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Abstract: Hyperspectral remote sensing has tremendous potential for monitoring land cover and
water bodies from the rich spatial and spectral information contained in the images. It is a time
and resource consuming task to obtain groundtruth data for these images by field sampling. A
semi-supervised method for labeling and classification of hyperspectral images is presented. The
unsupervised stage consists of image enhancement by feature extraction, followed by clustering for
labeling and generating the groundtruth image. The supervised stage for classification consists of
a preprocessing stage involving normalization, computation of principal components, and feature
extraction. An ensemble of machine learning models takes the extracted features and groundtruth
data from the unsupervised stage as input and a decision block then combines the output of the
machines to label the image based on majority voting. The ensemble of machine learning methods
includes support vector machines, gradient boosting, Gaussian classifier, and linear perceptron.
Overall, the gradient boosting method gives the best performance for supervised classification of
hyperspectral images. The presented ensemble method is useful for generating labeled data for
hyperspectral images that do not have groundtruth information. It gives an overall accuracy of
93.74% for the Jasper hyperspectral image, 100% accuracy for the HSI2 Lake Erie images, and 99.92%
for the classification of cyanobacteria or harmful algal blooms and surface scum. The method
distinguishes well between blue green algae and surface scum. The full pipeline ensemble method
for classifying Lake Erie images in a cloud server runs 24 times faster than a workstation.

Keywords: hyperspectral images; semi-supervised learning; groundtruth; labeling; feature extraction;
principal components analysis; normalization; image classification and reconstruction

1. Introduction

Hyperspectral imaging (HSI) provides a high density of spectral information in the
hundreds of bands of the imaged material. Most modern hyperspectral sensors also have a
high spatial resolution enabling the images to have a range of applications in agriculture,
ecosystem monitoring, astronomy, molecular biology, biomedical imaging, geosciences,
physics, and surveillance. Hyperspectral unmixing is the method of identifying the per-
centage of material or endmember contributions in each pixel, hence useful for material
identification or detection. There are linear and nonlinear methods for hyperspectral un-
mixing [1]. They can be used to gain preliminary knowledge on the site before embarking
on a field campaign. These images are particularly useful for informed decision-making on
a terrestrial or aquatic ecosystem.

Hyperspectral image classification requires preprocessing methods to reduce dimen-
sionality and requires algorithms to solve the issues of few labeled samples, and low spatial
resolution [2]. Traditionally, hyperspectral images have been classified using supervised,
semi-supervised, and unsupervised Machine Learning (ML) methods. HSI classification
is usually done after applying dimensionality reduction, feature extraction, and/or band
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subset selection. A review of the ranking, clustering, searching, sparsity, embedding, and
hybrid scheme-based methods for band selection are given in [3]. A review of non-negative
matrix factorization techniques and benchmark datasets for unmixing are presented in [4].
Low spatial rank tensor factorization methods are popular for unmixing hyperspectral im-
ages with mixed pixels [5]. ML approaches such as Random Forest (RF) and XGBoost have
been applied in precision agriculture for the estimation of biomass [6]. HSI are also used
for change detection in the ocean. A spatial–spectral attention network with PCA-based
features is used for change detection [7].

The challenging problems with HSI classification are the unlabeled pixels and the high
dimensionality of hyperspectral images. It is also expensive to assign labels to the pixels
from field sampling requiring human supervision. To address the problem of unlabeled
samples, ML algorithms have been developed which are described below. A graph-based
semisupervised learning or ensemble label propagation method using spectral–spatial
similarity measurements from a graph representation is proposed in [8]. Recently, Deep
Learning (DL) methods are being developed and used for HSI classification [9]. Autoen-
coders have been used for hyperspectral unmixing and extended to the classification of
HSI [10–12]. DL networks require a large number of labeled samples, which is overcome by
few shot learning from spectral–spatial features, and training and testing using a 3D CNN in
a metric space [13]. One of the disadvantages of using DL techniques is the computational
complexity and cost. ML techniques are promising, but require pre-processing and feature
extraction stages before training and validation. A local and global modeling approach
for pseudo labeling using Active Learning (AL) is proposed in [14] for HSI classification.
Tree-based approaches have gained attention in semi-supervised HSI classification. An
ensemble semi-supervised random forest method is used for adaptively labeling unlabeled
data and adding them to the training dataset [15]. AL and semi-supervised learning are
combined to improve the performance of random forest method for HSI classification
in [16]. The current ensemble classifiers and semi-supervised methods do not consider all
the samples without labeling. The novelty of our ensemble semi-supervised scheme takes
into account all the unlabeled samples in the HSI. Moreover, considering the computational
complexity of DL networks, we propose a scheme for improving the performance of ML
approach for HSI classification by image preprocessing using spectral textural and statisti-
cal feature extraction for image enhancement and semi-supervised ensemble labeling and
classification in the following way:

• Unlabeled samples are labeled without a pre-trained labeled model by extracting spec-
tral textural and statistical features and incorporating them in the image enhancement
stage.

• The textural energy and statistical features computed in the image enhancement stage
are input to a k-means clustering stage.

• The novel workflow consists of assigning labels to the unlabeled samples using spec-
tral textural and statistical information in the unsupervised stage, followed by the
application of an ensemble of four ML classifiers in the supervised stage, and a decision
block that selects the best classifier for the classification of the image.

We apply our ensemble semi-supervised ML scheme for labeling and classification
of hyperspectral images acquired over water bodies with Harmful Algal Blooms (HABs).
HABs occur in fresh, marine (salt), and brackish (mixture of salt and fresh) water bodies
around the world. They are caused by noxious and toxic phytoplankton, cyanobacteria,
benthic algae, and microalgae. They are also produced by the overabundance of nutrients
such as nitrates, ammonia, urea, and phosphates in the water. These nutrients runoff
into the water from agriculture, fertilizers, and urban activity. The HABs lower oxygen
levels in the water causing harm to organisms, animals, the environment, and the economy.
The bloom lifespan lasts as long as there are favorable conditions but typically ranges
from a few days to many months. HABs have been increasing in size and frequency
worldwide, and it is caused by possible global climate change. Hence, HAB monitoring
is key to the management of the health and utility of waterbodies. NOAA has used
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hyperspectral sensors to detect HABs in Lake Erie, one of the Great Lakes that border the
U.S. and Canada. The hyperspectral camera collects information on the location, size, the
concentration of the blooms, and types of algae [17]. The NASA Glenn Research Center
(GRC) has developed an in-house hyperspectral camera, the airborne HSI2 that operates in
the wavelength of 400 to 900 nm useful for HAB identification [18]. It can collect data at
a high spatial resolution of 1 m, with the advantage of on-demand airborne flight paths
not affected by cloud cover [19]. The HSI2 camera images have been used for assessing
spatial and temporal variability of blue-green algae, chlorophyll, and temperature [20]. The
airborne imagery serves as a complement to satellite-based measurements. HAB detection
has been done using varimax-rotated principal components to isolate noise, extracting
spectral components, and spatial patterns [21]. Satellite imagery from Sentinel-2A has
been used for retrieval of chlorophyll-a concentration using empirical algorithms applied
to the image bands, and an ensemble method. An ensemble is a set of base estimators
that can be combined to make new predictions [22]. Moreover, Sentinel-2A images have
been used for the estimation of chlorophyll-a concentration from regionally and locally
adaptive models. Several empirical models were evaluated and found that the single
global model constructed by the top-performing empirical algorithm performed best in
estimating Chlorophyll-a concentration from both the multispectral and hyperspectral
airborne images [23].

In this paper, we present a semi-supervised approach for labeling and classification of
HSI that combines the best classifiers to provide optimal classification results. The rest of
the paper is organized as follows. Section 2 presents an overview of the methodology and
the algorithms used for preprocessing, feature extraction, clustering, and classification. It
presents the ensemble ML models: (1) for labeling HSI in the absence of groundtruth data,
which requires a preliminary clustering procedure, and (2) labeling and classification of
HSI with groundtruth data. Section 3 presents results, while Section 4 discusses the results
and compares them with those of state-of-the-art methods. The limitations and future work
are presented here. The conclusions are provided in Section 5.

2. Materials and Methods

This section describes the images, and the methods used for preprocessing, labeling,
and classification of the hyperspectral images. Two types of HSI are used: ones without
groundtruth data and another with groundtruth data. The ones without groundtruth data
are from airborne HSI sensors flown by NASA Glenn Research Center (GRC).

The processing of hyperspectral images involves calibration of the images in the
laboratory and georeferencing of the data in flight. The calibration in the laboratory utilizes
a known National Institute of Standards and Technology (NIST) calibrated radiance source
to convert image intensity counts to radiance units. The calibration also utilizes a HgAr
light source to convert the spatial pixel axis into known wavelength units. Additionally,
in-flight O2 absorption lines fine-tune these wavelength calibrations to negate the effects of
temperature and pressure differences. In-flight measurements of latitude, longitude, and
attitude allow for georeferencing of the images. Figure 1 shows the HSI2 sensor installed
on the NASA Twin Otter aircraft.

We have used two HSI2 camera images from the Ohio Supercomputer Center (OSC)
and one image developed by GRC for HAB monitoring in near real-time in Lake Erie [19].
The two HSI2 images are one-meter resolution with 51 bands from 400 to 900 nanometers
of size 5000 rows and 495 columns, and the CyanoHAB hyperspectral image has 170 bands
from 400 to 900 nm with a spectral resolution of 2.5 nm, also with a spatial resolution of 1 m.
Figure 2 shows the block diagram for the proposed semi-supervised classification scheme.
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assignment is made. The data preparation for this stage requires a 1-D tensor representa-
tion of the image. The experiment consists of various trials of cluster numbers, k = 2 to 5, 
to result in an output image label representation from the original image after the en-
hancement stage. Once the best label assignment for the Lake Erie image is determined, 
we have the data and the corresponding labels. Since the images do not have specific 
groundtruth data, the unsupervised stage produces a label representation of the original 
image for the best number of clusters. The next is stage 4 processing which includes 4 sub-
processes. Sub-process 4.1 is a data normalization process using three different kinds of 
normalization: normalization scaling (ns), maximum scaling (ms), and scaling (sc). After 
the data normalization process, sub-process 4.2 is PCA decomposition and selection of 3, 
5, or 7 bands. In sub-process 4.3, the feature vectors ft from the enhancement stage are 
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the input and output for each stage, and the stages are represented by the blocks. The red arrow is a
zoom into the corresponding stage showing what happens in that stage in detail.

The proposed semi-supervised HSI classification workflow is illustrated in Figure 2.
The workflow has seven stages. The HSI2 images have NaN entries for some pixel data
points. The sunlight reflects off the water causing imager saturation by glare or speckle.
Hence, NaN is inserted at these data locations. The first stage corresponds to the input
and is the hyperspectral image, the image is read and is processed using a data frame
structure and the NaN values are replaced by the mean of the five neighborhood pixels.
After this filtering process, the enhancement stage has two sub-processes 2.1 and 2.2 (shown
in Figure 2). In Section 2.1 relevant features are extracted using the stacked 51 bands of
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the image using the first-two statistical moments (mean, standard deviation) and texture
information as an energy feature. These features are described below:

ξ =
N1 N2

∑
n=1
|x[n]|

2

(1)

is the energy. N1 and N2 are the batch size [24]. The mean is computed as:

µ =
1

N1N2
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∑
j=1

N1

∑
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and the standard deviation feature is computed as:
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In the 2.2 sub-process, the enhancement vectors are stacked. The 3 arrows indicate the
3 features which are then stacked into one data frame. In the 2.2 sub-process, the stacked
vectors are then input to the unsupervised stage. In the 3.1 sub-process, the label assign-
ment is made. The data preparation for this stage requires a 1-D tensor representation of the
image. The experiment consists of various trials of cluster numbers, k = 2 to 5, to result in
an output image label representation from the original image after the enhancement stage.
Once the best label assignment for the Lake Erie image is determined, we have the data and
the corresponding labels. Since the images do not have specific groundtruth data, the unsu-
pervised stage produces a label representation of the original image for the best number of
clusters. The next is stage 4 processing which includes 4 sub-processes. Sub-process 4.1 is
a data normalization process using three different kinds of normalization: normalization
scaling (ns), maximum scaling (ms), and scaling (sc). After the data normalization process,
sub-process 4.2 is PCA decomposition and selection of 3, 5, or 7 bands. In sub-process 4.3,
the feature vectors ft from the enhancement stage are computed. In sub-process 4.4, the
resulting vectors are stacked into an array Y and are concatenated with the labels provided
by the unsupervised stage. Stacked vectors and the labels are then input to the process 5,
supervised Machine Learning (ML) stage.

Stacked vectors Y and the labels go through a batch selection process before being
input to the supervised ML stage. The Supervised ML stage has four machine learning
techniques in an ensemble configuration: Support Vector Machines (SVM), Gradient Boost
Classifier (GB), Gaussian Classifier, and a Linear Perceptron (LP) [25]. SVMs represent
the training samples as points in p-dimensional space, mapped so that the samples of the
data classes are separated by a (p-1) dimensional hyperplane. The hyperplane is chosen
such that it maximizes the margin on either side of the hyperplane between two classes.
Hence, SVM performs binary classification but can be extended to multi-class problems.
Gradient boost classifiers combine many weak learning models to create a strong predictive
model. It minimizes a loss function by iteratively choosing a function that points towards
the negative gradient. A Gaussian classifier is a naïve Bayes classifier. It is a generative
approach that models the class posterior and input-class conditional distribution. The LP is
a linear feedforward network with an input and an output layer.

The stage 6 process is the decision block that decides the best classifier based on
the classification accuracy results obtained from testing the trained models. The final
classification stage 7 receives the decision block results and labels the HSI pixels to fixed
class labels. The classification stage results are also evaluated using three metrics. They are
the classification accuracy, F1-score, and the Structural Similarity Index Metric (SSIM). The
SSIM compares the reconstructed image with the labeled image and rates how good the
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reconstructed image from the classification is compared to groundtruth labeled image. The
SSIM is given by:

SSIM(x, y) =

(
2µxµy + C1

)(
2σxy + C2

)(
µ2

x + µ2
y + C1

)(
σ2

x + σ2
y + C2

) (4)

where x and y are two non-negative image signals, µx and µy are their means, and σx and
σy are their standard deviations, σxy the correlation, and C1 and C2 are constants [26,27].
The SSIM is widely used for the assessment of image quality and it satisfies the conditions
of symmetry, boundedness, and unique maximum.

We used Amazon Web Services (AWS) [28] to run the training models written in
Python for classification of the two HSI2 Lake Erie images. AWS hardware resource is an
EC2 instance of type R5 extra large which has six Virtual CPUs (VCPUs), and 32 GB RAM.
This particular instance provides optimized memory computing.

2.1. Workflow for Supervised Classification of Jasper Image

We have used the Jasper HSI, because it is similar to the Lake Erie image as it has
land cover and an inland water body. Figure 3 shows the Jasper image along with the
groundtruth. The Jasper image has 100 rows, 100 columns, and has 224 bands. Figure 4
shows the four endmember abundances for the materials present in the Jasper image. The
endmembers are road, soil, water, and tree. We did not consider the road class because of
an insufficient number of pixels for training. The available groundtruth has endmember
abundances for each of the pixels. In [29] random labeling of the HSI pixels is used for
creating labels. Here, we conduct two classification experiments by generating labels based
on groundtruth endmember abundances. For the first experiment, to perform a fixed
classification of each pixel to a particular class, we created three labels for each pixel from
the endmember abundances as strongly belong, weakly belong, and does not belong to
one of the three original groundtruth classes. If the fractional abundance is greater than 0.8,
then the pixel is labeled as strongly belonging to the class. If the fractional abundance is
less than 0.8, then the pixel weakly belongs to the class, and if the abundance is 0 the pixel
does not belong to the class. All the four machines are trained with training batches for the
three groundtruth classes and for the three labels for each of the three groundtruth classes
resulting in training of nine classes. We also conduct a second classification experiment
with two labels for pixels. The pixel is labeled as strongly belonging to the class if the
abundance is less than the groundtruth maximum value for the class and greater than
0.4. If the pixel value is greater than the minimum groundtruth value and less than 0.4,
it is labeled as not belonging to the class, resulting in the training of 6 classes. For both
the experiments, 10 fold cross-validation is done which results in the training of a total of
90, and 60 models for both experiments, respectively. We have effectively converted an
unmixing problem into a classification problem by assigning fixed labels to pixels with
fractional abundances by thresholding. The procedure for preprocessing and extraction of
batch sizes for training and testing are explained below.
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Figure 4. Endmember abundances for the four endmembers for Jasper image.

Firstly, PCA is applied to the Jasper image, and three, five, and seven dominant PCA
bands are selected. The batch selection process consists of the random extraction of parts of
the image by class. The batches are divided into groups for training, testing, and left-over
data. Batch sizes for the training data are 820, 1000, and 1500 pixels. The data is split
into training data, testing data corresponding to the same selected batch size as training
data, and the remaining data not used for training or testing is used only for the image
reconstruction. This data is around 400 pixels. The training is done with less than 2% of
the pixels of Jasper HSI for each class. Figure 5 explains the batch size extraction process
for three PCA bands with min–max scaling. The experiment is repeated with max-scaling
and normalization. Finally, the batches are stacked for training the models. For two labels
(strongly belong, and does not belong), the training batch sizes are (6 × 820 pixels), where
6 corresponds to two batches for each of the three PCA bands. The six batches per class
are stacked together for training the models for all three classes. The testing batch sizes
are (9 × 820 pixels) where 9 corresponds to three batches for each of the three PCA bands
which are stacked together for testing for the three classes. There is a remaining 980 pixels
of left-over data which is used for image reconstruction. The experiment is repeated for
batch sizes of 1000 and 1500 pixels. For three labels (strongly belong, weakly belong, and
does not belong), the batch sizes are smaller: 300, 500, and 600 pixels. The training is done
on the features extracted from the batches.

The features are energy, mean, and standard deviation which are calculated on the
batches of pixels. The ML models are trained with the computed features. The ensemble
model for the training process for the three classes, trees, water, and soil, is shown in
Figure 6. The labeled testing pixels are then used to reconstruct the classified Jasper image
with color code for each class.
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Figure 6. Energy, mean, and variance features are calculated from the Jasper HSI training samples
and are input to the ML algorithms. The decision block selects the best machine for each class and
uses the selected machines to label the testing samples.

Pseudocode description of the algorithms for the image enhancement features block,
supervised ML block, and decision block are given below.

A. Pseudo code feature enhancement block

Input: Hyperspectral Image
Output: Stacked vector Enhancement
Begin:

compute the energy feature using Equation (1)
compute the mean using Equation (2)
compute the standard deviation using Equation (3)
concatenate the energy, mean and standard deviation in to a data frame

Return Stacked enhancement vector
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The enhancement features block is applied to obtain the spectral features representa-
tion. The input is the 1-D reshaped hyperspectral image vector placed as columns for each
of the bands, then the energy, mean, and standard deviation feature are extracted. Finally,
the data is stacked in to a data frame.

B. Pseudo code supervised machine learning block

Input: dataset train (data), label for dataset train (label), tolerance, kernel, depth, estimators
Output: Models
Begin: Initialize variables for accuracy, F1 score, confusion matrix for the models (metrics)
For 10-fold cross validation of the data

compute SVM Model using data, label, and tolerance
compute GB Model using data, label, estimators, and depth
compute LP Model using data, label, and tolerance
compute GC Model using data, label, and kernel
compute accuracy score for the four models
compute F1 score for the four models
compute confusion matrix score for the four models
save (SVM Model, GB Model, LP Model, GC Model)
append accuracy, F1-score, confusion matrix

Return Models, metrics
The unsupervised machine learning block proposed is composed of four machine

learning methods: SVM, GB, GC, LP. The models are trained using a 10-fold cross-validation
methodology. Then, the input of the machine learning blocks is the selected training data,
the respective labels, and the tuning parameters. The tuning parameters are configured for
each machine learning technique as follow:

SVM is set using a linear kernel, and hinge as a loss function and tolerance values
of 1 × 10−3. The Gradient Boosting parameter is the depth of the individual regression
estimator which is set to 10, the number of boosting stages is 100, and the learning rate for
each tree is 1.0. The LP classifier is set to tolerance or stopping criteria of 1 × 10−5. The
Gaussian classifier is set with the RBF kernel using L-BFGS quasi-Newton methods as an
optimization function.

C. Pseudo code decision block

Input: data_test (batch_size, features), label (batch_size), models
Output: Best classifiers
Begin: Initialize dictionary metrics variable (accuracy, F1 score, confusion matrix,

training data, predicted labels), maximum accuracy variable
For each folderModels

For each Model
load model
compute accuracy
compute F1 score
compute confusion matrix
append accuracy, F1 score, confusion matrix, model, and variables in

dictionary metrics
concatenate dictionary metrics in a pandas data frame

obtain the best model classifier using the accuracy criteria
Return best classifier
The above pseudocode procedure is for the principal blocks of the workflow in

Figures 2 and 6. The rest of the blocks that include preprocessing methods for scaling, and
dimensionality reduction using PCA are straightforward to compute.

3. Results

This section presents and discusses the results of applying the ensemble method for the
labeling, classification, and reconstruction of the HSI2 images and Jasper hyperspectral images.
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3.1. Classification and Reconstruction of HSI2 Images

The semi-supervised classification pipeline is applied to two HSI2 images over Lake
Erie. The HSI2 images (Image 1 and Image 2) are shown in Figure 7. Image 1 is of size
3270 × 960, where 3270 is the number of lines, and 960 is the number of samples per line.
Image 2 in Figure 7b is of size 4444 × 960, where 4444 is the number of lines, and 960 is the
number of samples per line. The semi-supervised classification scheme shown in Figure 2
is applied to the images shown in Figure 7a,b.
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Figure 7. HSI2 Hyperspectral images over Lake Erie (a) Image 1 (white—clouds, blue—water,
yellow—land), and (b) Image 2 (white—clouds, green—water, red—land).

The unsupervised stage for segmenting the image into clusters is applied for a choice
of 2, 3, 4, and 5 clusters. This stage performs k-means clustering after image enhancement
using the standard deviation and energy features. This combination and 3 numbers of
clusters give the best results for labeling and obtaining the groundtruth image. Following
unsupervised classification which identifies the best number of clusters image preprocess-
ing is performed. PCA is used for selecting the best number of a subset of bands. There are
51 bands in the HSI2. The covariance matrix of the image and its Eigenvalues are computed.
Figure 8 shows the percentage of contribution of the first ten bands to the Eigenvalues of
the covariance matrix of the image. It can be seen that all the energy is compacted in the
first three bands of the image.
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Following preprocessing, extraction of the three mean, standard deviation, and energy
features is performed. For supervised classification, all the three features are used. The
features are stacked for training the four ML methods. The Ensemble of the four machines
is applied to HSI2 images 1 and 2 in Figure 7. The decision block loads all the models of the
10 fold cross-validation process, and classifies the images with all the models, and choose
the best model using the classification accuracy as the selection metric.
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Tables 1 and 2 shows the accuracy and F1 score obtained from 10-fold cross validation
for three clusters with 3, 5, and 7 PCA bands, using the three scaling methods of standard-
ization normalization (ns), max scaling (ms), and min–max scaling(sc) for the HSI2 Image 1
in Figure 7a, and HSI2 Image 2 in Figure 7b, respectively. The three clusters are land, water,
and clouds. Tables 3 and 4 show the accuracy and F1 score obtained from 10-fold cross
validation for three clusters with 3, 5, and 7 PCA bands, using the three scaling methods of
normalization scaling, min–max scaling, and max scaling for the HSI2 Image 2 in Figure 7b.

Table 1. The classification accuracy for HSI2 image 1 using PCA 3, 5, and 7 bands and the different
scaling and normalization methods using the four machines for a 1500 pixels batch size.

Accuracy

SVM LP GB GC

PCA-3 ns 68.46 56.88 100.00 87.77
PCA-3 ms 72.67 56.88 100.00 99.94
PCA-3 sc 72.67 56.88 100.00 99.90

PCA-5 ns 63.80 56.88 99.65 81.63
PCA-5 ms 58.55 56.88 99.97 98.87
PCA-5 sc 58.55 56.88 99.93 97.77

PCA-7 ns 58.75 56.88 98.95 79.13
PCA-7 ms 58.07 56.88 99.92 97.26
PCA-7 sc 58.07 56.88 99.97 97.26

Table 2. The F1 score for classification of HSI2 image 1 using PCA 3, 5, and 7 bands and the different
scaling and normalization methods using the four machines.

F1-Score

SVM LP GB GC

PCA-3 ns 61.80 41.22 100.00 89.75
PCA-3 ms 70.43 41.22 100.00 100.00
PCA-3 sc 70.43 41.22 100.00 99.92

PCA-5 ns 54.97 41.22 99.79 83.41
PCA-5 ms 44.46 41.22 99.90 90.06
PCA-5 sc 44.46 41.22 99.95 85.85

PCA-7 ns 43.64 41.22 99.21 79.53
PCA-7 ms 43.64 41.22 99.95 88.56
PCA-7 sc 43.64 41.22 99.88 87.96

Table 3. The classification accuracy for HSI2 image 2 using PCA 3, 5, and 7 bands and the different
scaling and normalization methods using the four machines for a 1500 pixels batch size.

Accuracy

SVM LP GB GC

PCA-3 ns 83.97 52.88 100 98.46
PCA-3 ms 53.54 53.54 100 94.94
PCA-3 sc 53.54 53.54 100 93.76

PCA-5 ns 64.81 52.88 99.81 94.74
PCA-5 ms 52.88 52.88 98.19 88.75
PCA-5 sc 52.88 52.88 98.64 88.16

PCA-7 ns 56.58 52.88 86.47 79.98
PCA-7 ms 52.88 52.88 86.88 79.7
PCA-7 sc 52.88 52.88 87.08 79.95
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Table 4. The F1 score for classification of HSI2 image 2 using PCA 3, 5, and 7 bands and the different
scaling and normalization methods using the four machines.

F1-Score

SVM LP GB GC

PCA-3 ns 79.12 36.58 100 98.46
PCA-3 ms 48.25 48.25 100 94.91
PCA-3 sc 48.25 48.25 100 93.78

PCA-5 ns 61.17 36.58 99.81 94.73
PCA-5 ms 36.58 36.58 98.18 88.78
PCA-5 sc 36.58 36.58 98.63 88.19

PCA-7 ns 52.09 36.58 86.22 79.8
PCA-7 ms 36.58 36.58 86.33 80.23
PCA-7 sc 36.58 36.58 86.57 80.53

The models are trained with the extracted features for a batch size of 1500 for HSI2
image 1 and image 2 for three classes. For both images, the best batch size is found to be
1500 pixels compared to 1000 pixels batch size. The trained models are then used to classify
the images into three classes. The classified images are reconstructed. The best accuracy
is obtained with the GB model and 3 PCA bands for both images. The reconstructed
labeled image and reconstructed classified image for HSI2 image 1 are shown in Figure 9a,b,
respectively. The SSIM between the labeled image and the reconstructed image is 0.6743.
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method), (b) Reconstructed image from classified samples using the supervised stage.

Figure 10 shows the confusion matrices for the reconstruction of HSI2 Image 1 using
3 PCA bands with the three types of scaling methods. All of the scaling methods give 100%
accuracy using GB classifier, and second best classifier is GC.

The labeled image and classified reconstructed image for HSI2 image 2 are shown in
Figure 11a,b, respectively. The classified image of HSI2 image 2 using 3 PCA bands and
maximum scaling (ms) gives the best similarity with the labeled image with the SSIM being
1.0. Figure 12 shows the confusion matrices for the reconstruction of HSI2 Image 2 using
3 PCA bands with the three types of scaling methods. Overall, the scaling and maximum
scaling methods give 100% accuracy, and the normalization scaling gives 99.95% accuracy.
For HSI image 1, the highest accuracies are obtained for using 3 PCA bands and maximum
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scaling, and for HSI image 2, the highest accuracies are obtained for using 3 PCA bands and
normalization scaling. The confusion matrices in Figures 10 and 12 have different number
of testing samples, as the HSI2 images 1 and 2 are of different size.
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L—land.
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zation followed by feature extraction. The previous outputs are the inputs for the super-
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Figure 11. (a) HIS2 Image 2 with labels for 3 classes using the unsupervised stage (k-means clustering
method), (b) Reconstructed image from classified samples using the supervised stage.
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3.2. Classification of Cyanohab from Lake Erie Image

We use another HSI image shown in Figure 13 to show that the ensemble semi-
supervised scheme can identify blue green algae or cyanoHAB (cyanobacteria) from other
materials in the lake. This image was acquired using a different sensor than HSI2, the
data has a different format. The image is of size 5000 lines, with 496 samples per line.
We used ENVI to obtain the ROIs for the cyanobacteria and surface scum. This image
shows higher concentrations of cyanobacteria and also surface scum. A Region of Interest
(ROI) with a high concentration of cyanobacteria in the East side of the lake, highlighted
by a blue rectangle in Figure 13a is extracted. The ROI image is of size 3240 lines, with
311 samples per line. The ROI image is shown enlarged in Figure 13b. The image is stored
in ‘tif’ format in 170 bands and the proposed workflow shown in Figure 2 is applied, similar
to the classification of HSI2 images. The enhancement stage performs feature extraction
of the textural energy and statistical mean and standard deviation features. Then, the
vectors are stacked using a Pandas data frame structure. The next stage is the unsupervised
stage for label assignment in the image using a k-means clustering that takes as input the
stacked features vectors. The output of this block are the labels and data. The labeled
image with four clusters is shown in Figure 13c. A preprocessing stage is performed using
data normalization followed by feature extraction. The previous outputs are the inputs for
the supervised machine learning ensemble trained with a batch size of 1000 by 3 features
similar to the previous experiment on Lake Erie HSI2 images. After training, the decision
block decides the best of the four machines using majority voting, using which the final
classification and reconstructed image are obtained. The classified reconstructed image is
shown in Figure 13d.
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Figure 13. (a) Hyperspectral image of Lake Erie with extracted ROI shown as blue rectangle,
(b) Zoomed ROI subimage, (c) Output image from unsupervised stage with four clusters, (d) Classi-
fied reconstructed image using 3 PCA bands and normalization scaling (Legends are the same as
image in (c)).

The classification accuracies using the supervised stage of the ensemble method for
the 3 scaling methods, and 3, 5, and 7 PCA bands are given in Table 5. As can be seen, the
three PCA bands result in higher accuracies using the Gradient Boosting classifier. The F1
shores are given in Table 6.
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Table 5. The classification accuracy for CyanoHAB HSI using PCA 3, 5, and 7 bands, with the three
types of scaling using the four machines for a 1000 pixels batch size.

Accuracy

SVM LP GB GC

PCA-3 ns 63.48 53.88 99.92 91.53
PCA-3PCA-3 ms 53.88 53.88 99.33 90.15

PCA-3 sc 53.71 53.88 98.53 83.73

PCA-5 ns 61.03 50.04 96.33 76.93
PCA-5PCA-5 ms 50.04 50.04 97.36 64.18

PCA-5 sc 49.89 50.04 97.08 74.11

PCA-7 ns 50.13 48.39 90.71 67.78
PCA-7PCA-7 ms 48.39 48.39 95.11 56.17

PCA-7 sc 48.81 48.39 91.25 62.66

Table 6. The F1 score for classification of CyanoHAB HSI using PCA 3, 5, and 7 bands with the three
types of scaling using the four machines.

F1-Score

SVM LP GB GC

PCA-3 ns 53.76 43.52 99.92 91.32
PCA-3PCA-3 ms 43.52 43.52 99.33 89.50

PCA-3 sc 43.38 43.52 98.54 83.25

PCA-5 ns 51.30 37.91 96.35 77.70
PCA-5PCA-5 ms 37.91 37.91 97.38 64.13

PCA-5 sc 37.80 37.91 97.10 73.01

PCA-7 ns 38.49 35.18 90.88 64.37
PCA-7PCA-7 ms 35.18 35.18 95.14 57.10

PCA-7 sc 40.19 35.18 91.60 63.39

The confusion matrices for the 4 classes are given in Figure 14. The classified recon-
structed image shown in Figure 13d has the same color legends as Figure 13c.
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Figure 14. The confusion matrices for 4 labels High Scum, High Cynanobacteria, Low Scum, and Low
Cyanobacteria pixels of the CyanoHAB image for three types of scaling- (a) normalization scaling
(ns), (b) maximum scaling (ms), and (c) scaling (sc).

3.3. Classification and Reconstruction of Jasper Image

Jasper HSI has 4 different materials with mixing in each pixel. We did not consider the
road class because of insufficient data for training. The three considered classes are trees,
water, and soil. The Jasper image pixels have been classified into subcategories: Belong
(B) and Not Belong (NB) and to three subcategories: Strong Belong (SB), Weak Belong
(WB), and Not Belong (NB) to give fixed labels to the groundtruth pixels with fractional
abundances. For two labels within the three classes of trees, water, and soil, 2× 2 confusion
matrices are obtained for each of the three classes, and for three labels within the three
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classes, 3 × 3 confusion matrices are obtained (shown in Figure 15) for each of the three
classes. For the two subcategories experiment, we have a total of 136 testing samples, and
for the three subcategories experiment, we have a total of 261 testing samples.
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Tables 7 and 8 show the accuracy and F1 score obtained from 10-fold cross validation 
for three clusters with 3, 5, and 7 PCA bands, using the three scaling methods of stand-
ardization normalization, min–max scaling, and maximum scaling for the Jasper HSI. The 
structural similarity index measure (SSIM) between the original and reconstructed image 
pixels is 1.0 for the tree, water, and soil classes. Best results are obtained with three PCA 

Figure 15. The confusion matrices for 2 labels Not Belong (NB) and Belong (B) given to the (a) trees,
(b) water, and (c) soil pixels of the Jasper HSI in the top row. Bottom row shows the confusion
matrices for 3 labels Strong Belong (SB), Weak Belong (WB), and Not Belong (NB) given to the
(d) trees, (e) water and (f) soil pixels of the Jasper HSI.

We divided the data into batches of training and testing sizes and computed the
classification accuracies using 10-fold cross validation. Figure 16 shows the classified
images and the original groundtruth endmembers for each of the classes for classifying
with three labels per class.

Tables 7 and 8 show the accuracy and F1 score obtained from 10-fold cross validation
for three clusters with 3, 5, and 7 PCA bands, using the three scaling methods of standard-
ization normalization, min–max scaling, and maximum scaling for the Jasper HSI. The
structural similarity index measure (SSIM) between the original and reconstructed image
pixels is 1.0 for the tree, water, and soil classes. Best results are obtained with three PCA
bands and maximum scaling. The batch sizes for training and classification for three labels
per class are 300, 500, and 600. The best batch size is found to be 300 pixels.

Table 7. The classification accuracy for Jasper HSI using PCA 3, 5, and 7 bands, with maximum
scaling using the four machines for a 300 pixels batch size.

Accuracy

SVM LP GB GC

Tree 63.60 60.54 95.02 82.76
PCA-3Water 69.73 55.17 96.93 77.78

Soil 62.07 66.28 89.27 72.80

Tree 58.62 58.62 77.47 72.41
PCA-5Water 61.61 55.17 93.10 69.20

Soil 64.14 63.45 85.29 71.49

Tree 58.62 59.44 68.80 68.97
PCA-7Water 55.83 55.17 76.52 64.20

Soil 60.26 62.73 80.13 69.13
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Tables 7 and 8 show the accuracy and F1 score obtained from 10-fold cross validation 
for three clusters with 3, 5, and 7 PCA bands, using the three scaling methods of stand-
ardization normalization, min–max scaling, and maximum scaling for the Jasper HSI. The 
structural similarity index measure (SSIM) between the original and reconstructed image 
pixels is 1.0 for the tree, water, and soil classes. Best results are obtained with three PCA 

Figure 16. (a) Tree class reconstructed image with label 0 (blue) for pixels Not Belonging to tree class,
label 1(green) for Strong Belonging pixels to tree class, and label 2 (brown) for pixels Weakly Belonging
to tree class. (b) Water class reconstructed image with label 3 (blue) for pixels Not Belonging to
water class, label 4 (green) for Strong Belonging to water class, and label 5 (brown) for pixels Weakly
Belonging to water class, (c) Soil class reconstructed image with label 6 (blue) for pixels Not Belonging
to soil class, label 7 (green) for pixels Strongly Belonging to soil class, and label 8 (brown) for pixels
Weakly Belonging to Soil class, (d) Original groundtruth for tree class, (e) Original groundtruth for
water class, and (f) Original groundtruth image for soil class.

Table 8. The F1 score for classification of Jasper HSI using PCA 3, 5, and 7 bands with maximum
scaling using the four machines.

F1-Score

SVM LP GB GC

Tree 54.67 47.31 95.03 82.93
PCA-3Water 64.27 39.23 96.90 78.86

Soil 51.64 58.98 89.35 71.67

Tree 43.33 43.33 77.98 69.97
PCA-5Water 57.04 39.23 93.16 70.95

Soil 61.99 53.56 86.38 71.84

Tree 43.33 45.12 69.64 64.98
PCA-7Water 52.00 39.23 76.87 65.12

Soil 59.43 51.93 82.53 66.53

The Jasper image is also classified into two labels per pixel versus Not Belong and
Strong Belong by thresholding the fractional abundances as discussed in Section 2.1. The
batch sizes for training and classification for two labels per class are 820, 1000, and 1500.
The results of the reconstructed images for each endmember are shown in Figure 17. The
SSIM for these reconstructions is also 1.0 giving the highest similarity between original and
reconstructed images.
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Figure 17. (a) Tree class reconstructed image with label 0 (blue) for pixels Not Belonging to tree
class, label 1(brown) for pixels Belonging to tree class. (b) Water class reconstructed image with label
3 (blue) for pixels Not Belonging to water class, and label 4 (brown) for pixels Belonging to water
class, (c) Soil class reconstructed image with label 6 (blue) for pixels Not Belonging to soil class, and
label 7 (brown) for pixels Belonging to soil class, (d) Original groundtruth for tree class, (e) Original
groundtruth for water class, and (f) Original groundtruth image for soil class.

4. Discussion
4.1. Discussion of Ensemble Model Results for HSI2 Images of Lake Erie

The semi-supervised ensemble method pipeline is larger for Lake Erie images because
we do not have the labeled groundtruth data. The labeled data has to be created using
the unsupervised stage of the pipeline. Moreover, the image enhancement stage makes
use of all the 51 bands of the original image to compute the features that are input to the
unsupervised stage. The enhancement stage is important as it improves the labeling of
the original HSI dataset. Both images are labeled by the unsupervised stage into 3 classes:
clouds, land, and water. The supervised stage implements four ML models and the
output classified images are obtained after 10-fold cross validation. The best batch size is
1500 pixels stacked for the 3 features. The SSIM is 0.6743 for Lake Erie Image 1 while it
is 1.0 for image 2 which has more land cover than image 1. This is because of the higher
cloud cover in image 1. Optical remote sensing imagery has the problem of cloud cover
and thresholding methods are applied for their removal from hyperspectral imagery [30].
Onboard spectral–spatial method is proposed in [31] for cloud detection. A deep learning
neural network method is proposed for cloud detection in [32]. Our method can be used for
masking and filtering cloud cover pixels before classification of the image. The advantage
of our ensemble method is that the identification of cloud pixels is part of the labeling
process in the pipeline, which is followed by supervised classification using the ensemble
ML technique.

4.2. Discussion of Ensemble Model Results for CyanoHAB Image of Lake Erie

The spectral signature of pixels in the four clusters from the ROI image in Figure 13c
is shown in Figure 18. The bands 679 nm, 664 nm, and 709 nm, and the bands 667 nm
and 858 nm are used to calculate the Cyanobacteria Index (CI) and Surface Scum Index
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(SSI), respectively in [19]. As can be seen from the output of the unsupervised stage the
regions of High CyanoHAB, Low CyanoHAB, High Scum, and Low Scum are identified
correctly compared to the images obtained from the CI and SSI in [19]. The classification
accuracies for the supervised classification of CyanoHAB is 99.92%. Our classification
of High CyanoHAB, High Scum, and Low Scum are good, but the accuracy is low for
low cyanobacteria concentration. The classification of the low cyanobacteria class can be
improved by spectral feature extraction. Our semi-supervised ensemble scheme can be
used for the identification of cyanobacteria from hyperspectral images in an automatic
manner without human intervention and the need for labeled samples. Moreover, the CI
and SSI give a fractional index of the materials with one image per material. While our
classification pipeline gives fixed labels for each pixel which will be more useful for water
management as they know definitely which areas pertain to harmful cyanobacteria, and
which are safer for recreation and other activities.
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4.3. Discussion of Ensemble Model Results for Jasper HSI

For two subclasses by label, the classification results were compared for using three,
five, and seven PCA bands. The best classification performance was obtained with the
GB classifier, with three PCA bands giving an accuracy of 91.57%, and 100%, 100% for the
tree, water, and soil classes, respectively. For the tree and soil classes a better accuracy is
obtained with five PCA bands. On the other hand, for water classification, the performance
is better with seven PCA bands. For larger batch sizes, e.g., 1000 and 1500, lower number of
PCA bands such as three, gives an accuracy of 100% for the three classes with GB classifier.
For the three labels per class configuration of SB, WB, and NB, three PCA bands for a
batch size of 300 gives the best classification accuracy of 95.02%, 96.23%, and 89.27% for
the tree, water, and soil classes, respectively, using the GB classifier. For the water class,
we obtained better accuracy of 99.07% using a batch size of 600. The three labels per class
configuration also gives a SSIM of 1.0 for the reconstructed image compared to the original
groundtruth image. The best results for the Jasper image can be summarized as the use of
three PCA bands with min–max scaling and GB classifier. The GB is found to be the best
classifier as it is based on decision trees and it combines many weak learners to create a
strong predictive model.
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Jasper dataset has four endmembers’ contributions corresponding to tree, soil, water,
and road. A graph-based architecture is proposed in [33] to classify the endmember
contributions and, the authors compare the classification performance with ML techniques
such as SVM, KNN, LDAKNN, PCAKNN, KPCAKNN, LDASVM, PCASVM KPCASVM,
Convolution Neural Network (CNN), the abbreviation Linear Discriminant Analysis (LDA),
Kernel PCA (KPCA) in the machine learning methods means the preprocessing step before
the classification techniques. The accuracy measurements for Jasper image for classification
into the endmembers contribution by class is as follows: Soil Class obtained 100% accuracy
results using the PCAKNN method and SVM 99.905%, for water, and TLM-2 classifier
obtained 98.959%, Finally, for tree class, TLM-2 obtained 97.622%. From our experiments,
in the separate analysis for three classes using a labeled subset of non-belong (NB), strong-
belong (SB), and weak-belong (WB), and using the feature extracted from three PCA bands,
we obtained the following accuracies for three classes: trees 95.02%, water class 96.93%,
and soil class 89.27% for the GB classifier. On the other hand, for two classes using as a
label sub-set of non-belong (NB) and belong (B), we obtained 91.67%, 100.00%, and 100.00%
for the three classes of trees, water, and soil, respectively. We improve the results compared
to the method proposed in [33] for our two sub-labels approach. The best scaling method
for Jasper dataset was the min–max-scaling. Our ensemble method improves the water and
soil classification accuracies using 24.6% of the dataset for training and the remaining data
for testing. In [29], the authors propose a Kernelized Extreme Learning Machine (K-ELM)
using 2000 samples for training and the obtained accuracy score for a groundtruth labeling
in the re-testing procedure for road, soil, water, and trees as: 84.7%, 98.06%, 69.4%, and
71.1% by class which are lower than the accuracies obtained by our ensemble method, and
also requires a larger number of training samples.

The ensemble model can handle unlabeled samples. However, it needs sufficient
unlabeled samples for training the machines. Since there are four machines involved the
model is time-consuming. In the cloud server, the model takes 6 h 47 min for classifying
the Lake Erie images which are still faster than a DELL desktop computer which takes
about a week to classify one image. Currently, the model classifies pixels as belonging
to particular classes, the future work will involve developing the model to determine
fractional abundances of each pixel. Moreover, the future work will involve optimizing the
training to work with fewer unlabeled samples using other machines such as DL networks.

5. Conclusions

A semi-supervised ensemble method is presented for labeling pixels in an HSI and
classifying the image. The method performs well for airborne HSI over Lake Erie and
the Jasper benchmark HSI. In the absence of groundtruth, this method can be used as
a preprocessing step for labeling pixels and creating groundtruth data. Moreover, the
unsupervised stage effectively detects cloud pixels in the HSI and can be used for cloud
removal. The method is able to identify cyanobacteria and other water pollutants from HSI.
As with any ML method, sufficient training samples are necessary for adequate training of
the machines. The best normalization scheme is found to be maximum scaling, and the
number of PCA bands depends on the spectral bands and characteristics of the HSI. For
the Lake Erie images and Jasper image dataset, the best number of PCA bands is found to
be three. The best ML classifier is found to be the GB classifier for both the Lake Erie and
Jasper HSIs. A lower number of PCA bands implies a lesser running time of the models. In
the AWS cloud server, the models run in about 6 h and 47 min compared to a regular PC
which takes a week for training the models and classification.
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