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Divergence and adaptive evolution of the
gibberellin oxidase genes in plants
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Abstract

Background: The important phytohormone gibberellins (GAs) play key roles in various developmental processes.
GA oxidases (GAoxs) are critical enzymes in GA synthesis pathway, but their classification, evolutionary history and
the forces driving the evolution of plant GAox genes remain poorly understood.

Results: This study provides the first large-scale evolutionary analysis of GAox genes in plants by using an extensive
whole-genome dataset of 41 species, representing green algae, bryophytes, pteridophyte, and seed plants. We defined
eight subfamilies under the GAox family, namely C19-GA2ox, C20-GA2ox, GA20ox,GA3ox, GAox-A, GAox-B, GAox-C and
GAox-D. Of these, subfamilies GAox-A, GAox-B, GAox-C and GAox-D are described for the first time. On the basis of
phylogenetic analyses and characteristic motifs of GAox genes, we demonstrated a rapid expansion and functional
divergence of the GAox genes during the diversification of land plants. We also detected the subfamily-specific motifs
and potential sites of some GAox genes, which might have evolved under positive selection.

Conclusions: GAox genes originated very early—before the divergence of bryophytes and the vascular plants and the
diversification of GAox genes is associated with the functional divergence and could be driven by positive selection.
Our study not only provides information on the classification of GAox genes, but also facilitates the further functional
characterization and analysis of GA oxidases.

Keywords: Characteristic motif, Functional divergence, Gibberellin, Phytohormones, Positive selection, 2-oxoglutarate-
dependent dioxygenase

Background
The gibberellins (GAs), one of important phytohor-
mones, form a large family of diterpene hormones that
are involved in various growth and developmental pro-
cesses in plants [1–6]. Among hundreds of plant GAs,
only a few, such as GA1 and GA4 are bioactive [6]. The
function of bioactive GAs generally depends on their
concentration in a given tissue, and this is mainly
affected by their biosynthesis and/or deactivation [7]. In
Arabidopsis, the synthesis pathway of GAs has been elu-
cidated, and most genes encoding enzymes to catalyze
GA biosynthesis have been identified [7–11]. In the GA
synthesis pathway, three classes of enzyme (i.e., Terpene
synthases (TPSs), P450s and GA oxidases (GAoxs)) are
required for the biosynthesis of bioactive GAs from ger-
anylgeranyl diphosphate (GGDP, a common precursor of
terpenes in plants), and the pathway can be divided into

two main steps: early and late. The early steps are cata-
lyzed by a series of enzymes, i.e., CPS, KS, KO, and KAO,
which are all encoded by single genes. The enzymes cata-
lyzing later steps (i.e., GA2 oxidase, GA20 oxidase, and
GA3 oxidase) are encoded by small gene families, and
these oxidases are all soluble 2-oxoglutarate-dependent
dioxygenases (2OGDs) [7, 10, 12, 13]. In comparison with
the biosynthesis enzymes in the early steps, those in the
later steps are differentially regulated by developmental
and environmental cues, and these enzymes play key roles
in the regulation of bioactive GA levels. For example, the
loss-of-function in GA20 oxidase (GA20ox) and GA3 oxi-
dase (GA3ox) can generate dwarf phenotypes, such as the
well-known Green Revolution sd-1 [10, 14–17]. Interest-
ingly, the function of GA2 oxidase (GA2ox) is to decrease
the levels of active GAs rather than increasing the GA
level as do GA20ox and GA3ox [18]. So far, most studies
have focused on the functions of GA2ox, GA20ox and
GA3ox [10, 12, 18–21]. However, little is known about the
evolutionary history of the GAox genes [13, 22–24].
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GAoxs are ubiquitous in vascular plants, but no GAs
has ever been isolated and chemically identified from
bryophytes [25–28]. Those authors hypothesized that
GAs may have first appeared in ancient pteridophytes
and that the hormonal signaling pathway developed later
during the evolution of land plants. However, several puta-
tive GA biosynthetic genes have been found in the Physco-
mitrella patens genome, suggesting the GAs could appear
in the earlier lineages of land plants [29, 30]. Although the
pathways leading to production of bioactive GAs have
been studied in plants [31–33], the evolutionary history of
the GA synthetic pathway and its catalyzing enzyme
genes, especially of GAox genes remains unclear.
The GAox family has been evolutionarily analyzed, but

only focusing on the GA20ox, GA3ox and GA2ox sub-
families of a few angiosperm species [13, 23, 24]. Han
and Zhu (2011) identified 61 GA oxidase genes from rice
(Oryza sativa), Arabidopsis and soybean (Glycine max),
and performed the phylogenetic analysis of these GAox
genes. They were grouped into four clades (GA20ox,
GA3ox, C19-GA2ox, and C20-GA2ox.), but their rela-
tionship remains unclear, especially of new putative
GA20ox homologs. For example, four new genes were
described under the GA20ox subfamily (i.e., OsGA20ox5,
OsGA20ox6, OsGA20ox7 and OsGA20ox8), but three of
them (OsGA20ox5, OsGA20ox6, and OsGA20ox8) did
not reside within the GA20ox subgroup according to
their phylogenetic tree. Meanwhile, Han and Zhu (2011)
showed that the GA2ox subfamily is not monophyletic
[23], which was supported by Giacomelli and her colle-
gues’ study [24]. In addition, there is controversy over
the relationship between GA20ox, GA3ox, C19-GA2ox
and C20-GA2ox [23, 24]. Giacomelli et al. (2013) found
the sister relationship between C19-GA2ox and GA3ox,
while the close relationship was found between GA3ox
and C20-GA2ox in Han and Zhu’s study. Not only the
relationship between GAox genes but the evolutionary
history and expansion mechanisms of the GAox genes
are also poorly understood.
The GAox family belongs to the 2OGDs superfamily.

The catalytic core of GAoxs has a double-stranded β-helix
(DSBH) fold containing a HX[DE] dyad (where X could
be any amino acid) and a conserved carboxy-terminal
histidine which together chelate a single iron atom.
Specifically, the DSBH region has seven conserved
strands that are common to all these kinds of pro-
teins and is arranged in two sheets in a jelly-roll top-
ology [34]. To date, the function of several GAox
genes has been determined but their gene structure
not studied systematically [10, 20, 35–40]. Of GA oxi-
dases, GA 20ox was first isolated from cotyledons of
immature pumpkin seeds by Lange et al. (1994) [41].
Structurally this gene has characteristic motifs that
are highly conserved in 2OGDs. Later on, other GAox

genes were isolated and characterized in plants, such
as Carrizo citrange [42], poplar [43], Phaseolus cocci-
neus and Arabidopsis [19], rice [38, 44, 45], spinach
[37, 46], watermelon [39], pea [47, 48]. On the char-
acteristic motifs of different GA oxidases, no consensus
has come out. Meanwhile, neither diagnostic sequences
nor gene structures have been established for identifica-
tion of GAox subfamilies. For example, four GAox homo-
logs were found in the Physcomitrella patens genome, but
it is hard to conclude what they are and which gene sub-
family they belong to [30]. Thus, characterizing the motif
specific to every gene subfamily would be of particular
value. In brief, the study of gene structures and conserved
motifs will not only provide an insight into the classifica-
tion of GAox genes, but also their evolutionary history
and functional diversification.
Almost all aspects of the functional divergence of genes

are in some way linked to gene duplications, which occur
ubiquitously [49–54]. What was the evolutionary force
driving the functional divergence of genes or gene fam-
ilies? Generally, gene duplications are thought to be an
important precursor to the functional divergence of genes,
and selection is the main evolutionary force driving gene
function diversification [22, 52, 55–59]. We investigated
whether the functional divergence of GAox genes was
driven by positive selection, in particular for four newly
described ones. We first analyzed the distribution of posi-
tively selected amino acids in the characteristic motifs of
genes. Then, we used the programs FunDi and GroupSim
to validate the hypothesis that the conserved domains
were associated with divergence (change) in function
among GAs, and performed the GroupSim to identify the
specificity determining positions (SDPs) [60–62].
With the availability of more whole genome sequence

data and new genomics tools developed in model plants,
the study of GA biosynthetic pathways, GAox genes and
their evolution is now feasible. To reach the above ob-
jectives, we performed a comprehensive analysis of the
GAox gene homologs in 41 species, using whole genome
sequencing data, covering the main lineages of green
plants from green algae, bryophytes, pteridophytes and
gymnosperms to angiosperms. First, a genome-wide
search was conducted and GAox homologs identified.
Then, we performed phylogenetic analysis to explore the
evolutionary history of GAox genes and established the
diagnostic features of conserved motifs for every GAox
subfamily. Next, the expansion mechanism and evolution-
ary forces associated with the GAox genes were investi-
gated by analyzing the evolutionary history, structure and
functional divergence of these genes. Finally, we compared
the GA biosynthesis pathways in bryophytes, pterido-
phytes and seed plants, to explore the evolution of path-
ways and their relationships with the adaptation of plants
to terrestrial environments.
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Methods
Sequence acquisition and compilation
In order to investigate the evolutionary history of the
GAox family in plants, all possible sequences of GAox
homologs need to be sourced from whole genome se-
quencing data. GAox belongs to the 2OGDs superfamily,
which has a very conserved and characteristic 2OGDs
motif (Pfam id, PF03171) [7, 34, 63]. Functional GAox
genes of Arabidopsis and rice, and four newly found
GAox genes (OsGA20ox5, OsGA20ox6, OsGA20ox7, and
OsGA20ox8; Han and Zhu, 2011) were used as queries to
BLAST against the whole genome sequences of 41 species.
The sequences with the active site core of 2OGD, and the
motifs such as NYYPXCXXP, LPWKET, LSWSEA were
recognized as putative GAox genes. GAox homologs of
each species were downloaded from the following
databases: http://www.phytozome.net; http://congenie.
org; http://www.Arabidopsis.org/; http://rice.plantbi-ology.
msu.edu/; http://www.amborella.org/. Then, an extensive
screening of databases (dbEST, GenBank) was performed
using different BLAST algorithms to obtain all GAox ho-
mologs [64]. Finally, we manually checked all the search
results to reduce hits with partial conserved-domains and
other false positives, using BioEdit (v7.0.5) [65]. Sequences
were accepted from BLAST results as long as they
shared at least 35 % identity, and had an expected
threshold lower than 1e-40 with the conserved domain in
the 2OGDs family. Meanwhile, the gene prediction and
annotation analysis was considered for the GAox homo-
logs acquisition. Then, 854 GAox homologous were ob-
tained from 41 species; these covered all the main lineages
of plants including unicellular green algae, bryophytes,
pteridophytes, gymnosperms and angiosperms. Addition-
ally, two ACOs (1-aminocyclopropane-1-carboxylate) of
rice were included in phylogenetic analyses considering
both ACOs and GA oxidases belong to the 2OGD
superfamily.

Multiple sequence alignment and phylogenetic analysis
A protein multiple sequence alignment (MSA) was
generated using MUSCLE (Multiple Sequence Com-
parison by Log-Expectation) software [66] with the
default settings. Experimentally characterized GAox
genes of Arabidopsis thaliana and Oryza sativa were
used as criteria to detect potential problems such as
frame shift mutations. Protein-coding DNA sequences
(CDS) were aligned based on the protein alignments
in the DAMBE with the default parameters, then con-
verted the CDS alignments into PAML format for
further analyses [67, 68].
RAxML 7.2.6 (Randomized Axelerated Maximum

Likelihood) [69] was used to constructed maximum-
likelihood (ML) phylogenetic trees under the JTT amino
acid substitution model which was derived from

ProtTest 2.4 [70], with an estimated gamma distribution
parameter, and optimized starting with a BIONJ tree.
Statistical support for the nodes on the maximum-
likelihood tree was evaluated by bootstrap analysis with
500 iterations.

Gene structure, motif identification and homology
modeling analysis
To study the evolution of the GAox gene structure, the
DNA sequences corresponding to each predicted gene
and the gene structure of the GAox gene family were all
retrieved from http://www.phytozome.net.
To obtain the characteristic motif of each GAox sub-

family, the following steps were taken: 1) the web-based
multiple expectation maximization for motif elicitation
(MEME) analysis (http://meme-suite.org/, [71]) was
employed with the following parameters: maximum
number of motifs = 15, and optimum motif widths con-
strained to between 6 and 30 residues. 2) The NCBI-CDD
(Conserved Domain Database) (http://www.ncbi.nlm.nih.
gov/Structure/cdd/cdd.shtml) and the SMART (Simple
Modular Architecture Research Tool, http://smart.embl-
heidelberg.de/) databases were used for identification and
function explanation of those putative motifs [72]. 3)
Multiple sequence alignment of the GAox genes was
achieved using MUSCLE software, to find the characteris-
tic motifs of every GAox subfamily. 4) To examine the
relationship between the characteristic motif of every
GAox subfamily and the putative functional region, the
3D structures of eight OsGAox genes, i.e., OsGA2ox7,
OsGA2ox5, OsGA20ox4, OsGA3ox2, OsGA20ox5, OsGA
20ox6, OsGA20ox7 and OsGA20ox8, were predicted fol-
lowing the homology modeling using the Swiss-Model
(http://swissmodel.expasy.org/) with the default param-
eters, and the higher reliability PDBs were selected as
templates according to the global quality estimation
(GMQE) and qualitative model energy analysis (QMEAN)
scores [73–75].
Three-dimensional model images with the characteristic

motifs and the putative positive selection and functional
divergence sites were manipulated and rendered in
PyMOL (http://pymol.sourceforge.net/) [76]. All the se-
quence logos were generated using the online Weblogo
platform (http://weblogo.berkeley.edu/).

Testing positive selection and functional divergence
We used the programs PAML 4.8, FunDi and GroupSim
to detect sites involved in the functional divergence of
GAox sequences and the adaptive evolution of GAox
subfamilies. Sites identified as being functionally diver-
gent or positively selective by all or two of these three
programs were highlighted in the 3D protein structure
of GA oxidases, which could be tested with direct
experimental techniques in the future.
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In order to reduce computation time and the potential
impact of synonymous site saturation due to sequence
divergence [77], the positive selection test was con-
ducted on the site and branch-site models with 46 less
divergent GAox homologs from six grass species of
monocots. Two ACOs of rice were added in phylogen-
etic analysis of GAox genes. We performed our analysis
using alignments inferred by phylogeny-aware multiple
sequence alignment program Probabilistic Alignment
Kit (PRANK) [78, 79], which has been reported to out-
perform other aligners in simulations [80]. In addition,
by GUIDANCE filtering [81], the PRANK alignment has
a higher average GUIDANCE score of 0.70, while the
MAFFT, MUSCLE and CLUSTALW alignments is 0.65,
0.63 and 0.66 respectively, though the GUIDANCE can-
not tell which alignment is better.
Selective pressure was tested based on the phylogeny

of GAox genes by comparing the nonsynonymous/syn-
onymous substitution ratios (ω = dN/dS) with ω = 1, < 1,
and > 1, which indicate neutral evolution, purifying se-
lection, and positive selection, respectively. To test the
functional divergence of different GAox subfamilies, the
codeml program in the PAML 4.8 package was used to
investigate possible selection acting on different gene
subfamilies [82]. We selected F3X4 as codon frequency
model, as it accounts for the most important feature of
the mutation process, the unequal base frequencies, and
the correction for transition/transversion bias is obtained
by ML estimation of the kappa parameter [82–85]. The
equilibrium frequencies of codons and nucleotides among
subfamilies are measured by the DAMBE. Considering the
fact that positive selection often operates episodically on a
few amino acid sites in a small number of lineages of a
phylogenetic tree [86, 87], the modified branch-site model
A was run for each gene in each lineage across the phylo-
genetic tree of the monocots. The LRT (likelihood ratio
test) is a general method for testing assumptions (model
parameters) through comparison of two competing hy-
potheses. We used branch-site model A to construct
branch-site test 2, which is also called the branch-site test
of positive selection. The null and alternative hypotheses
are as follows: Null hypothesis (branch site model A, with
ω2 = 1 fixed): model = 2; NSsites = 2; fix_omega = 1;
omega = 1. Alternative hypothesis (branch site model A,
with ω2 estimated): model = 2; NSsites = 2; fix_omega = 0;
omega = 1.5 (or any value > 1). Because of very high se-
quence divergence, and the likelihood of saturation of syn-
onymous changes, we treated the branch-site test as an
exploratory analysis. Additional analyses at the codon level
(sites models) and amino acid level (described below) were
employed to more formally assess the hypothesis that
GAoxs have been subject to functional divergence follow-
ing the major gene duplication events. Therefore, we ana-
lyzed separately each of eight subfamilies (less divergent)

under the sites models, only with GAox homologs of an-
giosperms. Unlike branch-site model, site-specific models
allowing ω to vary among sites [55, 88, 89] were used to
determine whether particular amino-acid residues within
GAox families have been subject to positive selection. We
use an LRT comparing M0 (one-ratio) with M3 (discrete)
(κ = 3) to test for variable selective pressure among sites,
and two LRTs to test for sites evolving by positive selection,
comparing: M1a (Nearly Neutral) against M2a (Positive
Selection), and M7 (beta) (κ = 10) against M8 (beta & ω)
(κ = 10). The PP (posterior probability) for the sites under
positive selection was calculated by the Bayes empirical
Bayes (BEB) method [90].
Default options were used in the GroupSim and FunDi

using QmmRAxML [91]. In order to evaluate the predic-
tions made by FunDi, we analyzed all the comparisons
of eight GAox subfamilies, except for the C19-GAox/
C20-GA2ox and C20-GA2ox/GAox-C, due to their large
datasets (gene homologs and the alignments) and com-
putation cost (Additional file 1: Table S3). The sites of
each subfamily motif were highlighted with red if they
occurred in more than five comparisons (Fig. 1). Gener-
ally, sites with a functional divergence score above 0.5
were considered to be functionally divergent in order to
identify the maximum number of possible candidate
sites for consideration [60, 62]. In addition, we analyzed
the subfamily characteristic motifs, and mapped those
sites detected by two or three programs (PAML 4.8,
FunDi and GroupSim) on the 3D protein structures
(Figs. 1 and 2). We found that these sites are those posi-
tively selected sites detected by the branch-site model of
PAML 4.8 with PP ≥ 95 % and those under functional diver-
gence predicted by FunDi and GroupSim with PP ≥ 99 %.

Results
Identification and distribution of GAox genes in plants
Our BLAST search results revealed 854 sequences of
GAox homologs from the 41 species with whole genome
sequencing data; these represent the main lineages of
green plants (Additional file 2: Table S2). In algae, 6 pu-
tative GAox homologs were found based on the catalytic
core amino acid sequences of 2OGDs in the carboxyl
terminus (Fig. 3). As shown in Additional file 2: Table S2,
the GAox genes varied across the different species and
plant taxonomic groups, and there exist different distribu-
tion patterns for GAox subfamilies, especially for GAox-
A, GAox-B, GAox-C and GAox-D. For instance, all 37
land plants have GAox gene homologs from the subfam-
ilies C19-GA2ox, C20-GA2ox, GA20ox and GA3ox, while
other subfamily genes are not present in one or more taxa,
especially in some basal lineages of the land plants. In
Physcomitrella patens genome, putative GAox homologs
were only found in C19-GA2ox, GA3ox and GAox-C.
There were no homologs of C20-GA2ox and GAox-B in a
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Fig. 1 (See legend on next page.)
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pteridophytes Selaginella moellendorffii. Homologs of
C20-GA2ox and GA20ox were not found in a gymno-
sperm Picea abies. Of angiosperms, monocotyledons
have all eight GAox subfamily homologs, while basal
angiosperm Amborella trichopoda and some eudicoty-
ledons have no GAox-D homologs in their genome.
In addition, not only the distribution pattern but the
gene sequence and structure were also varied between
GAox genes of algae and land plants (Additional file 3:
Data S1 and Additional file 4: Figure S1).

Phylogenetic analysis of plant GAox genes
According to the phylogenetic analysis of 854 GAox ho-
mologs, the maximum-likelihood (ML) tree showed that
all GAox homologs from green algae were clustered into
a single clade (Alga clade), while those from land plants
formed another main clade (Embryophyta clade), which
was further divided into eight subclades with high statis-
tical support, corresponding to the subfamilies C19-
GA2ox, C20-GA2ox, GA20ox, GA3ox, GAox-A, GAox-
B, GAox-C and GAox-D, respectively (Fig. 4a). Out of
those, the latter four subfamilies corresponding to
OsGA20ox5, OsGA20ox6, OsGA20ox7 and OsGA20ox8
reported in Han and Zhu’s study (2011) were character-
ized for the first time. Each of these new subfamilies

(i.e., GAox-A, GAox-B, GAox-C and GAox-D) formed a
monophyletic group, respectively (Fig. 4a), and they are
phylogenetically distant from the GA20ox subfamily.
GAox homologs from Physcomitrella patens, Selaginella
moellendorffii, Picea abies and Amborella trichopoda re-
sided in the basal lineages of the tree, which is consistent
with previous studies on the phylogenetic position of
these species. In addition, for angiosperm species, sub-
families C19-GA2ox, C20-GA2ox, and GA20ox exhibited
a distinct binary branching pattern in the phylogenetic
tree, which suggests that large scale genome duplications
may have played a critical role in the evolution of these
gene subfamilies.

Characteristic motifs of GAox subfamilies
When we used MEME to identify and examine the con-
served motifs of GAoxs, we found a total of 15 con-
served motifs (Table 1). Among these 15 motifs, 13 were
shared by most GAoxs, and motifs 1 and 2 represent the
catalytic core of 2OGDs. Motifs 7, 9, 11 and 12, were
found in different GAoxs. For example, motif 7 was ab-
sent from all the GA20ox and GA3ox genes, whereas
motifs 9 and 11 were not observed in any of the GA2ox
genes. Interestingly, motifs 7, 9 and 12 were all localized
in N-terminals of the amino acid sequences. The

(See figure on previous page.)
Fig. 1 Specific conserved domains of the eight GA oxidase subfamilies and sites predicted to be functionally divergent by at least two of the three
programs (PAML 4.8, FunDi, and GroupSim). The overall height of each stack indicates the sequence conservation at that position, whereas the height of
symbols within each stack reflects the relative frequency of the corresponding amino acid. Green arrows mean that the sites in these columns
are under functional divergence detected by GroupSim with PP ≥ 99 %; the sites highlighted in red are under functional divergence detected
by FunDi with PP ≥ 99 %; the sites highlighted with blue star are positive selected sites detected by PAML 4.8 with PP ≥ 95 %

Fig. 2 The structure of the eight OsaGAoxs. The characteristic conserved domain of each gene is highlighted in purple, amino acid residues that
in the characteristic conserved domains identified by two and three programs are highlighted in blue and red, respectively. Residues in that bind
the active-site Fe (yellow ball) and those that interact with the 5-carboxylate of 2-oxoglutarate are highlighted in yellow
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alignment of N-terminal amino acid sequences of all
GAox gene homologs revealed eight types of gene se-
quence (Fig. 1 and Additional file 3: Data S1), which cor-
respond to the C19-GA2ox, C20-GA2ox, GA20ox,
GA3ox, GAox-A, GAox-B, GAox-C and GAox-D

subfamilies, respectively. Figure 1 shows that there are
16 to 21 amino acids in the characteristic motifs specific
to the eight subfamilies of the GAox family, and the mo-
tifs of subfamilies GAox-A, GAox-B, GAox-C and
GAox-D have more variable amino acid sites compared

Fig. 3 Active site core of 2-oxoglutarate-dependent dioxygenases. Amino acid residues that bind the active-site Fe and those that interact with
the 5-carboxylate of 2-oxoglutarate are highlighted in green and red, respectively. Six GAox homologs from algae are highlighted in blue

A B

Fig. 4 Phylogenetic tree and gene structure of the GA oxidase in plants. a The maximum likelihood tree of 41 species’ GA oxidase genes
constructed on 854 deduced full-length peptide amino acid sequences and rooted with homologous sequences of algae. b The sketch map of
GA oxidases structure: Exons and introns are indicated by blue boxes and yellow lines, respectively. For more details of the GA oxidase structures,
see Additional file 4
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with the others. The subfamilies C19-GA2ox, C20-
GA2ox, GA20ox and GA3ox have been studied previ-
ously, while GAox-A, GAox-B, GAox-C and GAox-D
are proposed for the first time in this study; they include
the newly named genes OsGA2ox5, OsGA20ox5,
OsGA20ox6, OsGA20ox7 and OsGA20ox8 in rice, re-
spectively [23].
Comparative gene structure analysis of 854 GAox gene

sequences revealed that gene homologs of every GAox
subfamily often have similar exon-intron structures, but
the gene structure is more variable in subfamilies C19-
GA2ox and C20-GA2ox, which had two kinds of these
structures (Fig. 4b and Additional file 4: Figure S1). Most
GAox gene subfamilies have three exons, but this is not
the case in subfamilies GAox-C and GA3ox. The GA3ox
genes have two exons, and the GAox-C genes generally
have four exons. However, in monocots of subfamily
GAox-C, three exons were also found in some GAox
homologs.

Positive selection and functional divergence among GAox
subfamilies
The phylogenetic trees were constructed based on the
sequences of 46 monocots and two ACOs in order to in-
vestigate selection pressure among eight GAox subfam-
ilies and selected amino acid sites in characteristic
motifs. The LRTs for M2 vs. M1 (2ΔL = 0, p > 0.05) sug-
gested that the positive selection model (M2) was not
significantly better than the nearly neutral model (M1).
But models M3 and M8 fit the data significantly better
than the null models M0 and M7 (for M3 vs. M0,
2ΔL = 1946.50, p < 0.001; for M8 vs. M7, 2ΔL = 244.99,
p < 0.001), they identify several sites with an ω value

significantly greater than 1. At the PP >95 % level, 13 amino
acid sites were identified under positive selection by M8
(Table 2). As an exploratory analysis, the branch-site test
suggested that all eight GAox subfamilies were under posi-
tive selection (p < 0.05) (Fig. 5). Bayes Empirical Bayes
(BEB) analysis showed that at the PP > 95 %, branch-
site model A identified 2/13/29/8/1/12/2/29 sites as being
potentially subjected to positive selection on the C19-
GA2ox/C20-GA2ox/GA20ox/GA3ox/GAox-A/GAox-B/
GAox-C/GAox-D branches, respecitvely.
The separate analyses of the eight subfamilies under

the site models showed that the selective pressure could
vary among amino acid sites in eight subfamilies by
comparison of the M0 and M3 for all GAox subfamilies.
The M3 detected no sites under positive selection in
most of subfamilies, but both M1a against M2a, and M7
against M8 suggested the presence of sites under posi-
tive selection in each subfamily, except for the GAox-D.
No sites were found in the GAox-D, possibly due to its
small sample size (Additional file 1: Table S3).
The programs FunDi and GroupSim identified a num-

ber of sites with significant functional divergence scores
for all subfamilies [60–62]. FunDi method predicted a
wider range of site divergences, and the fractions of sites
with posterior probability of functional divergence above
0.5 ranges from 0.798 to 0.987 across GAox subfamilies
(Table 3). The GroupSim method detected 159 sites in
all GA oxidases (Table 4).
In order to analyze the characteristics and functional di-

vergence sites of each subfamily motif, we modeled the 3D
structures of eight GA oxidases of Oryza sativa based on
the higher reliability templates (Additional file 5: Table S1).
According to the 3D protein structures, we found: 1) all the
characteristic motifs locate in the crevice of GA oxidases;
2) each of the characteristic motifs consists of a loop and β
sheet; 3) all the motifs detected have several positively se-
lected or functional divergence sites by all or two programs
(PAML 4.8, FunDi and GroupSim), and most of these sites
are polar amino acids (Fig. 2). Those features suggested that
the characteristic motif is an important component of GA
oxidases and plays a significant role in the GA biosynthesis.

Discussion
Origin and evolution of GAox family
The present study showed that GAox genes, critical
genes in regulating GA biosynthesis especially for the
later steps of GA biosynthetic pathways, were ubiquitous
in plants. Unlike the four previously well-studied sub-
families (i.e., C19-GA2ox, C20-GA2ox, GA20ox and
GA3ox), there were fewer homologs in the subfamilies
GAox-A, GAox-B, GAox-C and GAox-D ranging from
30 to 63 (Additional file 2: Table S2). Homologs of sub-
families GAox-B and GAox-D genes were not found in
the basal angiosperm Amborella trichopoda, but were

Table 1 Motif distribution in GA oxidases

Motif number Length (aa) Conserved sequence

motif1 30 PGAFVVNVGDTLQALSNGRFKSVLHRVVVN

motif2 18 HTDPTILTILHQDQVGGL

motif3 30 ARLVVKACEEWGFFQVVNHGVPAELISRAE

motif4 19 FEESDSILRLNHYPPCPEP

motif5 19 RLYRDFTWSEYLEFTQKHY

motif6 19 RLSMAYFLGPPLDKVISPL

motif7 30 GPPDPFGYGSKRIGPNGDVGWLEYLLLNTN

motif8 19 VVEEYCEAMKKLALKLLEL

motif9 14 RFSSKLPWKETLSF

motif10 30 DRFFALPLSQKQKAQRSPGEVCGYASAFIG

motif11 14 RADMNTLDAFSNWL

motif12 30 LSNGSYRWGTPTATSLRQLSWSEAFHIPLT

motif13 19 SVKDYFRKTWGNDFEQFGK

motif14 19 SEAYREHPLHLKHIIPLDF

motif15 10 LGDNRLGPFE
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present in the gymnosperm Picea abies. Our phylogen-
etic analysis of the GAox genes showed that all six GAox
homologs identified from green algae fell into a single
clade, while those from land plants were clustered to-
gether and then divided into eight subclades (Fig. 4a).
Previous studies found no bioactive GAs have been de-
tected and chemically identified in mosses, nor could ex-
ternal GAs induce GA-specific developmental processes
in these plants [27, 92, 93]. However, Anterola and
Shanle (2008) found 15 putative GA oxidase homologs
in Physcomitrella patens. This means that there are GA
oxidases, but no bioactive GAs in moss species, which
could be due to incompletion of GA synthetic pathway.
In this study, we found 18 putative GAox genes in Phys-
comitrella patens, belonging to three different subfam-
ilies. These results indicate that diversification of GAox
genes occurred before the divergence of land plants,
then diversified and expanded further in the course of
land plant evolution. Considering GAox genes in the
main plant lineages, it is reasonable to believe that a
rapid gene expansion occurred in the GAox family after
the divergence of land plants from the common ancestor

of green plants; this may have been related to specialized
metabolisms and adaptations to terrestrial environments.
According to our phylogenetic analysis, gene structure

and the characteristic motifs of GAox genes, eight sub-
families were well defined under the GAox family of
land plants, namely C19-GA2ox, C20-GA2ox, GA20ox,
GA3ox, GAox-A, GAox-B, GAox-C and GAox-D. Of
these subfamilies, C19-GA2ox, C20-GA2ox, GA20ox and
GA3ox have been thoroughly studied previously, while
new subfamilies GAox-A, GAox-B, GAox-C and GAox-
D have not. According to our phylogenetic analysis,
these four subfamilies resided in basal clades in the tree.
All this information suggests that these subfamilies of
genes were present in the common ancestral species of
extant land plants, and these genes may have some un-
known functions in land plants. Thus, the catalytic activ-
ity and biological function of these genes needs to be
elucidated.
Although the structures and functional sites were pre-

dicted in our study, the function of GAox-A/B/C/D
genes has not been examined yet. Therefore, it is un-
known the location of these genes in GA biosynthesis

Table 2 Summary statistics for detecting selection using branch-site and site models of PAML4.8

Model p L Estimate of parameters df 2ΔL Positively Selected Sitesa

Site-specific models

M0: one-ratio 1 −33,700 ω: 0.160 None

M1a: nearly neutral 2 −33,148 p0 = 0.727, p1 = 0.273 ω0 = 0.125, ω1 = 1.00 Not allowed

M2a: positive selection 4 −33,148 p0 = 0.727, p1 = 0.182, p2 = 0.090; ω0 = 0.125,
ω1 = 1.000, ω2 = 1.000

2 0

M3: discrete 5 −32,727 p0 = 0.212, p1 = 0.594, p2 = 0.194; ω0 = 0.038,
ω1 = 0.180, ω2 = 1.934

4 1946.50*** 21,24,25,27,28 ~ 43,44,45,46,47,48,49,51 ~ 57,
60,103,105,106,134,136,137,138,243,279,325,
361,362,373,492,493,494,548,549,550 ~ 554,
556,557,558,560,561,562,563,566,567

M7: β 2 −32,705 p = 0.642, q = 1.628 Not allowed

M8: β & ω 4 −32,583 p0 = 0.858, p = 0.971, q = 4.418, p1 = 0.142,
ω = 4.858

2 244.99*** 21,24,25,29,32,35,37,39,40,42,46,49,53,54,
56,57,103,134,362,493,550,551,563.

Branch-site model

model A (C19-GA2ox) 4 −33,132 p0 = 0.509, p1 = 0.189, p2 = 0.302, ω2 = 8.762 1 6.26* 393,520

model A (C20-GA2ox) 4 −33,129 p0 = 0.446, p1 = 0.167, p2 = 0.386, ω2 = 47.691 1 15.83*** 150,184,217,232,239,287,289,294,299,
383,519,531,535

model A (GA20ox) 4 −33,110 p0 = 0.442, p1 = 0.163, p2 = 0.395, ω2 = 999.000 1 39.77*** 65,71,81,114,148,149,159,161,172,190,
214,264,291,304,330,348,377,381,384,
385,417,437,447,471,477,507,515,519,524

model A (GA3ox) 4 −33,132 p0 = 0.466, p1 = 0.175, p2 = 0.358, ω2 = 7.881 1 9.51** 156,158,163,232,288,339,505,525

model A (GAox-A) 4 −33,135 p0 = 0.556, p1 = 0.205, p2 = 0.238, ω2 = 13.489 1 10.41** 340

model A (GAox-B) 4 −33,133 p0 = 0.464, p1 = 0.174, p2 = 0.363, ω2 = 39.904 1 14.41*** 197,231,343,352,353,354,416,444,469,471,
525,530

model A (GAox-C) 4 −33,136 p0 = 0.465, p1 = 0.174, p2 = 0.362, ω2 = 5.019 1 3.97* 342,439

model A (GAox-D) 4 −33,124 p0 = 0.424, p1 = 0.160, p2 = 0.417, ω2 = 21.542 1 17.55*** 84,160,161,213,231,233,259,263,299,304,
310,335,339,341,347,352,364,366,423,427,
453,457,470,475,485,511,517,525,545

p is the number of free parameters in the ω distribution
*significant at p value < 0.05 level, **significant at p value < 0.01 level, ***significant at p value < 0.001 level
apositively selected sites identified under site and branch-site tests with PP ≥ 95 %
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pathway. Combined with the findings of previous studies
[11, 40, 92, 94], a proposed model of GAs biosynthesis
pathway is presented in Fig. 6. Obviously, only very early
steps of this pathway were present in Physcomitrella patens.
Biochemically, P450s (cytochrome P450 monooxygenases)
provide direct substrates or precursors of substrates for
C20-GA2ox, so the presence of C20-GA2ox may be a pre-
requisite for the presence of the GAox family. As the
GAox-A/B/C/D are basal clades of phylogenetic tree (Fig. 4),
they may appear subsequently during the evolution of land
plants. However, it is currently difficult to give a clear

explanation for the evolutionary history of GAox genes due
to lack of information of causal relationship between active
GAs and GAox-A/B/C/D.
Despite having similar catalytic cores of 2OGDs

(Fig. 3), the GAox homologs of green algae exhibited
some differences to those of the nonvascular plant
Physcomitrella patens and vascular plants. They were
grouped into one clade in the phylogenetic tree, and
not classified into any of GAox subfamilies. In addition,
there are no characteristic motifs of eight GAox subfam-
ilies. These findings suggest that putative algal GAox genes
have little diversification of sequences and functions.

Fig. 5 ML tree of the GA oxidases used to test positive selection.
Numbers on the tree represent bootstrap values

Table 3 Fraction of sites predicted to be functionally divergent
by FunDi program

Data sets FunDi (PP ≥ 95 %)

3ox Vs 20ox7 0.895522388

20ox5 Vs 20ox6 0.987641607

20ox Vs 20ox6 0.96789424

3ox Vs 20ox6 0.970978441

C19 Vs 20ox6 0.962149886

20ox6 Vs 20ox7 0.954333644

C20 Vs 20ox6 0.980555556

C19 Vs 3ox 0.941255908

C19 Vs 20ox7 0.914821124

C19 Vs 20ox 0.928341385

C19 Vs 20ox8 0.960144928

3ox Vs 20ox8 0.926456543

20ox8 Vs 20ox7 0.876175549

20ox Vs 20ox8 0.899563319

20ox8 Vs 20ox6 0.981299213

20ox5 Vs 20ox8 0.798290598

C20 Vs 20ox8 0.960727969

C20 Vs 3ox 0.94165536

C20 Vs 20ox 0.931743421

20ox Vs 20ox7 0.864295125

3ox Vs 20ox 0.897810219

C20 Vs 20ox5 0.952252252

C19 Vs 20ox5 0.930674264

3ox Vs 20ox5 0.926660915

20ox5 Vs 20ox7 0.808544304

20ox Vs 20ox5 0.879332478

Table 4 Number of sites predicted to be functionally divergent
by GroupSim program

Posterior probability In characteristic motifs In GAox family

0.99≤ PP 13 127

0.5≤ PP < 0.99 1 32
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Diversification of gene structure
Previous studies have shown that gene structural diversity
is a possible mechanism for the evolution of multigene
families [95–97]. The GAox family provides an ex-
ample of exon-intron diversity in the evolution of
gene family, although the protein sequences of its
catalytic domain are well conserved. Comparing the
phylogenetic tree with the exon-intron structure (Fig. 4
and Additional file 4: Figure S1), it is apparent that
the most closely related members within subfamilies
shared similar gene structure in terms of intron num-
ber and exon length, suggesting that the diversifica-
tion of subfamilies could be under a strong selection
and indicative of their functional conservativeness.
Most of the GAox subfamilies have three exons, also
suggesting that the diversification of the GAox family
is under a strong selection. However, two recent diverged
GAox subfamilies, GA3ox and GAox-C possess two and
four exons, respectively; this supports the hypothesis that
duplications of ancestral mosaic genes have been followed
by more recent gains and losses of introns [98]. In view of
the numbers and locations of introns, GAox genes may
have experienced different evolutionary histories since the
monocot-dicot split. Unlike the gene structure of dicots,
that of monocots is usually simple, without or with one/
two shorter introns, suggestive of the fact that these genes

probably arose from retrotransposon-based random inser-
tions. This might indicate different evolutionary patterns
for these two kinds of plants. Most homologs in the three
GAox subfamilies (i.e. C19-GA2ox, C20-GA2ox and
GAox-C subfamily) with relatively longer introns may
have arisen from unequal crossing-over [23].
To elucidate the motif diversification of GAox subfam-

ilies, putative motifs were predicted using MEME and
alignments (Table 1). As expected, most of the closely re-
lated members had common motif compositions, and the
length and location of GAox gene domains were highly
conserved, suggesting similar functions among members
of the same GAox subfamily and the same selection acting
on them. All proteins of the eight subfamilies have very
similar C-terminal structures of their catalytic domains
(Fig. 3 and Additional file 3: Data S1), the function of most
putative motifs remains unknown as they do not have ho-
mologs in the Pfam and SMART databases. Most of the
motifs were shared by the majority of GAoxs, but the
short amino acid stretches in the N-terminal may
characterize each subfamily. Combined with the previous
studies of GAox [35–39, 45, 46], we conclude that the
alignment of amino acid sequence from 691 to 757 sites
can be used to identify a putative protein of the GAox
family (Fig. 1 and Additional file 3: Data S1). In addition,
these motifs can be used to distinguish subfamily C20-
GA2ox from C19-GA2ox [20]. According to the results of
3D modeling analysis, all characteristic motifs were
located in the crevice of the protein surface (Fig. 2). In
addition, the positive selection tests suggest that most of
these motifs contain several sights that could have evolved
in response to positive selection pressure. To date, no
functional examination has been conducted on these con-
served motifs, so our results provide evidence that these
specific motifs may have some active sites and play critical
roles in GA biosynthesis and catabolism.
Based on our findings, the similar gene structures and

conserved motifs in each GAox subfamily provide an
insight into the evolutionary history of the GAox family
and its classification. In addition, the variation in gene
structure and the difference in motif compositions among
different subfamilies indicate that GAox subfamilies are
functionally diversified. Furthermore, the eight conserved
motifs are the diagnostic characters for the identification of
GAox subfamilies, and they must be important for catalytic
functions in the GA biosynthetic pathway.

Function divergence and adaptation of the GAox family
Gene duplication is considered to be a major mechan-
ism for the generation of evolutionary novelty and adap-
tation [50, 51]. In plants, gene duplication followed by
functional divergence is particularly important for the
diversification of biochemical metabolites [99–102].
Substitutions can change the function of duplicated genes,

Fig. 6 Comparison of the major gibberellin (GA) biosynthesis
pathways in Physcomitrella patens (bryophyte), Selaginella moellendorffii
(pteridophyte) and seed plants. The biosynthesis pathways of
bryophyte, pteridophyte and seed plants are highlighted in blue,
orange and black arrows, respectively. Abbreviations: CPS, ent-copalyl
diphosphate synthase; GGDP, geranylgeranyl diphosphate; KS, ent-
kaurene synthase; KO, ent-kaurene oxidase; KAO, entkaurenoic; P450s,
cytochrome P450 monooxygenases; TPSs, terpene synthases
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and may be due to either a relaxation of purifying selection
or the action of positive selection [56, 58, 59, 103]. To in-
vestigate evidence for positive selection in the GAox
subfamilies, we analyzed the eight branches by site
models and branch-site models (Fig. 5 and Additional
file 1: Table S3). Further analyses on each of the sub-
families under the site models (M0 vs M3; M1a vs
M2a; M7 vs M8) detected several positively selected
sites for all the subfamilies except for the GAox-D,
suggesting that the selective pressure varies among
lineages and amino acid sites in GA oxidases. The
biochemical context of substitutions that was under posi-
tive selection is consistent with a scenario involving the
adaptive evolution of GAox genes. Under branch-site
models, some selected sites (PP > 95 %) were found to be
scattered throughout the primary sequences (data not
shown), and they were folded in the large cavity of
three-dimensional structures of the analyzed protein.
Among these sites, one to eight positively selected sites
(PP > 95 %) were located in or near the characteristic mo-
tifs, in all branches except C19-GA2ox and GAox-A.
The mutations at these sites among the different
subfamilies suggested their importance for the enzym-
atic activity in GA biosynthesis and catabolism.
Further studies using site-directed mutagenesis are
needed to determine whether these selected sites
confer an ability on GAox genes to discriminate
between different substrate types.
It should be noted that our branch-site model

analyses might suffer from uncertainty because of
limitations of the codon models, such as changes in
equilibrium nucleotide and codon frequencies among
clades with deep divergence (Additional file 6: Table
S5) [85, 104, 105]. Therefore, we further performed
FunDi and GroupSim to investigate the divergence of
the distribution of site-rates. Because these methods
are more appropriate for the high sequence diver-
gences, they could provide an important cross-check
of the codon-based results and confirmed that the GA
oxidases underwent functional divergence. Despite this,
the signal for positive selection contributing to the
divergence of GA oxidases should be taken with caution
considering that the codon and amino acid models can
sometimes be negatively affected by model misspecifica-
tion and alignments quality [83, 86, 106–110]. Taken
together, our study provides new insights into the
functional divergence of the GAox family and implicates
the potential roles of positive selection in the evolution of
GAox genes, which deserves further investigations.

Conclusions
This study provides the first large-scale evolutionary
analysis of GAox genes in plants, using an extensive
whole-genome dataset of 41 species representing green

algae, bryophytes, pteridophytes and seed plants. Our
study not only provides information about the classifica-
tion of GAox genes, but also facilitates the further func-
tional characterization and analysis of GA oxidases. Our
results indicate: 1) Gibberellin oxidase (GAox) originated
very early—before the divergence of bryophytes and the
vascular plants, and diversified into eight subfamilies in
the course of land plant evolution. Of these subfamilies,
GAox-A, GAox-B, GAox-C and GAox-D are proposed
for the first time; 2) the diversification of GAox genes
could be attributed to functional divergence and such di-
vergence is most likely to facilitate the completion of the
GA synthesis pathway for plants to adapt to terrestrial
environments; 3) each subfamily of GAox genes has its
characteristic motif and a signature of positive selection
have been detected in most subfamilies.
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