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Abstract. Multiple myeloma (MM) is a disorder of the monoclonal plasma cells and is the second 
most common hematologic malignancy. MM initiation and progression are dependent upon 
complex genomic abnormalities. The current pathogenic model of MM includes two types of 
primary events, represented by chromosome translocations or chromosome number alterations 
resulting in hyperdiploidy. These primary molecular events are observed both in MM and in 
monoclonal gammopathy, its premalignant precursor. Subsequent genetic events allow the 
progression of monoclonal gammopathy to MM and, together with primary events, contribute to 
the genetic complexity and heterogeneity of MM. 
Newer therapies have considerably improved patient outcomes; however, MM remains an 
incurable disease and most patients experience multiple relapses. 
The dramatic progresses achieved in the analysis of the heterogeneous molecular features of 
different MM patients allowed a comprehensive molecular classification of MM and the definition 
of an individualized prognostic model to predict an individual MM patient’s response to different 
therapeutic options. Despite these progresses, prognostic models fail to identify a significant 
proportion of patients destined to early relapse. Treatment strategies are increasingly. Based on 
disease biology, trials are enriched for high-risk MMs, whose careful definition and categorization 
requires DNA sequencing studies. 
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Introduction. Multiple myeloma (MM) is a malignant 
disease of mature B-cell lineage, characterized by the 
proliferation and accumulation of plasma cells (PCs) in 
bone marrow with consequent production of a 
monoclonal antibody. The development of MM is a 
multistep process through three different tumor stages: 
(i) an asymptomatic premalignant condition, known as 
monoclonal gammopathy of undermined significance 
(MGUS), characterized by the presence in the bone 
marrow of few abnormal plasma cells and of a 

monoclonal (M) protein instead of normal antibodies; (ii) 
a more advanced condition, called smouldering multiple 
myeloma (SMM), characterized by a higher serum level 
of M protein and a higher percentage of abnormal PCs in 
BM; about 50% of patients with SMM show a 
progressive increase of monoclonal protein and develop 
MM.1,2 
 
Genetic Alteration in Multiple Myeloma. Cytogenetic 
studies have shown that MM can be split into cases with 
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primary immunoglobulin translocations and cases with 
hyperdiploidia with trisomies of the odd-manner 
chromosomes: the most frequent translocations are 
t(11;14), t(4;14), t(14;16), t(14;20) and t(6;14); the most 
frequent copy number gains and losses are del13q, 1q1, 
del14q, del6q, del1p and del17p.3 (Table 1 and Table 2) 
 
Table 1. Primary and secondary abnormalities in MM. 

Primary cytogenetic 
Abnormalities 

Secondary cytogenetic 
Abnormalities 

-IGH translocations 
-1q21 gain/amp 

-1p deletion 

-IGH Hyperdiploidy  
-17p deletion 

-MYC translocations 

 
Primary Genetic Abnormalities in MM. 
Hyperdiploidy. Hyperdiploid MMs are characterized by 
recurrent chromosome gains, called chromosomal 
numerical abnormality (CNA). These tumors have 48-75 
chromosomes, usually with extra copies of three more 
specific chromosomes. Hyperdiploid tumors rarely 
(about 10%) have a primary IgH translocation. The 
molecular mechanism responsible for development of 
hyperdiploidy is seemingly related to errors in 
chromosome segregation during the highly proliferative 
germinal centre phase of plasma cell ontogeny, as a result 
of a single catastrophic mitotic event or of multiple 
aberrant segregation events.4  

In hyperdiploid MMs gains in chromosomes 19 
(95%), 15 (90%) and 9 (90%) are the most frequent 
events, followed by gains in other chromosomes, such a 
5, 11, 3, 7 and 21; del13 is the most common deletion 
event, observed in 37% of these tumors; the majority of 
events occurring at lower frequencies in these tumors are 
deletions; the large majority (>90%) of hyperdiploid 
tumors had concurrent gains in at least two of the three 
chromosomes most frequently associated with 
trisomies.5 In the non-hyperdiploid MMs, gain of 
chromosome 11 (92% of patients) and del 13 (99%) and 
gain of 1q are the most frequent clonal events, suggesting 
an important role in the early stages of disease.5  

A chronological reconstruction of aneuploidies 
acquisition in hyperdiploid patients showed that: in 
individual patients pronounced changes in their 
karyotype were observed over time, including 
chromosome gains; in 13/18 hyperdiploid patients, 
cumulative acquisition of copy-number gains was 
observed, while in the remaining 5 patients trisomies 
were acquired in one single time window.6  

The group of hyperdiploid MMs is heterogeneous for 
the variable association with additional genetic 
alterations. Hyperdiploid MMs can be subdivided into 
two subgroups according to the presence or not of 
concomitant gain(11q25); tumors lacking gain(11q25) 
characterized by gain(1q).7 

Barilà and coworkers have defined two subsets of 

hyperdiploid MM patients, one characterized by 5 
trisomies and defined as T-HRD and the other one by <5 
trisomies and defined as N-HRD; T-HRD were 
characterized by a better outcome than N-HRD patients 
(mOS 57 vs 32 months).8 T-HRD MMs were associated 
with low rates of FISH alterations compared to N-HRD.8 

MM patients with hyperdiploidy have a better 
survival than those without hyperdiploidy when treated 
with novel anti-myeloma agents.9 However, the presence 
of hyperdiploidy cannot ameliorate the negative 
prognostic impact of concurrent high-risk cytogenetic 
abnormalities.9 Samur and coworkers, through whole 
genome sequencing identified a subgroup of MM 
patients (17% of total), 90% hyperdiploid, with low 
DNA damage (low genomic scar score with chromosome 
9 gain), with frequent NRAS mutations, associated with 
very good outcome (100% overall survival at 69 
months).10  

Although it is currently assumed that the two 
founding events in MM pathogenesis, hyperdiploidy and 
IgH translocations are mutually exclusive, it was 
observed that in 4% of newly diagnosed MM patients 
hyperdiploidy and IgH translocations occur 
concurrently.11 
 
IgH Translocations. IgH translocations have an 
important oncogenic effect, placing oncogenes under the 
control of strong enhancers (Ig heavy chain (IgH) loci). 
The five most recurrent IgH translocations observed in 
MM are represented by the: (i) translocation to the long 
arm of chromosome 11 t(11;14) involving cyclin D1 
(CCDN1), observed in about 16% of cases; translocation 
to the short arm of chromosome 4 t(4;14) involving 
FGFR3/NSD2, observed in about 15% of cases; 
translocation to the short arm of chromosome 6 t(6;14) 
involving Cyclin D3 (CCDN3), occurring in about 6% of 
cases; translocation to the long arm of chromosome 16 
t(16;14) involving MAF, occurring in about 5% of cases; 
long arm of chromosome 20 t(14;20) involving MAFB, 
occurring in about 2% of cases.12 (Table 2) When 
present, these translocations are always clonal events. 
 
T(11;14). Translocations dysregulating cyclin D 
expression are the most recurrent type of IgH 
translocations and involve cyclin D1 t(11;14), cyclin D3 
t(6;14) and cyclin D2 t(12;14) and lead to increased 
expression of the corresponding cyclin genes. However, 
a dysregulated and/or increased expression of cyclin D1, 
D2 or D3 is a common feature not only of these IgH 
translocations, but also of other IgH translocations, as 
well as of hyperdiploid MMs.12 While cyclin D1 and D3 
overexpression is directly related to translocations that 
dysregulate CCND1 (11q13) or CCND3 (6p21), cyclin 
D2 overexpression is either directly induced by 
translocations that affect CCND2 (12p13)13,14 or by 
translocations affecting MAF (16q23) or MAFB (20q11)  
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Table 2. Primary, clonal translocation events in MM. 

Primary 
Translocations 

IgH translocation 
partner 

Frequency 
Association with other genetic 
abnormalities 

Prognosis 

t(11;14) 
CyclinD1 
(CCND1) 

15-20% 
Increased DIS3 mutations 
Decreased BRAF mutations 
Fewer CNAs 

Shorter PFS and OS compared to 
t(11;14)-negative patients 
Very poor outcome when associated 
with del(17p) 

t(4;14) FGFR3/NSD2 14-18% 

Strongly associated with 
chromosome 13 abnormalities 
Enrichment of FGFR3 and PRK2D 
mutations, gain (1q21), del in 1p, 4q, 
11q, 12p, 13q and 14q; KRAS and 
NRAS mutations less frequent. 

t(4;14) is a high-risk genetic 
abnormality. Early NSD2 breakpoints 
and association with del(17p) and 
del(1p) and gain(1q) have poor 
prognosis. 

t(6;14) 
CyclinD3 
(CCND3) 

5-7% Not explored Standard-risk 

t(14;16) MAF 4-6% 
Strong association with gain(1q); 
significant association with 17p 
deletion and with 1p32 deletion. 

Patients with early and late NSD2 
breakpoints have poorer outcome 
than those without NSD2 disruption. 
Cases associated with high-risk 
abnormalities have poor PFS and OS. 
Cases without high-risk abnormalities 
have PFS and OS similar to patients 
without t(14;16). 

t(14;20) MAFB 2-3% Not explored High-risk 

transcription factors that target CCND2.12,15 
Some evidences suggest that t(11;14) could represent 

an unique MM subset with peculiar biological properties, 
as evidenced by higher levels of the antiapoptotic protein 
BCL-2 and frequent expression of the B-cell lineage 
protein CD20.16 Characterization of a large cohort of 
t(11;14)-positive MM patients by NGS showed that these 
patients have a differentiated genetic architecture, 
compared to t(11;14)-negative patients, characterized by 
fewer CNAs associated with increased genomic stability, 
but increased rates of DIS3 mutations and decreased rates 
of BRAF mutations.17 Avet-Loiseau confirmed the 
presence of a markedly increased frequency of DIS3 
mutations and a decreased frequency of BRAF mutations 
in t(11;14) MM.18  

The prognosis of t(11;14) can be explained by its 
binary genomics, i.e., cases with very few other lesions 
and cases with high-risk genetic abnormalities behave 
differently.19 

Ziccheddu et al. have analyzed 514 newly diagnosed 
MM and showed that t(11;14) and chr(1q)gain/amps 
predicted differential expression of the BCL-2 axis and 
response to Venetoclax.20 The BCL2/BCL2L1 ratio was 
high in t(11;14) setting, explaining the positive effect of 
Venetoclax in this subgroup; In contrast, 
chr(1q)gain/amps display a low BCL2/BCL2L1 ratio 
and lead to Venetoclax resistance through MCL1 
overexpression.20 

The oral BCL-2 inhibitor Venetoclax has shown 
promising efficacy in patients with t(11;14) MM patients, 
both a single-agent and in combination. Several ongoing 
trials are exploring Venetoclax in t(11;14) MM 
patients.21-25 However, in relapsed/refractory MM 
patients the phase III placebo-controlled BELLINI trial 
failed to show superior outcomes from Venetoclax in 

combination with bortezomib and dexamethasone 
compared to placebo plus bortezomib and 
dexamethasone.21 MCL1 and BCL2L1 copy number 
gains and structural rearrangements were linked to 
Venetoclax resistance in t(11;14) MM.26 

 
T(4;14). T(4;14) is the second most-common 
translocation, occurring in about 15% of newly 
diagnosed MMs. This is an example of an IgH 
translocation resulting in the dysregulation of two 
different genes with oncogenic potential: FGFR3 and 
MMSET (named NSD2). The t(4;14) was strongly 
associated with chromosome 13 abnormalities.27 

Keats et al. have used a RT-PCR-specific assay to 
detect hybrid IgH-NSD2 transcript and observed a 
frequency of about 15% in MM and about 2% in MGUS; 
the presence of t(4;14) was predictive of poor response 
to first line chemotherapy and reduced OS.28 The 
analysis of 67 t(4;14) patients showed in 10% of cases 
FGFR3 mutations, in 44% FGFR3 overexpression 
without FGFR3 mutations and in 28% absent FGFR3 
expression; adverse prognosis was restricted only to 
patients with FGFR3 mutations.29 

Analysis of the genomic landscape of t(4;14) newly 
diagnosed MM showed enrichment of mutations in 
FGFR3 (38%) and PRK2D (7%), amplifications of 1q21 
and deletions in 1p, 4q, 11q, 12p, 13q and 14q; KRAS and 
NRAS mutations are less frequent in t(4;14) than in non-
t(4;14) MMs.30 

Walker et al. have performed a whole sequencing 
study and have analyzed the IgH locus breakpoints and 
identified breakpoints either of the NSD2 gene or within 
the coding sequence of this gene.31 Only patients with a 
breakpoint within the NSD2 gene and downstream the 
translation start site (identified as late disruptions, 
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corresponding to 31% of these patients) have a worse 
overall survival; in contrast, patients with a breakpoint 
between the transcription and the translation start site 
(identified as early disruption, corresponding to 23.5% 
of these patients) and upstream (identified as no 
disruption, corresponding 45.5% of these patients) of the 
NSD2 gene exhibited progressively longer survival.32  

Geng and coworkers have analyzed the impact of 
t(4;14) translocation in a group of 606 ND MM patients, 
including 108 t(4;14) cases.33 Median OS (56.2 vs 87.3 
months) and PFS (25.7 vs 37.6 months) were 
significantly shorter in patients with t(4;14) than in those 
without this cytogenetic abnormality.33 Among the 
patients with t(4;14), 26.9% had t(4;14) alone, 59.3% 
had t(4;14) with gain (1q21), 13.9% had t(4;14) with 
both gain (1q21) and del(17p): patients with t(4;14) 
alone have an OS comparable to the rest of MM patients, 
while those with t(4;14) in association with amp (1q21) 
and del (17p) have a reduced OS.33 Thus, t(4;14) alone, 
in the absence of gain (1q21) and del (17p) have a 
reduced OS, as confirmed by another study.34 In MM, 
amplification or gain of chromosome 1q (1q+) can 
involve the whole long arm of chromosome 1 or only 
specific cytobands such as 1q21, 1q22 or 1q23.3. 
However, it is important to note that, while the survival 
of double-hit t(4;14) and 1q21+ or 1q23+ or both is lower 
than that of t(4;14) alone, the survival of double-hit MM 
was similar to that displayed by 1q21+ or 1q23+ alone.34 
 
T(14;16) and t(14;20). The translocations (14;16) and 
(14;20) are less common (3-5% and 1-2%, respectively) 
involve the IGH locus and the oncogene c-MAF and 
MAFB, respectively. MAF induces expression of 
CCND2 and integrin B7, two events that stimulate MM 
cell proliferation. Next generation sequencing studies on 
5141 newly diagnosed MM have identified 169 (3.3%) 
t(14;16) cases whose characterization showed a high 
association with high-risk abnormalities: 
gain/amplification of 1q was observed in 69% of patients 
with t(14;16) compared to 29% in those without t(14;16); 
deletion 1p32 was detected in 20.7% of patients with 
t(14;16) compared to 8.5% in those without t(14;16); 
biallelic 1p32 deletion was observed in 4.7% of patients 
with t(14;16) compared to 1.8% in those without 
t(14;16); 17p deletion was observed in 22.5% of patients 
with t(14;16) compared to 8.7% in those without 
t(14;16); biallelic TP53 inactivation was observed in 
8.9% of patients with t(14;16) compared to 3.1% in those 
without t(14;16); TP53 mutations were detected in 
14.2% of cases with t(14;16) compared to 5.5% in those 
without t(14;16).32 The t(14;16) has not any prognostic 
impact if isolated (but numbers are very small). In 
contrast, its interaction with another prognostic lesion 
can lead to an aggressive disease.35 Clinical data showed 
that patients with t(14;16) have shorter mPFS (14.3 
months) and mOS (61.3 months) compared to those 

without t(14;16) who have mPFS of 43.9 months and 
mOS of 128.8 months; However, the shorter mPFS and 
mOS observed is due to the association with high-risk 
abnormalities.35 Cyclin D2 protein was observed in all 
the cases bearing t(14;16), but in only 24% of those 
bearing t(4;14) 1q gains.36  

In MM patients with t(14;16) and t(14;20) are 
frequent APOBEC ("apolipoprotein B mRNA editing 
enzyme, catalytic polypeptide") family mutational 
signatures (SBS2 and SBS13); patients with this 
signature have an increased mutational load and poor 
outcomes.34 Overexpression of MAF and MAFB 
expression results in increased APOBEC3B and 
APOBEC4 expression, and consequent induction of 
DNA mutations.37 A recent whole exome sequencing 
study carried out in 726 MM patients identified 
APOBEC mutational activity in 57.5% of these patients; 
however, only 6.6% MM patients were defined as hyper 
APOBEC, the majority of them (74%) being t(14;16)-
positive.38 

 
Secondary Cytogenetic Abnormalities 
Subclonal copy number alterations. The most frequent 
subclonal CNAs observed in MM include gain of the 
long arm of chromosome 1 (gain 1q), deletion of the long 
arm of chromosome 13 (del(13q), deletion of the long 
arm of chromosome 14 (del(14q)), deletion of the short 
arm of chromosome 17 (del(17p)) and deletion of the 
short arm of chromosome 1 (del(1p) (Table 3). 
 
Gain(1q). Gain 1q occurs in about 40% of patients and is 
preferentially associated with other cytogenetic 
abnormalities compared to MMs without gain 1q, 
involving an higher frequency of t(4;14) and t(14;16), of 
del(1p), del(17p) and particularly del(13q); furthermore, 
MMs with gain(1q) have an higher frequency of complex 
karyotype compared to those without gain(1q).39  

The majority of studies have shown a negative impact 
of gain(1q) on PFS and OS.7,36,40 

Several studies have evaluated the outcomes of MM 
patients with 1q gain who received auto-HSCT. In this 
context, a study from Mayo Clinic, including 155 MM 
patients undergoing upfront auto-HSCT, showed a 
shorter OS in patients with 1q+ compared to patients 
without this genetic abnormality.41 In a subgroup of the 
FORTE trial, involving the comparison of induction 
therapy followed by auto-HSCT, patients with 1q 
amplification had shorter mPFS compared to those with 
1q gain or no 1q abnormality (21.8 months vs 53 months 
and not reached, respectively).42 Similar results were 
obtained by D’Agostino et Al.43 and by Fonseca et Al.44 

It is unclear whether gain(1q) directly is a driver of 
poor outcomes or is a “passenger” genetic abnormality 
in the context of a genetically unstable neoplasia.45 Thus, 
a clear pathogenic mechanism related to one or more 
genes   amplified   in   the  1q   region remains   unclear,  
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Table 3. Secondary subclonal copy number abnormalities and secondary translocations in MM. 

Genetic Alteration Affected Genes Frequency 
Association with other 
genetic abnormalities 

Prognosis 

Monosomy 13 
del(13q) 

RB1, DIS3, miR-15-
miR-16-1 

40-50% 
Gain(1q), t(14;16), t(4;14), 
del(12p), DIS3 and FGFR3 
mutations 

Negative prognosis of 12 
monosomy and of cases associated 
with high-risk abnormalities  

Gain 1q 
gain(1q) 

CKK1B, MCL-1, IL-
6R, ILF2, BCL9 

40-45% 
T(4;14), t(14;16), t(14,20), 
del(1p), del(13q), del(17p), 
complex karyotype 

Gain 1q is associated with reduced 
OS. Patients with co-occurring 
t(4;14), t(14;16), del(17p), del(13q) 
or with 4 or more 1q copies have 
reduced PFS and OS. 

Deletion 17p 
del(17p) 

TP53 5-12% TP53 mutations 

Negative prognosis 
Patients with del(17p) and TP53 
mutations have a poorer prognosis 
than those with del(17p) without 
TP53 mutations 

Deletion 1p 
del(1p) 

1p12: FAM46C 
1p22.1-1p21.3: MTF2, 
TMED5, RPL5, EVI5 
1p31: MSH4, DAB1 
1p32: CDKN2C, FAF1 

20-30% 

Del 1p12 and del 1p32 are 
associated with del(17p), 
t(14;16), gain(1q), TP53 
mutations 

Del 1p12 and del 1p32 are 
associated with reduced PFS and 
OS 
Biallelic 1p32 inactivation in 
association with del(17p) and 
t(4;14) is a very negative 
prognostic factor 

MYC rearrangements 
(translocations, Ig and 
non-Ig insertions, 
terminal tandem 
duplication, terminal 
deletions, proximal 
deletions) 

MYC 

10-15% 
(FISH) 
20-40% 
(NGS) 

Increased: trisomies 
Decreased: t(11;14) 

Negative outcomes for patients 
with Ig insertion subtype 
Improved outcomes for patients 
with non-Ig insertion subtype 

 
although several candidates have been identified, 
including CKK1B, MCL-1, IL-6R, ILF2 and BCL9.46 

 

Deletion of 13q. Deletion of chromosome 13q is one of 
the most frequent cytogenetic abnormalities observed in 
MM, occurring in about 40-50% of these patients.47 

The presence of chromosome 13q deletions has been 
suggested to be an adverse prognostic factor in MM 
patients.48 However, the association of del(13q) with 
poor prognosis has been debated. Thus, Walker et al. 
have explored 463 newly diagnosed MM patients 
enrolled in the myeloma XI trial and concluded that the 
negative impact of del(13q) on PFS could be ascribed to 
the association with high-risk abnormalities.49 

Binder et al. reached a different conclusion in that 
they observed that abnormalities of chromosome 13 were 
of prognostic significance independently of the co-
occurring presence of high-risk alterations.50 

A possible oncogenic role of chromosome 13 
abnormalities dependent on the loss of some specific 
genes remains undefined. Some possible candidate genes 
are represented by RB1 and DIS3 genes and by the micro-
RNAs miR-15a and miR-16-1.48,52-54 
 
Deletion of the short arm of chromosome 1. Del(1p) 
englobes a heterogeneous group of MM patients 
characterized by different deletions of the short arm of 
chromosome 1 and by an heterogenous prognostic 
impact.  

Four minimally altered regions on chromosome 1p 
were identified: 1p12, 1p22.1-1p22.3, 1p31 and 1p32. 

1p12 is considered as an adverse prognostic factor in 
MM. In this region maps FAM46C gene, a gene of 
prognostic and pathogenic importance in MM; FAM46C 
acts as a tumor suppressor. The loss of FAM46C 
promotes tumorigenesis by activating the PI3K-AKT 
pathway, conferring resistance to dexamethasone and 
lenalidomide treatment, promoting cell survival and cell 
proliferation.55-57 FAM46C is a non-canonical poly(A) 
polymerase uniquely mutated in up to 20% of MM 
patients; FAM46C selectively stabilizes mRNAs 
encoding endoplasmic reticulum (ER)-targeted proteins, 
enhancing the expression of proteins that control ER 
protein import and processing and stimulating protein 
secretion.58 FAM46C expression is markedly induced 
during normal plasma cell differentiation; FAM46C 
ablation determines a highly significant, MM-specific 
proliferative advantage, consisting in the restriction of Ig 
production.59 

1p22.1-1p21.3 is the region most frequently deleted 
on 1p, where are mapped the genes MTF2, TMED5, 
RPL5 and EVI5 Among these four genes, EVI5 and RPL5 
seem to be the genes most involved in MM development 
since the inactivation of both genes induces MM 
progression.60 

1p32 contains two genes, CDKN2C and FAF1, 
pathogenetically relevant for MM development. 
Homozygous and hemizygous CDKN2C deletions are 
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associated with a poor prognosis in MM patients and 
support a role of this gene as a tumor suppressor in MM 
progression.15 Most of studies support a negative 
prognostic impact of del(1p) in MM patients,61-62 
particularly of biallelic deletion of 1p32, in MM 
patients.63 

Vainshnav et al. performed a retrospective analysis of 
453 MM patients undergoing auto-HSCT and observed 
that patients with del(1p) had inferior PFS (2.43 years vs 
3.98 years), TTNT (2.72 years vs 6.17 years) and OS 
(4.11 years vs 8.38 years) from auto-HSCT compared to 
those without del(1p).64 This trend was confirmed by a 
retrospective analysis of 3758 MM patients where 844 
patients with chromosome 1 abnormalities showed that 
patients with chromosome 1 abnormalities displayed a 
significantly shorter PFS and OS.65 
 
Deletion 17p. Deletion of 17p13, del(17p) is observed in 
5-12% of newly diagnosed MM and its frequency 
increases with disease progression. The majority of 
del(17p) involve the entire short arm of chromosome 17, 
although the deletion may span also few megabases. This 
high-risk deletion involves the loss of the TP53 gene. 
Importantly, TP53 mutations was initially observed only 
in MM patients with del(17p).66 The analysis of mutation 
location showed that virtually all mutations occurred in 
highly conserved domains of the TP53 molecule 
involved in DNA-protein interaction.66 However, 
subsequent studies have clearly shown that TP53 
mutations may occur in the absence of del(17p); in fact, 
Walker et al. in a group of 784 MM patients showed in 
5.5% of cases monoallelic TP53 mutations, in 8% 
del(17p) in the absence of TP53 mutations and in 3.80% 
of cases biallelic TP53 alterations (del(17p) plus TP53 
mutations); this subgroup (double-hit) of high-risk MM 
patients including patients with biallelic TP53 
inactivation or CSK1B gene amplification; they show 
also in new diagnosis MM that deletion of 17p alone is 
not prognostic; in fact when mutation in TP53 is 
accounted for, monosomy 17p alone has no prognostic 
value.67 Similar results were reported in a Polish study.68 

Del(17p) is maintained at relapse in patients bearing 
this deletion at diagnosis; however, del(17p) may be 
acquired at relapse.  

Chin et al. explored the frequency of TP53 mutations 
in del(17p) MM patients during disease progression: 
del(17p) was observed in 10% of MM patients at 
diagnosis and 22.3% in patients at relapse; 31% of 
patients at diagnosis with del(17p) displayed TP53 
mutations.69 The longitudinal studies of some patients 
showed the acquisition of TP53 mutations at relapse.69 
Corre et al. explored the response of 121 MM patients 
with del(17p): 76 of these patients are del(17p)/TP53-
WT and 45 del(17p)/TP53-mutant; in line with Chin 
observations, and in contrast with the data of Walker, 
they showed that both these groups of patients displayed 

a reduced PFS and OS compared to patients without 
del(17p); PFS was comparable in the two groups of 
patients with del(17p), while OS was shorter in patients 
with both del(17p) and TP53 mutations than in those 
with only del(17p) (52.8 months vs 152.2 months, 
respectively). In conclusion, the study of Corre et Al 
clearly confirms the extremely poor outcome of patients 
displaying “double hit", but also that del(17p) alone is 
still a very high-risk feature, confirming its value as a 
prognostic indicator for poor outcome.70 

 “Aberrant” biallelic TP53 inactivations, involve 
simultaneous copy number loss and aberrant TP53 
splicing, resulting in overexpression of high-risk 
transcript variants, and lead to biallelic inactivation.71 

The importance of the acquisition chromosome 17 
predictive of poor prognosis was confirmed in various 
studies and methods.72-75 

Cui et al have recently reported the results of 197 MM 
patients with paired iFISH analysis at both diagnosis and 
first relapse, showing that: del(17) was observed at 
diagnosis in 7% of patients and in 18% at first relapse; 
the subdivision of patients according to del(17p) clone 
size showed that patients with a minor clone at relapse 
(10% to 50%) exhibited shorter survival compared to 
those without del(p17), while no significant difference in 
survival was observed between patients with minor (10-
50%) or major clone size (>50%) at relapse.76 According 
to the change patterns of clonal size, the patients were 
subdivided into six subgroups: patients who experienced 
del(17p) loss at relapse (OS 50.3 months); patients who 
did not have del(17p) at both time points (OS 26.9 
months); patients who had newly acquired del(17p) at 
relapse (OS 20.2 months); patients with a stable clone of 
del(17p) between the two time points (OS 12.5 months); 
patients with an increase in clonal size of del(p17) at 
relapse (OS 12.8 months).76 Therapy of myeloma are 
changing, therefore is important to evaluate the effect of 
del(17p) in patients treated with the new protocols. 
Jurgens et al. have retrospectively evaluated the response 
of 66 newly diagnosed del(17p) MM patients to triplet 
and quadruplet combination therapies, including 
bortezomib, lenalidomide, dexamethasone (VRd), 
carlzomib, lenalidomide, dexamethasone (KRd), +/- 
daratumumab (DVRd and DKRd). The patients with 
del(17p) have been subdivided into two subgroups 
according to the percentage of cells bearing del(17p) 
either 20% or 20%). Median PFS was 48.9 months for 
patients with del(17p) <20%, 34.3 months for del(17p) 
>20% and not reached for patients with standard-risk 
MM.77 In conclusion, it seems that the acquisition of del 
(17) at relapse after chemotherapy is a better negative 
prognosticator than at the onset of the disease. 
 
Concomitant del (1p13) and amplification or gain (1q21). 
A recent study reported the occurrence of MM patients 
with concomitant del(1p13.3) with gain(1q21). Thus, 
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Mohan et al. in a FISH analysis involving 1133 patients 
reported del(1p13.3) in 19.4% of cases and 1q21 gain (3 
copies of 1q) in 26.5% of cases and 1q21 amp in 13.2% 
of cases; concomitant del(1p13.3) with 1q gain or with 
1q amp was observed in 5.7% and 2.5% of patients, 
respectively.78 These double-positive patients displayed 
enrichment of high-risk features; particularly, the PFS 
and OS of patients with combined abnormalities was 
significantly worse compared to del(1p13.3) alone and 
1q21 gain or 1q21 amp alone.78 
 
MYC rearrangements. A key event in the development 
of MM is represented by the acquisition of secondary 
genetic events including MYC structural variants. Gene 
expression studies showed the activation of a MYC gene 
signature in 67% of MM patients but not in MGUS,79 and 
MYC rearrangements involving chromosome 8q24 were 
detected by FISH in 3% of MGUS and 15% of newly 
diagnosed MM and with comparative genomic 
hybridization were observed in almost 50% of MM 
cases.80,81 

MYC translocations have been reported in 20-50% of 
patients with myeloma;82 the molecular characterization 
showed that these translocations were most frequently 
inter-chromosomal, involving 2-5 chromosomes; in 
more rare cases, translocations involved inversion of 
chromosome 8 or intra-chromosomal rearrangements; 
both inter-chromosomal and intra-chromosomal 
rearrangements are associated with a significantly higher 
MYC expression MYC structural variants were detected 
in 42% of MM patients, including 57% of hyperploid and 
25% of MMs with primary IgH translocations.82,83 

Patients with MYC rearrangements have a shorter OS 
compared to those without these rearrangements, and 
further reduced when associated with high-risk 
cytogenetic abnormalities;84 they frequently display 
elevated 2-microglobulin, 50% plasma cells, IgA 
multiple myeloma and co-occurrence of trisomy.82,84 

A lower frequency of MYC structural variants (MYC 
SV) was found by FISH (10-15%) compared to NGS 
(20-40%) and is related to a high false-negative rate of 
MYC break a part FISH probe.85,86 Although FISH can 
identify a lower fraction of MYC structural variants 
(SVs), those identified by this technique are associated 
with a higher MYC gene expression and with a poorer 
outcome.86 MYC translocations involve the 
immunoglobulin (IG) loci (IGH > IGL > IGK) and some 
non-Ig partners such as FAM46C, FOXO3, and BMP6. 
Patients with IgL translocations, about 10%, experiment 
a significantly worse PFS and OS, which was most 
pronounced for IgL-MYC translocations.82,86,87 
 
Conclusions about Chromosomal Alterations. 
Hyperdiploidy and IgH translocations are considered 
primary cytogenetic abnormalities and occur at the time 
of establishment of MGUS (Table 1 and 2) (Figure 1). 

In addition, other cytogenetic changes termed secondary 
cytogenetic abnormalities arise along the disease course 
of multiple myeloma, including gain(1q), del(1p), 
del(17p), del(13), and secondary translocations 
involving MYC. Both primary and secondary 
cytogenetic abnormalities can influence disease course, 
response to therapy, and prognosis. Importantly, the 
interpretation and impact of cytogenetic abnormalities in 
multiple myeloma vary depending on the disease phase 
in which they are detected.88 

 

 
Figure 1. % Chromosomal Abnormalities in MM. 

 
The presence of del(17p), t(4;14), t(14;16), t(14;20), 

gain 1q, or p53 mutation is considered high-risk multiple 
myeloma. Presence of any 2 high risk factors is 
considered double-hit myeloma; 3 or more high risk 
factors is triple-hit myeloma and are at the base of 
Myeloma stratification prognosis.88 

 
Mutational Landscape of MM  
Gene Mutation in newly diagnosed. The mutational 
events occurring in MM were shown by the Next 
generation sequencing; they are probably secondary 
events, associated with tumor progression rather than 
with tumor initiation. Karyotypic events have a stronger 
impact on prognosis than mutations, but the mutations 
can modify the risk attributed to the chromosomal 
abnormalities. Initial studies have shown that frequently 
mutated genes involve KRAS, NRAS and TP53; genes 
involved in MEK/ERK signaling, NFkB signaling, RAS 
pathway, cycle progression and RNA processing are 
mutated in a significant proportion of MM patients.89 
(Table 4) Subsequent studies based on the analysis of the 
mutational profile of larger cohorts of MM patients have 
shown that the 15 most frequently mutated genes in MM 
are IRF4, KRAS, NRAS, MAX, HIST1H1E, RB1, EGR1, 
TP53, TRAF3, FAM46C, DIS3, BRAF, LTB, CYLD and 
FGFR3; the mutational spectrum is dominated by 
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mutations in the RAS (KRAS 21%, NRAS 19% and BRAF 
6.7%) and NF-kB (TRAF3 3.7% mutations and 13% 
deletions; CYLD 2.4% mutations and 17% deletions) 
pathways; mutations in CCND1 and DNA repair (TP53, 
ATM, ATR and ZNFHX4) are associated with a negative 
prognosis, while IRF4 and EGR1 mutations are 
associated with a better prognosis.49 

Both synonymous and non-synonymous CCND1 and 
IRF4 mutations are predominantly associated with the 
t(11;14) translocation; MAF, BRAF, DIS3 and ATM 
mutations are associated with the t(14;16) translocation; 
mutations in FGFR3, DIS3 and PRKD2 are associated 
with t(4;14) translocation; gain 11q, mutations in 
FAM46C and MYC rearrangements are associated with 
hyperdiploidy.30 

Translocations and CNAs had preponderant 
contribution over gene mutations in defining the 
genotype and prognosis of each patient.89 Other driver 
abnormalities include chromosomal and segmental 
chromosome gains and losses, loss of heterozygosity, 
and APOBEC mutational signature which affect clinical 
prognosis.89 The only mutated gene with a clear 
prognostic impact on both PFS and OS was TP53, while 
DNAH11 mutations conferred worse OS only.90 The 
negative prognostic impact of TP53 was stressed also by 
others.67,70,71 

Maura and coworkers have performed a whole 
genome sequencing (WGS) study of 67 tumor samples 
collected at different time points from 30 MM patients 
identifying 7 bayesan clusters, whose characteristics are 
shown in Figure 2.6 

 

Gene Mutations in Refractory/Relapsed MM. A few 
recent studies have analysed the genetic abnormalities 
observed in relapsed/refractory multiple myeloma and 
have compared these alterations to those observed in 
newly diagnosed MM. A seminal study was performed 
by the Morgan group using gene expression profiling, 
high-resolution copy number arrays, and whole-exome 
sequencing. This study illustrates the mechanistic 
importance of copy number aberration changes, acquired 
mutations in known myeloma driver genes and the 
critical nature of biallelic inactivation events affecting 
tumor suppressor genes number and their biallelic 
inactivation, especially TP53, was increased in high-risk 
myeloma, being genomic instability a key feature. All 
that brings about double-hit events with catastrophic 
consequences.91 Other investigations confirmed and 
amplified these data.92-99 The importance of inactivation 
of TP53 pathway was confirmed,92-97 resistance to 
immunomodulatory drugs (IMiDs) and proteasome 
inhibitors showed an increase of the mutational load and 
more subclonal mutations than at diagnosis.92,94-96 
Mutational profiling showed frequent mutations of genes 
involved in RAS-MAPK pathway (NRAS, KRAS, BRAF, 
PTPN 11, NF1 and IL6ST) and in NF-kB pathway (CYLD, 
TRAF3, TRAF2, NFKB1A, IRAK1),93 and  RB1, 
CDKN2A/B, BIRC2/3 and CDKN2C86 (Figure 3); other 
genes preferentially mutated in R/R MM included the 
sodium bicarbonate transporter SLC4A7, the Ras target 
MLLT4, the RNA binding protein EWSR1, the MLL 
complex member HCFC2, the COP9  signalosome  
subunit    COPS3.97  Some   novelties  were  reported   by 
 

Table 4. Common gene mutations and their functional pathways in multiple myeloma. 

Pathway Genes mutated Global frequency of mutations 

MEK/ERK signaling 
KRAS, NRAS, BRAF, NF1, PTPN11, 
FGFR3 

45-50% 

NFkB activation 
TRAF2, TRAF3, CYLD, NFKB2, 
NFKBIA, BIRC2, BIRC3 

20-25% 

G1/S cell cycle transition 
RB1, CCND1, CDKN2C, CDKN1B, 
TP53 

15-20% 

RNA processing FAM46C, DIS3 15-20% 

Epigenetic regulators DNMT3A, TET2, KDM6A 2-5% 

 
 

 

Figure 2. Molecular classification of primary MM samples following Maura et al.6 
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Ansari-Pour and coworkers.98 This analysis showed that 
some genetic abnormalities were enriched in R/R MM, 
including some gene drivers (DUOX2, EZH2, TP53), 
biallelic inactivation (TP53), some copy number 
aberrations (1q gain, 17pLOH), and double-hit events 
(Amp 1q-ISS3, 1q gain-17pLOH).98 Similarly, in 
addition to the genomic events reported in other studies, 
Braunstein e Al. found in MM patients an increase in 
complex structural variation events, including templated 
insertions, chromoplexy and chromotripsis: in some 
patients, chromoplexy and chromotripsis occurred 
exclusively at relapse; in cases where these events 
occurred at presentation, their clonal fraction increased 
at relapse.99 

Cereblon (CRBN) is the essential binding protein of 
the widely used immunomodulatory drugs (IMiDs). 
IMiDs, (thalidomide, lenalidomide, and pomalidomide), 
form a molecular bridge between cereblon (CRBN) and 
the transcription factors IKZF1 and IKZF3. Mutation of 
CRBN was found in many patients resistant to 
IMiDs;86,95,96 on the contrary the IKZF1 mutation is 
rare.95 

 
Role of Chromotripsis and Other Structural Complex 
Variations in MM Development. Chromotripsis is a 
catastrophic mutational process by which numerous 
clustered chromosomal rearrangements occur in a single 
event in localised and coupled genomic regions in one or 
few chromosomes; this event is observed in many 
cancers. 

A comprehensive study of structural variation carried 
out on 752 newly diagnosed MM patients showed a 24% 
prevalence of chromotripsis, making MM the 
hematological cancer with the highest occurrence of 
chromotripsis.100 Templated insertions were the second 
most frequent complex event, involved in super-
enhancer hijacking and activation of oncogenes such as 
MYC and CCND1.100 In 31% of MM patients, two or 
more driver genetic events were caused by a single 
structural event, thus supporting the view that the 
complex genomic landscape of MM can be acquired 
through few molecular events. 

Copy number signatures are highly predictive of the 
presence of chromotripsis and are highly associated.94 
Exploring a large set of MMs, Maclachlan et al observed 
six fundamental CNV features: (i) the number of 
breakpoints per 10 Mb; (ii) absolute CN of segments; 
(iii) the difference in CN between adjacent segments; (iv) 
number of breakpoints on chromosome arm; (v) lengths 
of oscillating CN segment chains; (vi) the size of 
segments.106 Chromotripsis can be detected using a 
logistic regression model with CNV signatures as input, 
without requiring specific structural variant 
assessment.101 

Yu et al. proposed and designed a deep graph learning 

approach to detect chromotripsis in MM samples solely 
based on CNV data.102 

In a more recent study, Maclachlan et al. explored 420 
MM patients by targeted sequencing and from these data 
detected 6 key CN features and extraction of CN 
signatures defined 1 signature containing multiple 
features consistent with chromotripsis, such as high 

 
Figure 3. Genetic abnormalities observed in refractory/relapsed MM. 
Bottom Panel: Three gene pathways, RAS-MAPK, NF-kB and DNA 
Damage Response (DDR) exhibiting frequent gene mutations in R/R 
MM. Middle Panel: Genetic alterations of drug resistance-related 
genes. Top Panel: Focal deletions whose frequency is higher in RR-
MM compared to NDMM. Del(17p) involves TP53, del(3p26.2) 
CRBN, del(9p21.3) CDKN2A/B, del(13q14.2) RB1, del(13q23.3) 
BIRC2/3 and del(1p31.3) CDKN2C. 

 
breakpoint count per 10mB, more jumps between 
adjacent CN segments, longer lengths of oscillating CN 
segments and a predominance of small CN segments.104 
This signature was predictive of chromotripsis and was 
predictive of PFS in multivariate analysis when 
considering age, ISS, t(4;14), TP53 status and gain 
1q21.103 
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Table 5. Chromosomal abnormalities and “risk” in myeloma stratification systems. 

Cytogenetic defects R-ISS108 R2-ISS109 mSMART 106 MASS110 

Primary abnormalities     

t(4;14) High 1 point High 1 point 

t(11;14) -- -- Standard -- 

t(14;16) Hgh -- High 1 point 

t(6;14) -- -- Standard -- 

T(14;20) -- -- High 1 point 

Trisomies -- -- Standard -- 

(hyperdiploidity)   --   

Secondary      Abnormalities     

1q gain/amp -- 0.5 points High 1 point 

Del(17p) High 1 point High 1 point 

All these observations suggest a role played by 
chromotripsis as a critical pathogenic factor active at 
early disease phases, associated with negative 
prognosis.104 
 
The Rising Role of Genetics in Prognosis Evaluation of 
MM. The revised ISS (International Staging System) for 
multiple myeloma defines three stages: stage I (s2M 
<3.5mg/dL; serum albumin 3.5 g/dL) stage II (s2M 
<3.5 mg/dL; serum albumin 3.5 g/dL; or s2M 3.5 to 
5.5 mg irrespective of serum albumin); stage III (s2M 
>5.5 mg/L). This system subdivides MM patients into 
three stages according to clinical parameters and to 
cytogenetic markers. Particularly, stage I patients must 
have serum albumin 3.5 g/dL, s2M <3.5 mg/L, no 
high-risk cytogenetics and normal serum lactate 
dehydrogenase (LDH); stage II patients not fitting stage 
I or III; stage III patients have both of the following: 
s2M >5.5 mg/L, high-risk cytogenetics [t(4;14), 
t(14;16), or del(17p) or elevated serum LDH].105 

The Mayo Clinic mSMART risk stratification system 
introduced other parameters in the development of a risk 
stratification, with the identification, with the 
identification of: (i) a standard risk, including trisomies, 
t(11;14) and t(6;14); (ii) a high-risk, including t(4;14), 
t(14;16), t(14;20), del(17p) and gain (1q); (iii) a double-
hit myeloma, including any 2 high-risk factors; (iv) 
triple-hit myeloma, including any 3 or more high-risk 
factors.106  

CNAs affecting chromosome 1, such as gain (1q) and 
del(1p32) were not included in the criteria of the first 
revision of the ISS, despite their frequency and their 
negative impact on patients’ outcomes. However, several 
recent studies support the utility of including gain (1q) in 
the risk stratification of MM patients. In fact, Weinhold 
in an analysis carried out on 2,596 MM patients treated 
with proteasome inhibitors and immunomodulatory 
agents showed a reduced PFS and OS in patients with 

gain (1q) or amp (1q).107 The inclusion of 1q among the 
risk stratification criteria allowed to better define the risk 
of patients with ISS II.107 Furthermore, stage III patients 
with multi-hits displayed a very poor outcome.107 Other 
studies have shown the consistent heterogeneity of R-ISS 
stage II MM patients; in this group, the ISS stage and the 
presence of high-risk chromosome abnormalities are 
relevant prognostic factors and help to better stratify the 
risk of these patients.108  

All these considerations have led to the second 
revision (R2-ISS) of the current R-ISS.109 A value was 
assigned to each risk feature according to their impact on 
OS: ISS-stage III 1.5; ISS-stage II 1; del(17p) 1; high 
LDH 1; t(4;14) 1; gain/amplification (1q) 0.5 points.109 
Using this scoring system, patients were stratified into 
four risk groups according to the additive score: low-risk 
(score =0) mOS not reached, mPFS 68 months; low-
intermediate risk (score=0.5-1 points) mOS 109.2 
months, mPFS 45.5 months; intermediate-high risk 
(score=1.5-2.5 points) mOS 68.5 months, mPFS 30 
months; high-risk (score= 3.5 points) mOS 37.9 months, 
mPFS 19.9 months.109 The 1 q gain is present also in the 
Mayo additive staging system classifications MASS. 110 
(Table 5 shows a comparison of different stratification 
systems). 

Alzahrani et al. explored the impact of R2-ISS on 
outcomes of 1291 MM patients receiving autologous 
HSCT.111 The median PFS was 130.8, 128.5, 94.2 and 
61.4 months for patients with R2-ISS stages I, II, III and 
IV, respectively.111 These observations showed that R2-
ISS is a reliable prognostic tool for MM patients who 
received standard anti-myeloma treatment and upfront 
auto-HSCT.112 

Panopoulou et al in a first study evaluated the 
prognostic impact of double-hit genetics in MM patients 
undergoing autologous HSCT: the presence of double-
hit genetics negatively impacted the PFS and OS of these 
patients in comparison with those with no genetic hits.113 
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In a second study, the same authors have evaluated the 
factors that could predict individual patient benefit from 
lenalidomide maintenance after autologous HSCT in the 
context of the MyeXI trial.114 556 MM patients in the 
MyXI trial were randomized to lenalidomide 
maintenance or observation after autologous HSCT were 
genetically profiled for t(4;14), t(14;16), t(14;20), 
del(1p), gain(1q), and del(17p) and co-occurrence of risk 
markers was computed. 17% of these patients were 
double-hit, 32% single-hit and 51% without risk 
markers; single-hit patients achieved the best benefit 
from lenalidomide maintenance, with isolated del(1p), 
del(17p) and t(4;14) exhibiting a 40-fold, 10-fold and 7-
fold reduced risk of progression or death, respectively, 
compared with observation.114 

Maura et al have recently proposed a new model 
predicting with higher accuracy than all comparator 
prognostic model the individualized risk of newly 
diagnosed MM patients; integral to model accuracy there 
were 20 genomic features, 1q21 gain/amp, del 1p, TP53 
loss, t(4;14), t(14;16), f(14;20), APOBEC mutational 

signatures, copy number signatures reflecting the 
complex structural variant chromotripsis.19 This model 
was based on the analysis of a series of 1,933 patients 
with available clinical, genomic (mutational profile, 
copy number alterations, structural variants, gene 
expression profile), and therapeutic data; according to 
the results of this extensive analysis, it was proposed a 
new molecular classification of MM, defining 12 
molecular subgroups characterized by a different pattern 
of molecular alterations (Figure 4). In a cohort of 1933 
MM patients, the IRMMa model accuracy was 
significantly higher than all ISS models, with a c-index 
for OS of 0.726, compared with ISS (0.61), R-ISS 
(0.572) and R2-ISS (0.625).19 The IRMMa model 
allowed to predict individualized patient risks by 
different treatment strategies in the 12 genomic MM 
groups and, particularly, to identify patients for whom 
high-dose melphalan-autologous HSCT if greatly 
effective versus patients for whom the impact is 
limited.19 

 

 

Figure 4. Molecular classification of primary MM according to Maura et al.19 This classification represents an evolution of the classification 
reported in Figure 1. 
 
Conclusions and Perspective. Dramatic progresses 
have been made in the last three decades in the 
understanding the molecular abnormalities underlying 
the development of MM. MM development is preceded 
by a premalignant condition, monoclonal gammopathy. 
Both these conditions are characterized by the presence 
of several molecular abnormalities, such as 
hyperdiploidy, immunoglobulin heavy chain 

translocations that dysregulate a cyclin D family gene, a 
MAF family gene or NSD2 gene. Subsequent genetic 
events represented by loss of function of tumor 
suppressor genes and mutations activating RAS, NFkB, 
MYC and cell cycle pathways allow the progression to a 
malignant condition.  

These remarkable progresses in the molecular 
understanding of MM have been accompanied by a 
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concomitant improvement in clinical outcomes of newly 
diagnosed MM, mainly related to the introduction of 
novel therapeutic agents. However, a considerable 
heterogeneity in MM presentation, genetics and 
therapeutic responses was observed, with a subset of 
Thus, some patients relapse early (<18 months) and 
rapidly cycle through therapies. Recent whole-exome, 
whole-genome and targeted sequencing studies have 
permitted the identification of several molecular 
prognostic markers. Particularly, DNA sequencing 
studies allow a better identification of high-risk MM 
patients, scarcely responsive to standard treatment and 
requiring an individualized treatment strategy. The study 
of these molecular features now allowed a 
comprehensive molecular classification of MM and the 
definition of an individualized prognostic model to 
predict an individual MM patient’s response to different 
therapeutic options. It is noteworthy that more that the 
single molecular or cytogenetic alteration is the complex 
of alterations (double or triple-hits) which determines the 

prognosis. Therefore, the model proposed by Maura 
appears the most convincing. 

MM genetic diagnostics was traditionally based on 
fluorescence in situ hybridization (FISH), providing 
prognostic information based on Ig translocations and 
main copy number abnormalities (1p, 1q, 17p). However, 
several prognostically important mutations, focal 
deletions and biallelic events can be detected only by 
molecular techniques such as DNA sequencing (NGS). 
Thus, NGS represents a cost-effective alternative to 
FISH, to comprehensively detect genomic abnormalities 
in MM and to identify markers related to prognosis and 
treatment. 

Given the evident limitations of classical interphase 
FISH analysis in providing a full assessment of the risk 
status of MM patients related to genomic events, some 
recent studies have introduced the prospective use of 
DNA sequencing in clinical trials. 

An important question is if the molecular profile 
could give indication to targeted therapies.115,116
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