare the mutational burden for

eachgenebetween the twoparadoxical patient groups througha series

of linear regressions and identified genes with differential imputed

deviation in EA load (iDEAL; Figure 1A; see Methods). How iDEAL

works can be exemplified by TREM2, a well-known AD susceptibility

gene.26–29 TREM2 is identified by iDEAL as one of the genes underly-

ing the AD-ε2/HC-ε4 paradox, mainly due to the potentially pathogenic

R47H (EA=55.66), found significantlymore often inAD-ε2 than inHC-
ε4 individuals (odds ratio [OR]= 6.99; P = .015). However, iDEAL also

takes into account otherTREM2 variants aswell. For example, themore

impactful variant T96K (EA= 96.59)may also overcome the protective

effect of ε2 (OR= 5.11), though it is rarer and does not reach statistical

significance on its own. EA analysis also includes some less impactful

TREM2 variants (L211P with EA = 13.21, and V27M with EA = 6.43),

as well as nonsense variants (Q33Xwith EA= 100). Therefore, even de

novo and/or extremely rare variants thatwould not reachGWAS signif-

icance are used by iDEAL to create an aggregate score for each gene. In

total, iDEAL identified 216 genes with significant differences in muta-

tional EA load associated with the paradoxical AD-ɛ2/HC-ɛ4 pheno-

types (Table S1 in supporting information).

These iDEAL genes can be separated in two groups, those carry-

ing potentially protective variants in healthy ε4 individuals (68 genes

henceforth referred to as HCε4-iDEAL) and those enriched in poten-

tially pathogenic variants that overcome the ε2 protection in AD-ε2
patients (148 genes henceforth referred to as ADε2-iDEAL). As a val-
idation, we compared the EA score distributions in the ADɛ2-iDEAL
genes and in the HCε4-iDEAL genes in AD versus HC. We reasoned

that if theADɛ2-iDEALgenes foster LOADpathogenesis, theywouldbe

enriched for high-impact variants in ADpatients. Likewise, if theHCε4-
iDEAL genes keep ɛ4 carriers healthy, then they should be depleted of

high-impact variants in AD patients. As predicted, ADɛ2-iDEAL genes
were enriched for high-impact variants in patients compared to HC

(Figure S2A in supporting information, red, P = 1.1E-06; Kolmogorov-

Smirnov [K-S] test), and the HCε4-iDEAL genes were depleted of high-
impact variants in patients (Figure S2A, blue, P = 2.6E-07; K-S test).

Next, we performed the same analysis on either ɛ2 or ɛ4 carriers.

Consistent with the previous result, we found that the potentially

pathogenic ADɛ2-iDEAL variants were enriched in AD-ɛ2 individuals

compared to HCɛ2 (Figure S2B, red, P = 1.0E-14; K-S test) while the

potentially protective HCε4-iDEAL variants were depleted in AD-ɛ4
patients compared to HC-ɛ4 (Figure S2B, blue, P = 4.1E-06; K-S test).

Furthermore, we found that AD-ɛ3 patients were depleted of high-

impact variants in HCε4-iDEAL genes (Figure S2C, blue, P = .015; K-S

test) compared to HC-ɛ3 and showed a trend for enrichment of high-

impact variants in ADɛ2-iDEAL genes, though it did not reach statis-

tical significance (Figure S2C, red, P = .25; K-S test). Taken together,

these results indicate that the variants responsible for the paradoxical

AD-ɛ2/HC-ɛ4 phenotypes are significantly linked toAD status andmay

be causative of neurodegeneration or provide protection regardless of

APOE genotype.

To further investigate the relevance of iDEAL genes in AD biology

beyond APOE, we asked whether they are connected to known AD-

related changes and risk factors. First, we assessed their expression

in AD brains of the Accelerating Medicines Partnership-Alzheimer’s

Disease (AMP-AD) sequence repository.34–39 Out of the 174 iDEAL

genes present in the AMP-AD data, 75 genes were significantly dys-

regulated (adjusted P-value< .01) in ADpatients compared to controls

in at least one brain region (Figure 1B). This statistically significant

enrichment (P = .018; hypergeometric test) indicates that expression

of many iDEAL genes either respond to or are causative of AD-related

insults, supporting that iDEAL genes may act as modifiers of APOE

through a broader role in ADpathology. Next, wemeasured the degree

of connectivity between the iDEAL genes and other AD susceptibility

GWAS candidates15–21 using the STRING v11 database. We found

that the set of iDEAL genes were significantly more connected to

AD-GWAS candidates than expected by random chance (Figure 1C,

Figure S4A in supporting information, z-score=2.24).Moreover, seven

iDEAL genes (GOLGA5, PTBP1, SYTL2, SMARCD2, GAMT, TREM2, AZU1)

fall within±500kb of linkage disequilibrium (LD) regions for each locus
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F IGURE 1 Identification and validation of genes with differential functional mutational load in the paradoxical AD-ɛ2 versus HC-ɛ4
population. (A) For each gene, themutational burden, defined as the sum of all evolutionary action (EA) scores, was plotted against the number of
all coding variants observed in that gene, and a regression line was fitted to establish the expectedmutational burden given backgroundmutation
rate across the two paradoxical patient groups. Then, in each patient group (AD-ɛ2 vs HC-ɛ4), the observedmutational burden and the background
mutation rate for each genewere plotted, and the distance (d) from regression line wasmeasured and compared. To control for noise from passive
mutations, we assessed the significance of each gene’s signal by calculating a z-score from randomizing the labels of AD-ɛ2 andHC-ɛ4 patients 100
times to build a background distribution of imputed deviation in evolutionary action load (iDEAL) scores; 216 genes had an absolute value of
z-score above 2.5 (>99th percentile). For more detail, refer to DetailedMethods. (B) Enrichment of iDEAL genes for differentially expressed genes
(DEG) in Alzheimer’s disease (AD) brains fromAcceleratingMedicines Partnership-Alzheimer’s Disease sequence repository. DEGwere defined as
genes significantly up- or downregulated using adjusted P-value cutoff of .01 in at least one brain region. Hypergeometric test was used to assess
enrichment. (C) Enrichment of iDEAL genes for first-degree neighbors of genome-wide association study AD genes. STRING v11was used to
construct protein-protein interaction (PPI) network. Interaction sources are from Textmining, Experiments, andDatabases, with interaction scores
above 0.400. For calculation of z-score, see Figure S4A in supporting information. (D) The average worsening or amelioration (%) of
neurodegenerationmeasured as the loss in climbing speed ofDrosophila expressing either secreted β42 (left) or human 2N4R tau (right) together
with the indicated allele in theDrosophila homolog of the gene shown. β42/scramble or tau/scramble animals are used as the reference (error bars
indicate standard deviation). Seven genes that showed conflicting evidence are not included

found in a recent GWAS by Kunkle et al.21 These data suggest that the

iDEAL candidates act through pathways also affected by known AD

susceptibility loci.

The main neuropathological hallmark of AD is the severe loss of

synapses and neurons. The above data indicate a link between the 216

genes with higher mutational load in the paradoxical patients and neu-

rodegeneration. To investigate the capacity of each of the identified

candidates to modulate neurodegeneration in vivo, we used two well-

characterized Drosophila models that express either human wild-type

2N4R tau40 or secreted β42 peptide pan-neuronally.41 In these ani-

mals, tau is hyperphosphorylated and forms ALZ50 positive intracellu-

lar aggregates while β42 is detected both in its soluble form (by IP) and
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in Th-S positive extracellular aggregates (data not shown). Importantly,

these models present progressive behavioral (ie, locomotor) impair-

ments that can be precisely assessed longitudinally in aging animals

and provide a quantitative functional assay of neuronal dysfunction

and neurodegeneration. We used an automated data acquisition sys-

tem that enables high-throughput assessment of movement metrics

from video-recorded trajectories of individual animals.42 Our previous

work showed that genes modulating AD neuropathology in Drosophila

were validated in mouse and human cell AD models,40,43 supporting

the validity of these models. We tested all 134 genes with available

overexpression and/or loss of function alleles (classical or shRNA) and

identified 69 genes that when modulated worsened or ameliorated

tau- or β42-induced neuronal dysfunction (P = 1.13e-107; hyperge-

ometric test) (Figure 1D, Figures S5-S8, and Table S2 in supporting

information). Among these genes, knockdown of Drosophila homologs

of ATP6V0E2, COX11, E2F8, IGFALS, and TBC1D4 exacerbated neu-

ronal dysfunction in both models while knockdown of the Drosophila

homologs of ABHD2, CNTN1, DGKE, DPEP1, HSD17B2, LRRC17, PGP,

RRP8, and THG1L ameliorated neurodegeneration in both tau and β42
animals, indicating that these genes may play shared roles in mecha-

nisms underlying the AD pathogenesis. Previous analysis of APOE ɛ4
carriers revealed a positive correlation of APOE ɛ4 and the presence of
neurofibrillary tangles and amyloid plaques.44,45 Furthermore, exper-

imental data in mice and induced pluripotent stem cell (iPSC)-derived

neurons indicates that APOE ɛ4 can increase phosphorylation and

deposition of tau as well as promote the production and impair the

clearance of amyloid.46–51 Note that even though Drosophila does not

have a clearAPOE homolog, the kinases leading to tau phosphorylation

are conserved inDrosophila, and the same is true for the proteases that

can degrade amyloid extracellularly (neprilysin and insulin degrading

enzyme) and intracellularly (lysosome and proteasome). Therefore,

some of the genes that show modifier effects in Drosophila may act

as pathogenic effectors or protective factors of tau and amyloid in

humans. Other modifiers may act on pathways linking APOE ɛ4 to tau

and amyloid accumulation. A third class of modifiers may be acting in

parallel to APOE ɛ4 as a comorbidity risk in the case of those potentiat-

ing neurodegeneration or as generally neuroprotective alleles. In line

with this, it is noteworthy that in addition to LOAD, APOE ɛ4 is also a

risk factor for other diseases.45 The observed enrichment in modifiers

in Drosophila is even more remarkable, if we consider the physiological

differences that exist with mammalians that surely preclude us from

mimicking the effect of some iDEAL candidates in the fruit fly system

(eg,Drosophila lacks blood vessels in their brain).

Generally, higher EA corresponds to higher predicted impact

of variants on protein function. While EA alone cannot precisely

predict loss-of-function (LOF) versus gain-of-function (GOF) of vari-

ants, experimental testing in Drosophila increases our confidence in

the iDEAL genes and informs how specific genetic variants may be

affecting each iDEAL gene—LOF versus GOF—and in turn, indicates

potential means of therapeutic intervention (inhibition or activation).

For example, we observed that reduced COX11 function in Drosophila

worsens both tau- and β42-induced neurodegeneration while COX11

overexpression ameliorates tau-induced deficits. In the human data,

its variant (V223Gwith EA= 52.34) had anOR of 0.60. Taken together,

this suggests the variant in this gene is likely to be GOF. Consistent

with this, COX11 encodes a mitochondrial protein involved in the ter-

minal stage of cytochrome c oxidase synthesis and is under-expressed

in AD-affected individuals.52 Klotho (KL-VS)53 and Christchurch54

variants are known to be protective against APOE ɛ4. While these

would serve as convincing true positives if picked up by the iDEAL

method, neither variant was present in the studied dataset.

To assesswhich iDEALgenesmaybe gooddrug targets,we searched

the Drug-Gene Interaction Database (DGIdb)55 for pharmacological

compounds that interact with these genes and found that 39 genes

interact with 390 compounds (Table S3 in supporting information).

Of these, three genes (ITGA2B, ALDH5A, and HDAC7) interact with

two medications (enoxaparin and valproic acid) that have been asso-

ciated with lower incidence of AD in a population study.56 In addi-

tion, we searched PubMed for publications that co-mention the term

“Alzheimer” and any of the 390 compounds. Three additional drugs

had literature evidence for having potential neuroprotective effects in

animal models: the cathepsin inhibitor LHVS,57 URMC-099,58,59 and

CX-4945.60,61 LHVS is an inhibitor of CTSB, and URMC-099 and CX-

4945 are inhibitors ofDAPK3 (Table S3). Interestingly, inhibition of the

Drosophila homologs of these two iDEAL genes also results in neuro-

protection (Figure 1D). Given their robust effect and druggability, we

believe these genes are examples of top candidates to characterize fur-

ther in AD mouse models using these existing inhibitors as well as by

genetic knockdown either using viral delivery of shRNAs or targeted

CRISPR knock-out.

Next, we asked whether iDEAL genes could also be used for risk

prediction and patient stratification. First, we used machine learn-

ing to test whether iDEAL gene variants could separate between the

two paradoxical patient groups. In a five-fold cross-validation, the

AdaBoost-SVM algorithm62,63 trained on the mutational features rep-

resented by EA across the 216 iDEAL genes (see Detailed Meth-

ods) could classify AD-ɛ2 versus HC-ɛ4 individuals with an aver-

age area under the curve (AUC) of 0.92 (Figure 2A). To assess

which of the 216 genes have the highest predictive power, we

implemented permutation feature importance,64 which pointed to

94 genes that contributed to risk prediction (Table S4 in support-

ing information). Surprisingly, 41 iDEAL genes were better classi-

fiers for AD risk in the paradoxical AD-ε2/HC-ε4 population than

TREM2 (Figure 2B). As expected, many of these top genes had vari-

ants with significant OR in the AD-ε2/HC-ε4 comparison (Table S4).

Interestingly, among the top genes, there were also five (ZNF804B,

SYTL2, AKNAD1, LAMA2, LRRC17-K119E) that showed variants with

OR > 1 in the AD-ε3 population, and eight genes with variants with

OR < 1 in the AD-ε3 individuals (LTBP1, AKNAD1, LRRC17-G187A,

PRKAG3,MIA2,WDR60, SMTNL1, and ARHGAP33). This further under-

scores the possibility that iDEAL candidates may play a role in AD in

thebroaderpopulation.Next,we testedamore clinically relevantques-

tion, namely, whether the variants in the 216 iDEAL genes could pre-

dict which of the APOE ɛ2 carriers would develop AD, and conversely,

which APOE ɛ4 carriers would remain healthy. This would provide a

useful tool for geneticists and neurologists to stratify individuals with
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F IGURE 2 Receiver operating characteristic (ROC) curves for imputed deviation in evolutionary action load (iDEAL) genes as diagnostic
markers. Adaboost-SVM algorithmwas trained to classify individuals with (A) AD-ɛ2 versus HC-ɛ4, (C) AD-ɛ2 versus HC-ɛ2, and (D) HC-ɛ4 versus
AD-ɛ4, using aggregate evolutionary action (EA) burden in the 216 iDEAL genes as features in a five-fold cross-validation. Blue line represents the
mean ROC curve, and the gray area represents±1 standard deviation (std. dev.). Red dotted line represents the ROC curve for a random classifier
(area under the curve [AUC]= 0.50). (B) Permutation feature importance returned 94 genes that positively contributed to risk prediction. Data
shown asmean± standard error of themean of five folds

these genotypes and select those at highest risk, for example, ahead of

clinical trials. We again used the AdaBoost-SVM algorithm in five-fold

cross-validation and could separate the AD-ɛ2 patients from the HC-

ɛ2 individuals with an average AUC of 0.79 (Figure 2C). Likewise, we

could stratify HC-ɛ4 individuals from the AD-ɛ4 patients with an aver-

age AUC of 0.71 (Figure 2D).While further validation is requiredwhen

more exomes become available, these data suggest that the 216 iDEAL

genes have the potential to be used as stratification biomarkers on top

of the usual APOE-genotype risk prediction for AD.

Finally, we investigated the biological pathways in which the iDEAL

genes are involved. We constructed a STRING-based network with

our genes and applied the Markov cluster algorithm (MCA) to detect

densely connected regions (inflation 1.9). There are likely multi-

ple pathways toward dementia, but ultimately, synaptic dysfunc-

tion and substantial loss of neurons are major contributors of AD

pathogenesis65 and the most proximal event that leads to clinical fea-

tures observed in AD. Indeed, of the 26 clusters iDEAL genes formed,

15 showed significant enrichment for biological pathways (Methods;

Figure 3A; Table S5 in supporting information), many of which are

relevant for synaptic integrity. For example, pathways such as vesic-

ular and protein traffic, neuron projection and axon guidance, den-

dritic spine, microtubule transport and related processes are involved

in normal axonal transport of proteins and organelles such as mito-

chondria,which is essential for healthy synapse function.66 Specifically,

the neuron projection and axon guidance pathway was of particular

interest because three of the genes—TREM2, PLXNA4, and PAK2—have

alreadybeenassociatedwithAD.67–69 TREM2 is awell-knownrisk gene

that has been studied extensively.67,70–72 PLXNA4, which ranked top

(highest z-score) among the HCε4-iDEAL genes, has previously been

shown to have a protective role,68 and PAK2 has been implicated in AD

synaptic dysfunction.69 Other pathways consistent with APOE func-

tions (ie, plasma lipoprotein remodeling, lipid catabolism, and vesic-

ular traffic) were enriched in genes predictive of AD status in the

paradoxical patient groups (GPIHBP1, LPA, VNN2, SERPINE2, CPT1B,
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F IGURE 3 Network-based functional enrichment of imputed deviation in evolutionary action load (iDEAL) genes. (A) Networkbuilt using
those genes among the 216 candidates which interacted with each other (stringency 0.4) using STRING. Genemodules were established by
applyingMarkov cluster algorithmwith an inflation of 1.9. Functional enrichment analysis was then performed for each cluster.15 out of 26
clusters showed functional enrichment (indicated in blue font) with FDR q-value< 0.05. (Table S5 in supporting information). Information on drug
availability (rhomboid-shaped nodes), ability to ameliorate (green outline), or worsen (red outline) neurodegeneration in vivo, andwhether the
genes were among themost significant in patient stratification (orange nodes) are superimposed on the network. (B) Examples of coexpression
communities and their functional enrichment in specific brain-cell types. Green nodes indicate iDEAL genes, gray nodes indicate their first degree
coexpressed neighbors, light blue indicates first neighbors of ideal genes that are also central players in AD biology, and purple nodes are
genome-wide association study candidates that are first coexpression neigbors of iDEAL genes. Edges represent weighed coexpression. Based on
networks built byMcKenzie et al.73 (Cell imagesmodified from ServierMedical Art in accordance with the Creative Commons license.)
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UCP2, GOLGA5, and PTCH1). These data suggest that iDEAL genes are

involved in pathways related to synaptic connection, which may be

responsible for the paradoxical phenotypes we observe in AD-ɛ2 and

HC-ɛ4 patients.
To gain brain-specific pathway information, we took advantage of

cell type-specific coexpression networks.73 Using the HiDef-Louvain

algorithm, we identified the coexpression communities of iDEAL genes

in neurons, microglia, oligodendrocytes, brain endothelium, and astro-

cytes, and performed functional enrichment analysis on each commu-

nity (Figure S9–S13, Table S6 in supporting information and examples

in Figure 3B). Pathways such as actin cytoskeleton, RNA metabolism

and stress granules, and mitochondrial function featured across cell

types, as well as cell type-specific pathways relevant to LOAD patho-

genesis. In neurons, iDEAL genes may potentially regulate GABAergic

and glutamatergic synapse, postsynaptic densities, synaptic plasticity,

dendritic spine maintenance, cholesterol biosynthesis, and nitric oxide

signaling, which plays a role in neurodegeneration in AD74 (Figure S9

andFigure3B). Inmicroglia, as expected,we find involvement in inflam-

mation, autophagy/lysosome, and regulation of microglial cell migra-

tion (Figure S10 and Figure 3B). Interestingly, other enriched pathways

relate to the neuron–microglia interaction such as synapse pruning and

dendritic spinemaintenance (Figure 3B). In oligodendrocytes, a cluster

of iDEAL genes (NFIA, TNR, NRXN2, andDGKZ) are potentially involved

in focal adhesion kinase-mediated sprouting of injured axons (Figure

S11 and Figure 3B). In endothelial cells, iDEAL genes potentially medi-

ate extracellular signaling by hormones (oxytocin, insulin) and growth

factors (transforming growth factor [TGF]-beta, epidermal growth fac-

tor receptor [EGFR]). Interestingly, this analysis also reveals an involve-

ment of CCNT2 in amyloid clearance in the endothelium (Figure S12

and Figure 3B). In the astrocytes, the enriched pathways include glial

cell differentiation and synaptic vesicles, as well as protein degrada-

tion pathways (autophagy or ubiquitin/proteasome) and the traffick-

ing and processing of endosomal Toll-like receptors (TLRs), which reg-

ulate astrocytic neuroinflammation75,76 (Figure S13 and Figure 3B).

These results reveal that the iDEAL candidates are potentially involved

in numerous dementia-related pathways and emphasize the value of

using brain-specific and cell type–specific data. Moreover, this analy-

sis provides insights into how variants in different genes may lead to

convergent pathogenic or protective effects. For example, five iDEAL

genes in two different cell types (CNTN1 and NCKAP in neurons and

NRXN2, ABHD2, TIA1 in microglia) are involved in the same process,

dendritic spinemaintenance. Coexpression functional enrichment also

reveals novel potential gene functions. For example, GSN is found in

the synapse pruning coexpression community in microglia (Figure 3B

and Figure S10). To our knowledge, GSN has not been associated to

synapse pruning in mammalians. However, prompted by this result we

found that the GSN C. elegans homolog mediates synapse pruning in

nematodes,77 suggesting a similar role in the AD context. Of note,

in this analysis, APOE only appeared in three coexpression communi-

ties: (1) endolysosome and low-density lipoprotein (LDL) catabolism in

microglia together with the iDEAL gene CTSB, (2) protein localization

to endoplasmic reticulum in endothelium together with STT3B, and (3)

insulin-mediated glucose transport, also in the endothelium as part of

a large community. This raises the possibility that a number of iDEAL

genes do not work in close interaction with APOE, but they exert their

effect in parallel pathogenic or neuroprotective roles.

In summary, there is an urgent focus in the field to account for

the missing heritability in AD. A number of studies have succeeded in

uncovering rare variants associatedwithAD risk.67,78–81 These studies

either rely onGWASstatistics to establish a link toAD, focus on familial

inheritance followed by validation, target specific candidate genes, or

usebasic criteria for calling functional variants (ie, frameshift, stopgain,

simple AA substitution). Although this study may be underpowered

by classical genetics standards, iDEAL complements these approaches

by adding a vast amount of evolutionary information in predicting the

impact of mutations. This new information is then aggregated into a

mutational burden to identify candidate genes, and rare variants can

then be validated using more directed analysis. As the number ofWES

orwhole genome sequencing datasets expand, we plan futureAD stud-

ies to assess the impact of variants in thegenes identifiedhereon larger

patient cohorts, as well as the role of non-coding variants and inter-

genic variations not included in this study. Success in this validation

phase would mean that they could be used by clinicians to improve

assessment of risk for AD patients. Future work to define the spe-

cific effect of each variant on protein function will facilitate decipher-

ing the exact role they play in AD pathogenesis. Particularly promising

are genes whose reduced function is protective in Drosophila and for

which pharmacological compounds are available. These targets can be

pursued in mouse models by CRISPR-based knock-in of the identified

variants for functional assessment. Due to concern for potential lack

of power, this study did not take sex effect into account. APOE ε4 risk

is known to be greater in women,82 and as sequencing studies become

larger future studies will investigate the sex-specific roles of the can-

didate alleles we identified. Additionally, local ancestry may be a con-

tributing factor on the effects of APOE in AD risk.83 However, such

information was absent in the ADSP dataset, and future studies would

benefit from looking at ancestry-specific genetic variations that may

modify the roles of APOE. In a similar vein, as this study was limited

only to White samples, the candidate modifiers presented here might

not all be translatable toother ethnic groups. Future studies that distin-

guish betweenWhite-specific modifiers and pan-ethnic modifiers, and

identify novel alleles specific to other ethnic groups would add to our

understanding of LOAD.

While the genes identified by iDEAL reinforce pathways known

to participate in AD and are related to known APOE biology, they

also highlight other unsuspected pathways like rRNA and ncRNA

metabolism or chromatin binding and regulation. Furthermore, we

identify potential cell type–specific functions of the iDEAL candidates,

like synapse pruning in microglia or amyloid clearance in endothelial

cells. The potential interplay of these pathways toAPOE biology argues

for additional characterization in the context of AD and potential ther-

apeutic paths. Moreover, as APOE is implicated in neurodegeneration

and inflammation beyond AD,84 we may hypothesize that the alleles

found in this study could play broader roles in neuropathology or neu-

roprotection. Further studies could assess whether some of the alleles

presented here are specific to AD pathology. Genes and variants that
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contribute to neuropathology or neuroprotection in general, especially

those strong enough to neutralize APOE ɛ4, could point to therapeutic
opportunities that cut across neurodegenerative diseases.

2 DETAILED METHODS

2.1 Data acquisition and quality assessment

Variant calls files (.vcf) and sample phenotype data produced by ADSP

were downloaded from dbGaP (dbGaP accession: phs000572.v7.p4)

in February 2018. The whole exome sequencing data encompassed

5686 individuals, of which only 5561 remained after excluding sam-

ples whose AD status had changed. AD status was determined based

on clinical diagnosis. The number of samples and age at diagnosis

for APOE ɛ2 and APOE ɛ4 patient groups are in Figure S1. Family-

based data in the ADSP dataset was not used, and only unrelated non-

HispanicWhite individualswere analyzed to avoid potential confound-

ing genetic background. While variants were jointly called using Atlas

(Baylor) or Genome Analysis Toolkit (GATK; Broad), due to a known

issue with variant calls from the GATK pipeline, only genotype calls

from the Atlas calling pipeline were used. The resulting variants dis-

played high quality, with an average transition to transversion (TiTv)

ratio of 3.52± 0.05 and lambda value85 of 0.039± 0.001.

2.2 Predicting variant impact using EA

All EA scores are available on the public server at: http://eaction.

lichtargelab.org/. Synonymous variants were given a score of zero,

while stop-gain or start_loss variants were given a max score of one

hundred. When a variant affected multiple isoforms of a protein, the

score was averaged across all affected isoforms.

2.3 iDEAL

2.3.1 Imputed deviation in EA load

First, we established the expected functional mutational burden for a

given background mutation rate across the two patient groups by cal-

culating the sum of EA scores (Y) and the number of all protein-coding

variants (X) for each gene and then regressing Y on X. How much each

gene deviated from expectation in a given patient group was then

determined by its distance from the regression line: dAD-ɛ2 for AD-ɛ2
group and dHC-ɛ4 for HC-ɛ4 group. Next, to identify genes differentially
mutated in the two patient groups, we performed a second regression

on dAD-ɛ2 and dHC-ɛ4. For each gene, we measured the distance from

this second regression line, which we refer to as iDEAL. Genes with

positive iDEAL scores (above the regression line) have greater than

expected EA load, or functional mutational burden, in the AD-ɛ2
group (dAD-ɛ2) than in the HC-ɛ4 group (dHC-ɛ4). Conversely, genes with

negative iDEAL scores (below the regression line) have greater EA

load in the HC-ɛ4 group (dHC-ɛ4) than in the AD-ɛ2 group (dAD-ɛ2). To

control for noise from randommutations, we assessed the significance

of each gene’s signal using a z-score measured against a background

distribution of iDEAL scores built by randomizing the labels of AD-ɛ2
and HC-ɛ4 patients 100 times. This yielded 216 genes with absolute

z-score values above 2.5 (>99th percentile).

2.4 AD differential gene expression enrichment
analysis

To integrate the iDEAL hits with transcriptionally dysregulated genes

in AD brains, we used the RNAseq data available from the AMP-AD

knowledge portal37,39,86 (https://doi.org/10.7303/syn2580853; see

Acknowledgments), which has been re-analyzed to normalize across

the different studies as detailed in a previous study.86 The definitions

for AD patients and controls were identical to the ones defined in

the aforementioned paper. Specifically, we used the following datasets:

syn8484987, syn8466812, syn8456629 for the brain region–specific

differential expression, using the data portion specifically compar-

ing AD to control. For the AD meta-transcriptome, we used dataset

syn11914606.86 The brain samples are from ROSMAP (DLPFC 155

AD/86 Control), MayoRNAseq (TCX 80-AD/73-control), and Mount

Siani BrainBank (FP167-AD/93-control, IFG151-AD/79-control, PHG

143-AD/82-control, STG 151-AD/89-control). The P-values for differ-

ential expression were adjusted for multiple hypothesis testing using

false discovery rate (FDR) estimation, and we selected the genes with

an adjusted P-value below .01 (much more detailed methodological

description can be found in Logsdon et al.86). Enrichment in iDEAL

genes was calculated using hypergeometric test applied using as back-

ground gene number those genes for which there was data in both the

AMP-AD and the ADSP datasets.

2.5 Network analysis

2.5.1 Protein-protein interaction (PPI)

PPI networkwas defined by theHomo sapiens STRINGv1187 using the

combined score of all evidence types or of Textmining, Experiments,

or Databases, and were considered only if they were above an inter-

action score threshold of 0.400, 0.450, or 0.700, depending on the

analysis. For control, random sets of 216 genes were selected 1000

times to establish a background distribution of expected number of

genes that would interact with the same GWAS AD genes the iDEAL

genes interact with. From the background distributions, z-scores were

calculated.

For Markov clustering and gene set enrichment analysis of iDEAL

genes, we built a network with the 216 iDEAL genes using STRING

v1175 at a stringency level of 0.400. Next, we applied theMarkov clus-

ter algorithm (MCA) provided in the STRING interface, with an infla-

tion value of 1.9, which yielded 26 clusters. Finally, using the “analysis”

tool, we looked at the functional enrichmentwithin eachmodule on the

various databases covered by STRING (FDR q-value<0.05).

http://eaction.lichtargelab.org/
http://eaction.lichtargelab.org/
https://doi.org/10.7303/syn2580853


840 KIM ET AL

2.5.2 Coexpression

The single cell RNAseq, cell type–specific WGCNA networks were

obtained from McKenzie et al.73 Using Cytoscape, we identified the

primary degree coexpressed nodes for the iDEAL genes and built coex-

pression communities using the HiDef-Louvain algorithm tool in the

Community Detection extension. We obtained ≈100 communities for

each cell type, and then ran the functional enrichment tool in the Com-

munity Detection extension to explore functional overlap in gProfiler,

enrichR, and iQuery databases applying an FDR q< 0.05.We also inte-

grated the results with the AD-specific Alzpathway manually curated

database.88,89 Pathways that appeared in more than one database

were highlighted in Figures S9–S13.

2.6 AdaBoost-SVM

Adaboost is an ensemblemethod that combinesweak estimators into a

single strong classifier. Here, the AdaBoost classifier used support vec-

tor machine (SVM) as the base estimator. For features, EA scores were

averaged to represent a single score for each gene.

2.7 Drosophila strains and motor performance
assay

Genetics and strains: the Drosophila lines carrying UAS-Tau, and

UAS−Aos:β42 have been previously characterized40,41 and are avail-

able from theBloomingtonDrosophila StockCenter (BDSC, University

of Indiana). For pan-neuronal expression we used the elav-GAL4(C155)

driver from BDSC. The alleles tested as candidate modifiers targeting

theDrosophila homologs of iDEAL geneswere obtained from the BDSC

and from the Vienna Drosophila Resource Center (VDRC). Homologs

were identified using Blast and also the DRSC Integrative Ortholog

Prediction Tool (Diopt score).90 Genotypes used are summarized in

Table S2.

For the motor performance tests, we used a highly automated

behavioral assay based on theDrosophila startle-induced negative geo-

taxis response as previously described.42 To assess motor perfor-

mance of fruit flies as a function of age, we used 10 age-matched

virgin females per replica per genotype. Flies are collected in a 24-

hour period and transferred into a new vial containing 300μl of media

every day. Four replicates were used per genotype. Using an auto-

mated platform, the animals are taped to the bottom of a plastic vial

and recorded for 7.5 seconds. Videos are analyzed using custom soft-

ware to assess the speed of each individual animal. Three trials per

replicate are performed each day shown, and four replicates per geno-

type are used. A linear mixed effect model analysis of variance was

runusing each four replicates to establish statistical significance across

genotypes.

3 DETAILED RESULTS

3.1 iDEAL modifiers have bias in high-impact
variants in AD compared to HC with the same APOE
allele

We reasoned that if genes with greater than expected mutational

burden in the AD-ɛ2 versus HC-ɛ4 (ADɛ2-iDEAL genes) foster LOAD

pathogenesis, they should also be enriched for high-impact variants

in AD-ɛ2 compared to healthy controls without the risk allele (HC-ɛ2,
n = 457). Likewise, if genes with greater than expected mutational

burden in the HC-ɛ4 versus AD-ɛ2 (HCε4-iDEAL genes) keep ɛ4
carriers healthy, then they should also be depleted of high-impact

variants in the AD-ɛ4 group (n = 1148) relative to HC-ɛ4. We tested

these hypotheses by comparing the EA score distributions of the

148 ADɛ2-iDEAL genes in AD-ɛ2 versus HC-ɛ2 and the 68 HCε4-
iDEAL genes in AD-ɛ4 versus HC-ɛ4. As predicted, ADɛ2-iDEAL
genes were enriched for high-impact variants in the AD-ɛ2 group

in comparison to the HC-ɛ2 group (Figure S2B, red, P = 1.0E-14;

K-S test); likewise, the HCε4-iDEAL genes were depleted of high-

impact variants in AD-ɛ4 individuals (Figure S2B, blue, P = 4.1E-06;

K-S test). No such bias existed when the patients were randomized

(Figure S3, one randomization, left panel; 100 randomization trials,

right panel). These data support iDEAL genes and variants as plau-

sible modifiers of LOAD phenotypes associated with APOE ɛ2 and

ɛ4 alleles.
To evaluate whether these modifier effects were generalizable

beyond APOE ɛ2 or ɛ4 allele status, we asked whether the same

biases also existed in individuals homozygous for the most common

APOE allele, APOE ε3. If so, APOE ɛ3 homozygous AD patients (AD-ɛ3)
would show enrichment for high impact variants in ADɛ2-iDEAL
genes relative to APOE ɛ3 homozygous healthy individuals (HC-ɛ3)
and depletion of high impact variants in HCε4-iDEAL genes. Indeed,

compared to 1657 HC-ɛ3 control individuals, the 1346 AD-ɛ3 patients
were depleted of high impact variants in HCε4-iDEAL genes (Figure

S2C, blue, P = .015; K-S test) and showed a trend for enrichment of

high impact variants in ADɛ2-iDEAL genes, though it did not reach

statistical significance (Figure S2C, red, P = .25; K-S test). Next, we

reasoned that if the ADɛ2-iDEAL genes foster LOAD pathogenesis,

they would be enriched for high-impact variants in AD patients com-

pared to HC, regardless of APOE status. Indeed, ADɛ2-iDEAL genes

were enriched for high-impact variants in AD patients compared to

HC (Figure S2A, red, P= 1.1E-06; K-S test), and the HCε4-iDEAL genes
were depleted of high-impact variants in AD patients (Figure S2A,

blue, P= 2.6E-07; K-S test). These results indicate that the iDEAL gene

variants are significantly linked to AD status and may be causative

of neurodegeneration or provide protection. Taken together, these

observations indicate that variants responsible for the paradoxical

ADɛ2/HCɛ4 phenotypes may also be relevant for the entire AD

population regardless of APOE genotype.
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3.2 iDEAL genes are significantly dysregulated in
AD brains and show association with AD risk genes
and pathways

To further investigate the relevance of iDEAL genes in AD biology

beyond APOE, we assessed their expression in AD brains provided

in several datasets of the AMP-AD sequence repository.34–39 Out of

the 174 iDEAL genes analyzed in the AMP-AD data, 75 genes were

significantly up- or downregulated (adjusted P-value cutoff of .01)

in AD patients compared to controls, defined following the criteria

provided by Logsdon et al.86, in at least one brain region (Figure 1B).

This statistically significant enrichment (P= .018; hypergeometric test)

indicates that expression of many iDEAL genes either responds to or

is causative of AD-related insults, further supporting that iDEAL genes

may act as modifiers of APOE through a broader role in AD pathology.

Among these differentially expressed iDEAL genes is TREM2, a well-

studied AD risk gene.67,70–72 Building on this, wemeasured the degree

of connectivity between the iDEAL genes and known AD susceptibil-

ity genes identified byGWAS15–21 using STRING v11.87 We found that

iDEAL genes (n= 65) were significantly more connected to AD-GWAS

candidates than expected by random chance (Figure 1C, Figure S4A, z-

score = 2.24). This higher connectivity to AD susceptibility genes was

retained regardless of the stringency applied in defining STRING net-

work edges (Figures S4B and S4C). We also find that 25 iDEAL genes

interact directly with genes involved in APP and tau biology (Figure

S3D), further supporting a direct link between many iDEAL genes and

AD biology. Moreover, seven iDEAL genes fall within ±500kb of LD

regions for each locus found in a recent GWAS byKunkle et al.21 These

data suggest that the iDEAL candidates share mechanisms of action

with known AD risk factors and increases confidence in their potential

connection to AD biology.

3.3 iDEAL genes are enriched in modifiers of tau-
and β42-induced neuronal dysfunction in vivo

Next, we investigated the functional consequences of modulating

the levels of the iDEAL genes in an in vivo model of AD. Since APOE

exerts its effects at least partially through amyloid production and/or

tau accumulation, which are prominent pathologies in AD,49,50,91,92

we hypothesized that a number of the iDEAL genes would exert

their effects by modulating the pathogenesis of the AD-driving

proteins tau and amyloid beta (Aβ). To test this, we used two well-

characterized Drosophila models that express either human wild-type

4R tau40 or secreted β42 peptide pan-neuronally.41 Expression of

either protein in Drosophila neurons leads to progressive locomotor

performance deficits. We used an automated data acquisition system

that enables movement recording for individual animals to assess

their speed (mm/s) while climbing a vial.42 This system provides

a quantitative measurement of locomotor performance that can be

longitudinally assessed in aging animals and constitutes a precise, high-

throughput functional assay of neuronal dysfunction. We determined

theDrosophila homolog of each iDEAL gene90 and tested all geneswith

available overexpression and/or loss of function alleles (classical or

shRNA). Of the 134 genes with homologs in flies, modulating the levels

of 69 genes worsened or ameliorated tau- or β42-induced neuronal

dysfunction (51.5% hit rate, P = 1.13e-107; hypergeometric test)

(Figure 1D, Figures S5–S8, and Table S2 in supporting information).

Twenty genes had alleles with a protective effect in the tau model (18

when knocked down and 2 when overexpressed) while 22 ameliorated

the β42-induced dysfunction (20when knocked down and2when over-
expressed). Knockdown of the Drosophila homologs of 20 iDEAL genes

worsened the tau-induced neuronal dysfunction while decreased

levels of 19 iDEAL genes enhanced the β42-induced phenotype. Among

these genes, knockdown of Drosophila homologs of ABHD2, CNTN1,

DGKE, DPEP1, HSD17B2, LRRC17, PGP, RRP8, and THG1L ameliorated

the neuronal dysfunction in tau and β42 animals, while knockdown of

Drosophila homologs of ATP6V0E2, COX11, E2F8, IGFALS, and TBC1D4

exacerbated neuronal dysfunction in both models, indicating that

these genes may play a role in common mechanisms underlying the

pathogenesis of APOE in relation to both tau and β42 (Figure S14 in

supporting information).

To assesswhich iDEALgenesmaybe gooddrug targets,we searched

the DGIdb55 for pharmacological compounds that interact with these

genes and found that 39 genes interact with 390 compounds (Table

S3). Of these, three genes (ITGA2B, ALDH5A, andHDAC7) interact with

two medications (enoxaparin and valproic acid) that have been asso-

ciated with lower incidence of AD in a population study.56 In addi-

tion, we searched PubMed for publications that co-mention the term

“Alzheimer” and any of the 390 compounds. Three additional drugs

had literature evidence for having potential neuroprotective effects in

animal models: the cathepsin inhibitor LHVS57, URMC-099,58,59 and

CX-4945.60,61 LHVS is an inhibitor of CTSB, and URMC-099 and CX-

4945 are inhibitors ofDAPK3 (Table S3). Interestingly, inhibition of the

Drosophila homologs of these two iDEAL genes also results in neu-

roprotection (Figure 1D). Given their robust effect and druggability,

we believe these genes are top candidates to characterize further in

AD mouse models using these existing inhibitors as well as by genetic

knockdown (either using viral delivered shRNAs or targeted CRISPR

knock-out).

3.4 Variants in iDEAL genes show strong
potential to be used for AD risk prediction

Because these data suggest that iDEALgenes are linked toADandneu-

rodegeneration, we asked next whether they could also be used for

AD risk prediction and patient stratification. First, we used machine

learning to test whether iDEAL gene variants could separate between

the two paradoxical patient groups. In a five-fold cross-validation, the

AdaBoost-SVM algorithm62,63 trained on the mutational features rep-

resented by EA across the 216 iDEALgenes (see Methods) could clas-

sify AD-ɛ2 versus HC-ɛ4 individuals with an average AUC of 0.92 (Fig-

ure 2A). To assess which of the 216 genes have the highest predic-

tive power, we implemented permutation feature importance,64 which

pointed to 94 genes that contributed to risk prediction (Table S4).
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Surprisingly, 41 iDEAL genes were better classifiers for AD risk in

the paradoxical AD-ε2/HC-ε4 population than TREM2 (Figure 2B). As

expected, many of these top genes had variants with significant OR

in the AD-ε2/HC-ε4 comparison (Table S4). Interestingly, among the

top genes, there were also five (ZNF804B, SYTL2, AKNAD1, LAMA2,

LRRC17-K119E) that showed variants with OR > 1 in the AD-ε3 popu-

lation, and eight geneswith variants withOR< 1 in the AD-ε3 individu-
als (LTBP1,AKNAD1, LRRC17-G187A,PRKAG3,MIA2,WDR60, SMTNL1,

and ARHGAP33). This further underscores the possibility that iDEAL

candidates may play a role in AD in the broader population. Next, we

tested a more clinically relevant question, namely, whether the vari-

ants in the 216 iDEAL genes could predict which of the APOE ɛ2 carri-

ers would develop AD, and conversely, which APOE ɛ4 carriers would

remain healthy. This would provide a useful tool for geneticists and

neurologists to stratify individuals with these genotypes and select

those at highest risk, for example, ahead of clinical trials.We again used

the AdaBoost-SVM algorithm in five-fold cross-validation and could

separate the AD-ɛ2 patients from the HC-ɛ2 individuals with an aver-

age AUC of 0.79 (Figure 2C). Likewise, we could stratify HC-ɛ4 individ-
uals from the AD-ɛ4 patients with an average AUC of 0.71 (Figure 2D).

While further validation is required when more exomes become avail-

able, these data suggest that the 216 iDEAL genes have the potential to

be used as stratification biomarkers on top of the usualAPOE-genotype

risk prediction for AD.

3.5 iDEAL genes form clusters in the PPI and
coexpression networks and may be involved in
pathways related to synaptic integrity and cell
type–specific pathways related to dementia

Finally, we investigated the biological pathways in which the iDEAL

genes are involved. We constructed a STRING-based network with

our genes and applied the Markov cluster algorithm to detect densely

connected regions (inflation 1.9). There are likely multiple pathways

toward dementia, but ultimately, synaptic dysfunction and substantial

loss of neurons are major contributors of AD pathogenesis65 and the

most proximal event that leads to clinical features observed in AD.

Indeed, of the 26 clusters iDEAL genes formed, 15 showed significant

enrichment forbiological pathways (Methods; Figure3; TableS5),many

of which are relevant for synaptic integrity. For example, pathways

such as vesicular and protein traffic, neuron projection and axon guid-

ance, dendritic spine, microtubule transport and related processes are

involved in normal axonal transport of proteins and organelles such as

mitochondria, which is essential for healthy synapse function.66 Specif-

ically, the neuron projection and axon guidance pathway was of partic-

ular interest because three of the genes—TREM2, PLXNA4, and PAK2—

have already been associated with AD.67–69 TREM2 is a well-known

risk gene that has been studied extensively.67,70–72 PLXNA4, which

ranked top (highest z-score) among the HCε4-iDEAL genes, has previ-
ously been shown to have a protective role,68 and PAK2 has been impli-

cated in AD synaptic dysfunction.69 Other pathways consistent with

APOE functions (ie, plasma lipoprotein remodeling, lipid catabolism,

and vesicular traffic) were enriched in genes predictive of AD sta-

tus in the paradoxical patient groups (GPIHBP1, LPA, VNN2, SERPINE2,

CPT1B, UCP2, GOLGA5, and PTCH1). These data suggest that iDEAL

genes are involved in pathways related to synaptic connection, which

may be responsible for the paradoxical phenotypes we observe in AD-

ɛ2 andHC-ɛ4 patients.
To gain more brain-specific pathway information on the iDEAL

genes, we turned to coexpression networks followed by functional

enrichment analysis. Using human single cell RNAseq weighed coex-

pression networks,73 we extracted the first-degree neighbors of the

iDEAL genes for each cell type (neurons, microglia, oligodendro-

cytes, brain endothelium, and astrocytes). Next, we constructed the

iDEAL gene coexpression communities for each cell type using the

HiDef-Louvain algorithm. Finally, the communities were functionally

annotated using gProfiler, enrichR, and iQuery (Figure S9–S13, Table

S6 and selected examples in Figure 3B). Pathways such as actin

cytoskeleton, microtubule, RNA metabolism and stress granules, and

mitochondrial function still featured across cell types. Interestingly,

however, this more rigorous analysis also revealed the potential

involvement of iDEAL genes in cell-specific pathways relevant to

LOAD pathogenesis. In neurons, iDEAL genes may potentially regulate

GABAmetabolismand theGABAergic synapse, glutamatergic synapse,

PSD 95 postsynaptic densities, and synaptic plasticity (Figure S9). We

also find genes potentially involved in nitric oxide signaling, which may

play a role in neurodegeneration in AD,74 cholesterol biosynthesis,

and dendritic spine maintenance (Figure 3B). In microglia, as would

be predicted, iDEAL genes fall in pathways involved in inflamma-

tion, autophagy/lysosome and regulation of microglial cell migration

(Figure S10 and Figure 3B). Strikingly, we also find an enrichment

in genes potentially involved in synapse pruning and dendritic spine

maintenance (Figure 3B). In oligodendrocytes, a cluster of iDEAL

genes (NFIA, TNR, NRXN2, and DGKZ) are potentially involved in focal

adhesion kinase-mediated sprouting of injured axon (Figure S11 and

Figure 3B). In the brain endothelial cells, iDEAL genes may mediate

aspects of extracellular signaling by hormones (oxytocin, insulin) and

growth factors (TGF-beta, EGFR). Interestingly, this analysis also

reveals a potential involvement of CCNT2 in amyloid clearance in

the endothelium (Figure S12 and Figure 3B). In the astrocytes, we

find functional enrichment of iDEAL gene modules consistent with

astrocyte functions like glial cell differentiation or synaptic vesicles.

We also find several communities enriched in protein degradation

functions by autophagy or ubiquitin/proteasome and the trafficking

and processing of endosomal TLRs which could be involved in the

neuroinflammatory response of astrocytes75,76 (Figure S13 and Fig-

ure 3B). These results reveal that the iDEAL candiates are potentially

involved in numerous dementia-related pathways and emphasize

the importance of using brain-specific and cell type–specific data.

Moreover, this analysis provides insight on how variants in different

genes can lead to convergent pathogenic or protective effects. For

example, five iDEAL genes in two different cell types (CNTN1 and

NCKAP in neurons and NRXN2, ABHD2, TIA1 in microglia) are involved

in the same process, dendritic spine maintenance. This approach also

provides a means to infer the potential function of genes that have not
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been well characterized in a specific cell type. For example, GSN falls

within the synapse pruning coexpression community inmicroglial cells.

To our knowledge, GSN has not been associated to synapse pruning in

mammalians. However, prompted by the functional analysis result we

found that its C. elegans homolog is a mediator of synapse pruning in

nematodes,77 suggesting a potentially similar role in the context of AD.

Of note, in this analysis, APOE only appeared in three coexpression

communities: (1) endolysosome and LDL catabolism in microglial

cells together with the iDEAL gene CTSB, (2) protein localization to

endoplasmic reticulum in endothelial cells together with STT3B, and

(3) insulin-mediated glucose transport, also in the brain endothelium

as part of a large cluster. This raises the possibility that most iDEAL

genes are not directly working with APOE, but that they rather

exert their pathogenic or protective effect up/downstream of APOE-

mediated processes, or in parallel pathogenic or neuroprotective

roles.

3.6 Identification of specific variants in iDEAL
genes associated with increased or decreased AD risk

We next investigated whether specific coding variants of iDEAL genes

were associated with AD risk or protection. We calculated ORs for

iDEAL gene variants in AD-ε2 patients versus HC-ε4. We found 62

variants in 54 iDEAL genes significantly associated with increased AD

risk (OR > 1) and 31 variants in 21 iDEAL genes significantly associ-

ated with decreased AD risk (OR < 1, see Table S7 in supporting infor-

mation). The EA scores of these variants are in line with SIFT93 and

PolyPhen294 scores. Among these 31 potentially protective variants,

28 were present even in ε4 homozygotes, suggesting a stronger effect.

We also repeated these analyses in ε3 homozygotes and found vari-

ants in 19 iDEAL genes with OR > 1 and variants in 16 iDEAL genes

with OR < 1 for AD (Table S8 in supporting information). In both para-

doxical APOE groups and in homozygote ε3 carriers, variants in the

protein products of TREM2 (R47H), OPRD1 (C27F), ZAR1 (Q42H), and

GAMT (T209M) were associated with increased AD risk while variants

PELO (L221M), TRAF3IP2 (D10N), SMTNL1 (R345G), LRRC17 (G187A),

UGT3A1 (C67G; C121G), and NOP56 (M475T) were associated with

decreased AD risk. These data suggest that the iDEAL method may be

useful in prioritizing novel biomarkers for AD risk or protection, some

of which are specific to the APOE allelic background while others are

general.

In summary, we identify many new genes implicated in AD using

diverse tests (Figure S15 in supporting information for the most

robust iDEAL genes and in Table S9 in supporting information for all

iDEAL genes). Together, these genes may serve to expand the ability

of clinicians to assess the risk of patients for developing AD and to

target novel candidates for mechanistic and therapeutic studies. More

broadly, while our analyses focus on identifying genes with differential

mutational EA load in AD, the universality of evolutionary information

makes this a generalizable approach complementary to GWAS and

applicable to other conditions with a strong risk phenotype.
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