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Since the outbreak of the new coronavirus disease (COVID-19), a large num-
ber of scientific studies and data analysis reports have been published in the
International Journal of Medicine and Statistics. Taking the estimation of the
incubation period as an example, we propose a low-cost method to integrate
external research results and available internal data together. By using empiri-
cal likelihood method, we can effectively incorporate summarized information
even if it may be derived from a misspecified model. Taking the possible uncer-
tainty in summarized information into account, we augment a logarithm of the
normal density in the log empirical likelihood. We show that the augmented
log-empirical likelihood can produce enhanced estimates for the underlying
parameters compared with the method without utilizing auxiliary information.
Moreover, the Wilks’ theorem is proved to be true. We illustrate our methodol-
ogy by analyzing a COVID-19 incubation period data set retrieved from Zhejiang
Province and summarized information from a similar study in Shenzhen, China.
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1 INTRODUCTION

Since the outbreak of coronavirus disease 2019 (COVID-19), it has been spreading rapidly around the world and becoming
a global pandemic. We are facing an unprecedented challenge to contain this disease eruption. Coronavirus treatment
and vaccine research are moving at a record speed. At the same time, a large number of scientific research and data
analysis reports about COVID-19 have been published in major international medical and statistical journals. Pooling the
existing COVID-19 research results together for protection against this disease has become an indispensable task for global
scientists. In epidemiology, the distribution of the incubation period has important clinical significance, such as tracking
the source of infection and the path of transmission and determining the period of medical observation or isolation.
Unfortunately, due to lack of knowledge or judgment on exposure time, the incubation period is almost unobservable
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or even observable but with interval censoring and selection bias. The symptomatic onset times for those confirmed
individuals, however, can be easily ascertained. Based on the COVID-19 daily updates from provincial and municipal
health commissions in China, Qin et al1 have noticed that there is an abundance of cases who asymptomatically left
Wuhan, the epicenter of COVID-19 in China, and developed symptoms outside Wuhan. They have defined a forward time
as the elapse between departure from Wuhan and symptom onset time in somewhere else. They estimate the incubation
period distribution indirectly by using the connection between forward time density and incubation period density (see
(1) in Section 2). The forward time can also be treated as a truncated version of incubation period when the truncation
variable has a uniform distribution, see, for example, Linton et al.2

In this article, the individual-level data are collected from municipal health committees in Zhejiang Province of China.
Out of 1123 confirmed cases, there are 147 confirmed individuals who left Wuhan asymptomatically from 19 January 2020
to 23 January 2020 and later developed symptoms in Zhejiang Province. Forward times for those 147 confirmed cases are
defined as the times between departure from Wuhan and symptom onset. The underlying parameters of forward time or
incubation period of COVID-19 can be estimated straightforwardly following Qin et al.1 However, there are many other
available results about forward time or incubation period in medical and statistical literature. For example, MedRxiv is a
public online site to post pre-published medical manuscripts. Bi et al3 have published a timely paper to analyze confirmed
cases identified between 14 January 2020 and 12 February 2020 in Shenzhen, China. They have used a Log-normal distri-
bution to fit the observed forward times (the time from arrival to symptom onset) for 191 travelers developed symptoms
after arriving in Shenzhen.

A natural question is how to incorporate summarized information with individual level data collected in Zhejiang
province to get more efficient estimates for the distribution of forward time or incubation period. Meta-analysis4-6

is a systematic way to utilize the summarized information from several relevant studies. In practice, comprehen-
sive individual-level data may not be publicly available due to privacy concerns or other issues. Frequently, only
limited individual-level data and summarized statistics are available. In this situation, a hybrid approach by combin-
ing meta-analysis results and individual-level data has been shown to produce more precise estimates of underlying
parameters.7

Inspired by the idea of meta-analysis, we develop a low-cost method to integrate multiple external auxiliary summa-
rized results and available individual level data by using Owen’s empirical likelihood method.8 When the external data
sample size m is much larger than the internal data sample size n, the uncertainty of the auxiliary summarized infor-
mation derived from the external study is negligible.7 However, in our real data example, the magnitudes m and n are
comparable, so the uncertainty of summarized information cannot be ignorable. To take the possible variability of sum-
marized information into consideration, we treat it as an observation of a normal random variable. Furthermore, we
augment the log-empirical likelihood by a logarithm of normal density derived from the auxiliary information. The aug-
mented log-likelihood can produce enhanced estimates of the underlying parameters. We show that the Wilks’ theorem
also holds to be true.

This article is organized as follows. In Section 2, we present our methodology and large sample results. Simulation
results are given in Section 3. In Section 4, we apply our proposed method to estimate the incubation period distribution of
COVID-19 by integrating the Zhejiang Province individual forward time data and the external summarized information
from Bi et al.3 We conclude this article with some remarks in Section 5.

2 METHODOLOGY

Let V be the duration from departure of Wuhan to the onset of symptoms. Denote A as the time elapse from disease
onset to the departure of Wuhan. The incubation period is T =A+V . Due to uncertainty on the time of contracting the
COVID-19, each patient’s A is not available. Moreover, patients who had symptoms before their departure of Wuhan
were not included in our data set. This is a truncation problem, see, for example, Qin et al.7 If we assume A follows a
uniform distribution, then the truncated version of A and V can be treated as backward time and forward time in the
renewal process theory, respectively, see for example Cox.9 Let f (t, 𝜼) be the density of unobservable incubation period T,
where the form of f (⋅) is known but 𝜼 is an unknown vector parameter. By the renewal theory,9 the forward time V has
density

g(v) = F(v)
𝜇

, v ≥ 0, (1)
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where F(x) = Pr(T ≥ x) = ∫ ∞
x f (t, 𝜼)dt, and 𝜇 = ∫ ∞

0 t f (t, 𝜼)dt is the mean of T. Denote by G(v) the corresponding
cumulative distribution of g(v, 𝜼) and

a1(v, 𝜼) =
𝜕 log g(v, 𝜼)

𝜕𝜼
. (2)

Obviously, the score function in (2) satisfies

𝝍1 = E(a1(v, 𝜼)) = ∫ a1(v, 𝜼) dG(v) = 0.

In the presence of external studies, suppose summarized information from a similar study is available. It is derived from a
density h(v,𝜽), which may or may not be the same as g(v, 𝜼). Due to various reasons, the raw data from the external study
are not available. The question is how to combine the existing data with the summarized information together for an
enhanced inference on the underlying parameter 𝜼. For example, Bi et al3 have obtained summarized information under
the assumption that the forward time follows a Log-normal distribution. Note that the Log-normal assumption may be
misspecified since the forward time should have a monotone decreasing density.7 Denote

a2(v,𝜽) =
𝜕 log h(v,𝜽)

𝜕𝜽
.

Following White,10 under some regular conditions, no matter the density function h(v,𝜽) is correctly specified or not, we
can conclude that there exists a 𝜽∗ such that

∫ a2(v,𝜽∗) dG(v) = 0

and the MLE �̂�
P
→ 𝜽∗, where 𝜽∗ is the unique minimum of Kullback-Leibler divergence

I(g, h,𝜽) = ∫ log g(v)dG (v) − ∫ log h(v,𝜽)dG (v).

Motivated by this fact, we can construct an extra unbiased estimation equation

𝝍2 = ∫ a2(v,𝜽∗) dG (v) = E(a2(v,𝜽∗)) = 0.

To combine above auxiliary information, we employ Owen’s empirical likelihood method.8 Denote the observed forward
times as {v1, … , vn}. If 𝜽∗ is known, then the log empirical likelihood is

n∑
i=1

log wi

subject to the constraints
n∑

n=1
wi = 1, wi ≥ 0,

n∑
i=1

wia1 (vi, 𝜼) = 0,
n∑

i=1
wia2 (vi,𝜽∗) = 0.

The corresponding profile empirical likelihood is 𝓁 (𝜼,𝜽∗,𝝀) = −
∑n

i=1 log
{

1 + 𝝀Ta (vi, 𝜼,𝜽∗)
}
, where a (v, 𝜼,𝜽∗) =(

aT
1 (v, 𝜼),aT

2 (v,𝜽∗)
)T
, and the Lagrange multiplier 𝝀 is determined by

n∑
i=1

a (vi, 𝜼,𝜽∗)
n
(
1 + 𝝀Ta (vi, 𝜼,𝜽∗)

) = 0.
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However, 𝜽∗ is unknown in general and has to be replaced by its estimator. If the external sample size m is comparable
with the internal sample size n, then the uncertainty of �̂� cannot be ignored.7 The summarized information is usually
reported as �̂� with estimated covariance matrix Σ̂. Therefore �̂� can be treated as a random variable generated from a
normal distribution, that is,

�̂� ∼ N(𝜽∗, Σ̂).

This strategy has been used widely in meta-analysis literature, for example, DerSimonian and Laird.11 As a consequence,
we can augment the log empirical likelihood by

𝓁A(𝜼,𝜽,𝝀) = 𝓁(𝜼,𝜽,𝝀) − 1
2
(𝜽 − �̂�)TΣ̂

−1
(𝜽 − �̂�)

= −
n∑

i=1
log

{
1 + 𝝀Ta (vi, 𝜼,𝜽)

}
− 1

2
(𝜽 − �̂�)TΣ̂

−1
(𝜽 − �̂�). (3)

Then we maximize 𝓁A to get the solutions �̃� and �̃� as the estimation of 𝜼 and 𝜽, respectively.
Under regular conditions C1–C3 stated in Appendix A, the consistency and the asymptotic normality of �̃� and �̃� are

proven there. In detail, suppose that Σ̂
−1∕2

(�̂� − 𝜽∗) → N(0, I) in distribution and limn→∞m/n= c> 0, then the proposed
estimates �̃� and �̃� are consistent and

√
n
(
�̃�

T − 𝜼T
0 , �̃�

T
− 𝜽T

∗

)
T asymptotically converges to a zero-mean normal distribution

with covariance matrix

Γ =

(
A13A−1

33 A31 A13A−1
33 A32

A23A−1
33 A31 A22 + A23A−1

33 A32

)−1

,

where 𝜼0 is the true value of parameter 𝜼, and

A22 = lim
n→∞

Σ̂
−1
∕n, A33 = E

(
a(vi, 𝜼0,𝜽∗)aT(vi, 𝜼0,𝜽∗)

)
,

A13 = AT
31 = E

(
𝜕aT(vi, 𝜼0,𝜽∗)

𝜕𝜼

)
, A23 = AT

32 = E
(
𝜕aT(vi, 𝜼0,𝜽∗)

𝜕𝜽

)
.

Moreover, the terms A22, A33, A13, A23 can be consistently estimated, respectively, by

Ã22 = Σ̂
−1/

n, Ã33 =
n∑

i=1

1
n

(
a(vi, �̃�, �̃�)aT(vi, �̃�, �̃�)

)
,

Ã13 =
n∑

i=1

1
n

(
𝜕aT(vi, �̃�, �̃�)

𝜕𝜼

)
, Ã23 =

n∑
i=1

1
n

(
𝜕aT(vi, �̃�, �̃�)

𝜕𝜽

)
.

Furthermore, we can get the corresponding asymptotic covariance matrix estimation of
√

n
(
�̃�

T − 𝜼T
0 , �̃�

T
− 𝜽T

∗

)
T or√

n
(
�̃�

T − 𝜼T
0
)
.

In contrast, the covariance matrix of empirical likelihood method without auxiliary information7 is

Γ2 =

(
A13A−1

33 A31 A13A−1
33 A32

A23A−1
33 A31 A23A−1

33 A32

)−1

=

[(
A13

A23

)
A−1

33

(
A31 A32

)]−1

.

If the external data sample size m is much smaller than the internal sample size n, then the improvement of our pro-
posed method in parameter estimators may be negligible. However, when m is comparable with n, incorporating auxiliary
information from external model does improve estimation efficiency. Specifically, if a(v, 𝜼,𝜽) =

(
aT

1 (v, 𝜼),aT
2 (v,𝜽)

)T , we
have [

E

(
𝜕aT

1 (vi, 𝜼0)
𝜕𝜼

)]−1

E
(

a1(vi, 𝜼0)aT
1 (vi, 𝜼0)

) [
E
(
𝜕a1(vi, 𝜼0)

𝜕𝜼T

)]−1

= Γ2(1, 1) > Γ(1, 1).
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where Γ(1, 1), Γ2(1, 1) are the (1, 1)th submatrix of the 2× 2 block matrix Γ and Γ2, respectively. This illustrates that our
estimator �̃� is more efficient than the one without utilizing auxiliary information.

It is worth noting that the covariance matrix Σ̂ may be misspecified in practice. For example, White10 showed the
asymptotic normality of the quasi-maximum likelihood estimate even under the misspecified density function h:

√
m(�̂� − 𝜽∗)

d
→ N(0,C(𝜽∗)),

where matrix C(𝜽) = A(𝜽)−1B(𝜽)A(𝜽)−1, A(𝜽) = E
[
𝜕2 log h(vi,𝜽)∕𝜕𝜽 𝜕𝜽T] and B(𝜽) = E[𝜕 log h(vi,𝜽)∕𝜕𝜽 ⋅ 𝜕 log h(vi,𝜽)∕

𝜕𝜽T], and E(⋅) is the expectation with respect to the true density function g(v). Note that the covariance matrix C(𝜽∗)may be
incorrectly estimated by Â = 1

m

∑m
i=1 𝜕2 log h(vi, �̂�)∕𝜕𝜽 𝜕𝜽T in practice. Similar to Liu et al,5 we can show that our method

is still effective and robust against misspecification of the covariance matrix. This robustness property greatly enhances
the applicability of our proposed approach. In detail, denote ΣW as a “working” covariance matrix of �̂�, and �̃�W , �̃�W
as the new estimators obtained from (3) by replacing Σ̂ with ΣW . If Σ−1

W ∕n converges to a positive definite matrix AW in
probability as n→∞, then using the similar arguments in Appendix B, we can show that the new estimators �̃�W , �̃�W are
consistent, and

√
n
(
�̃�

T
W − 𝜼T

0 , �̃�
T
W − 𝜽T

∗

)
T asymptotically converges to a zero-mean normal distribution with covariance

matrix

ΓW =

(
A13A−1

33 A31 A13A−1
33 A32

A23A−1
33 A31 AW + A23A−1

33 A32

)−1 (
A13A−1

33 A31 A13A−1
33 A32

A23A−1
33 A31 AW (C∕c)AW + A23A−1

33 A32

)

×

(
A13A−1

33 A31 A13A−1
33 A32

A23A−1
33 A31 AW + A23A−1

33 A32

)−1

,

where C is the true asymptotic covariance matrix of
√

m(�̂� − 𝜽∗), and c= limn→∞m/n.
If interested in testing 𝜼 = 𝜼1, we can show that the Wilks’ theorem holds to be true under assumptions C1–C3

specified in the Appendix. In detail, under the null hypothesis H0 ∶ 𝜼 = 𝜼1, the empirical likelihood ratio statistic

RE(𝜼1) = 2𝓁A

(
�̃�, �̃�

)
− 2𝓁A

(
𝜼1, �̃�1

)
satisfies RE(𝜼1) → 𝜒2(q) in distribution, where �̃�1 is the H0 restricted MLE, that is, it maximizes 𝓁A(𝜼1,𝜽) and q is the
dimension of 𝜼.

3 SIMULATION STUDY

In this section, we conduct extensive simulations to investigate the finite sample performance of the proposed method.
For convenience of description, we define “PEL” as our proposed empirical likelihood method, and “CEL” as the classic
empirical likelihood estimation without utilizing auxiliary summarized information from external data.

In the first simulation study, n independent and identically distributed observations are generated from the underlying
distribution

g(v, 𝜼) =
F(v, 𝜼)

𝜇
, v ≥ 0,

where F(t) is the complementary to the cumulative distribution function of a Weibull distribution with density function
f (t) = 𝛼𝛽(t𝛽)𝛼−1 exp{−(t𝛽)𝛼}, 𝜇 = ∫ ∞

0 tf (t)dt, t ≥ 0, and 𝜼 = (𝛼, 𝛽). Furthermore, we choose true (𝛼, 𝛽) = (2, 2) or (2, 0.5).
In addition, m independent and identically distributed external samples are generated from the same distribution as the
internal data. By mimicking Bi et al3 and fitting a misspecified Log-normal distribution with density function

h(v) = 1
v
√

2𝜋b
exp

{
−1

2

(
ln(v) − a

b

)2
}

,
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T A B L E 1 Simulation results for integrated analysis for individual data and auxiliary summary information

𝜶 𝜷

Case Methods Mean Bias SD Median Mean Bias SD Median

𝛼 = 2 𝛽 = 2

n= 200, m= 500 PEL 2.0628 0.0628 0.2631 2.0215 1.9914 −0.0086 0.1101 1.9755

CEL 2.0533 0.0533 0.2876 2.0351 2.0102 0.0102 0.1665 2.0031

n= 500, m= 1000 PEL 2.0526 0.0526 0.1471 2.0561 1.9855 −0.0145 0.0715 1.9764

CEL 2.0515 0.0515 0.1646 2.0418 1.9901 −0.0099 0.1011 1.9828

𝛼 = 2 𝛽 = 0.5

n= 200, m= 500 PEL 2.0743 0.0743 0.2476 2.0508 0.4974 −0.0026 0.0291 0.4937

CEL 2.0856 0.0856 0.2736 2.0561 0.4988 −0.0012 0.0422 0.4976

n= 500, m= 1000 PEL 2.0144 0.0144 0.1435 1.9983 0.4998 −0.0002 0.0183 0.4988

CEL 2.0123 0.0123 0.1594 2.0002 0.5015 0.0015 0.0264 0.5011

we obtain summarized external information such as the estimated unknown parameters 𝜽 = (a, b) and their correspond-
ing covariance matrix.

We compare the performance of our proposed method PEL with CEL for n= 200, m= 500 or n= 500, m= 1000 over
200 replicates, and the simulation results are presented in Table 1. Table 1 reports the sample mean (Mean), sample
bias (Bias), sample standard deviation (SD), and the sample median (Median) of the estimators. Overall, our proposed
estimator performed well. The standard deviation of PEL estimator is smaller than that from the CEL estimator. This is
expected since auxiliary information was used in the PEL method. In addition, the larger the sample size is, the more
precise the PEL and CEL estimators are.

Motivated by the sensitivity analysis in Qin et al,1 we conduct the second simulation to evaluate the performance of
our method with a mixture density function. Note that among those patients considered in the real data analysis, a small
portion of them might contract the disease on their way out of Wuhan. In such case, the observed forward times can be
treated as a mixture of the “real” forward times and incubation periods. So in our second scenario, the observed individual
data are generated from a mixture density function,

g(v, 𝜼) = 𝜋f (v, 𝜼) + (1 − 𝜋)
F(v, 𝜼)

𝜇
,

where 𝜋 is the proportion of newly infected COVID-19 patients from bus stations, train stations, airports, and so on. The
incubation period is still specified as the Weibull distribution, that is, f , F, and 𝜇 are the same as in the first simulation.
We generate n and m samples as the observed individual level data and external data from the mixture model with varying
but correctly specified 𝜋 = 0.05, 0.1, 0.2, 0.5, respectively. The true value of (𝛼, 𝛽) is set to be (2, 2) or (2, 0.5). We still use
the Log-normal distribution to fit the external data and get summarized auxiliary information.

We compare our proposed method PEL with CEL for n= 200, m= 500 or n= 500, m= 1000 over 200 independent
replicates. The Monte Carlo results are reported in Table 2. Similar to the simulation results in Table 1, the numerical
performance of our method is pretty good, and the standard deviation of PEL estimator is smaller than that of the CEL
estimator. This also verifies that our proposed method achieves efficiency gain.

Two key assumptions are made in the first two simulation studies, that is,𝜋 is given correctly and the incubation period
density f is also correctly specified. To test the robustness of our method, we conducted additional sensitivity analysis by
violating the two key assumptions. In the robustness analysis about the misspecification of 𝜋 values, the observed data
and external data were generated from the mixture density function

g(v, 𝜼) = 𝜋0f (v, 𝜼) + (1 − 𝜋0)
F(v, 𝜼)

𝜇
,

where 𝜋0 = 0.1. The density function of incubation period f is chosen to be Weibull. When we analyze the observed data,
the mixture proportion is chosen to be 𝜋 = 0, 0.05, 0.1, 0.2, and 0.5, respectively. The summarized auxiliary information
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T A B L E 2 Simulation results under mixture density with varying correctly specified 𝜋

𝜶 𝜷

Case Methods Mean Bias SD Median Mean Bias SD Median

𝛼 = 2 𝛽 = 2
𝜋 = 0.05

n= 200, m= 500 PEL 2.0585 0.0585 0.2555 2.0080 1.9931 −0.0069 0.1011 1.9833

CEL 2.0561 0.0561 0.2781 2.0205 2.0082 0.0082 0.1561 1.9956

n= 500, m= 1000 PEL 2.0263 0.0263 0.1482 2.0227 1.9975 −0.0025 0.0749 1.9970

CEL 2.0299 0.0299 0.1614 2.0214 1.9989 −0.0011 0.0962 1.9951
𝜋 = 0.1

n= 200, m= 500 PEL 2.0657 0.0657 0.2464 2.0138 1.9908 −0.0092 0.0979 1.9843

CEL 2.0633 0.0633 0.2779 2.0395 2.0002 0.0002 0.1464 1.9845

n= 500, m= 1000 PEL 2.0211 0.0211 0.1360 2.0183 1.9983 −0.0017 0.0679 1.9985

CEL 2.0244 0.0244 0.1524 2.0209 2.0005 0.0005 0.0947 1.9957
𝜋 = 0.2

n= 200, m= 500 PEL 2.0455 0.0455 0.2085 2.0191 1.9932 −0.0068 0.0856 1.9906

CEL 2.0501 0.0501 0.2368 2.0242 1.9986 −0.0014 0.1242 1.9905

n= 500, m= 1000 PEL 2.0242 0.0242 0.1134 2.0195 1.9935 −0.0065 0.0542 1.9898

CEL 2.0231 0.0231 0.1238 2.0213 2.0008 0.0008 0.0731 1.9981
𝜋 = 0.5

n= 200, m= 500 PEL 2.0272 0.0272 0.1396 2.0067 1.9939 −0.0061 0.0621 1.9920

CEL 2.0360 0.0360 0.1597 2.0297 1.9922 −0.0078 0.1063 1.9895

n= 500, m= 1000 PEL 2.0135 0.0135 0.0901 2.0152 1.9955 −0.0045 0.0399 1.9971

CEL 2.0111 0.0111 0.0961 2.0065 2.0030 0.0030 0.0638 2.0061
𝛼 = 2 𝛽 = 0.5
𝜋 = 0.05

n= 200, m= 500 PEL 2.0676 0.0676 0.2428 2.0651 0.4981 −0.0019 0.0279 0.4943

CEL 2.0763 0.0763 0.2647 2.0622 0.4998 −0.0002 0.0401 0.4984

n= 500, m= 1000 PEL 2.0243 0.0243 0.1308 2.0122 0.4988 −0.0012 0.0168 0.4979

CEL 2.0293 0.0293 0.1453 2.0261 0.4987 −0.0013 0.0237 0.4986
𝜋 = 0.1

n= 200, m= 500 PEL 2.0761 0.0761 0.2314 2.0568 0.4976 −0.0024 0.0261 0.4958

CEL 2.0851 0.0851 0.2551 2.0922 0.4983 −0.0017 0.0382 0.4954

n= 500, m= 1000 PEL 2.0229 0.0229 0.1211 2.0245 0.4991 −0.0009 0.0152 0.4991

CEL 2.0251 0.0251 0.1338 2.0232 0.4993 −0.0007 0.0223 0.4976

𝜋 = 0.2
n= 200, m= 500 PEL 2.0608 0.0608 0.2064 2.0565 0.4991 −0.0009 0.0223 0.4981

CEL 2.0629 0.0629 0.2231 2.0384 0.5004 0.0004 0.0335 0.4972

n= 500, m= 1000 PEL 2.0318 0.0318 0.1275 2.0275 0.4976 −0.0024 0.0148 0.4976

CEL 2.0344 0.0344 0.1351 2.0363 0.4976 −0.0024 0.0201 0.4972

𝜋 = 0.5

n= 200, m= 500 PEL 2.0255 0.0255 0.1423 2.0212 0.5003 0.0003 0.0157 0.5007

CEL 2.0355 0.0355 0.1591 2.0254 0.4995 −0.0005 0.0247 0.4966

n= 500, m= 1000 PEL 2.0179 0.0179 0.0855 2.0184 0.4985 −0.0015 0.0101 0.4995

CEL 2.0203 0.0203 0.0954 2.0228 0.4985 −0.0015 0.0158 0.4993
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T A B L E 3 Simulation results for sensitive analysis with the misspecification of 𝜋 value, and the true value 𝜋0 = 0.1

𝜶 = 2 𝜷 = 0.5

Case Methods Mean Bias SD Median Mean Bias SD Median

𝜋 = 0

n= 200, m= 500 PEL 2.1854 0.1854 0.2690 2.1488 0.4616 −0.0384 0.0246 0.4616

CEL 2.1666 0.1666 0.2840 2.1630 0.4678 −0.0322 0.0365 0.4628

n= 500, m= 1000 PEL 2.1471 0.1471 0.1585 2.1320 0.4630 −0.0370 0.0156 0.4638

CEL 2.1425 0.1425 0.1777 2.1279 0.4647 −0.0353 0.0229 0.4635

𝜋 = 0.05

n= 200, m= 500 PEL 2.1308 0.1308 0.2519 2.0919 0.4790 −0.0210 0.0242 0.4799

CEL 2.1249 0.1249 0.2650 2.1088 0.4825 −0.0175 0.0364 0.4796

n= 500, m= 1000 PEL 2.0845 0.0845 0.1492 2.0671 0.4817 −0.0183 0.0157 0.4819

CEL 2.0898 0.0898 0.1704 2.0721 0.4820 −0.0180 0.0235 0.4810

𝜋 = 0.1

n= 200, m= 500 PEL 2.0606 0.0606 0.2342 2.0341 0.4979 −0.0021 0.0242 0.4990

CEL 2.0619 0.0619 0.2515 2.0479 0.5009 0.0009 0.0375 0.4982

n= 500, m= 1000 PEL 2.0191 0.0191 0.1391 2.0042 0.5004 0.0004 0.0162 0.5009

CEL 2.0250 0.0250 0.1594 2.0028 0.5007 0.0007 0.0239 0.4994

𝜋 = 0.2

n= 200, m= 500 PEL 1.9346 −0.0654 0.2134 1.9030 0.5342 0.0342 0.0234 0.5322

CEL 1.9417 −0.0583 0.2279 1.9217 0.5343 0.0343 0.0370 0.5310

n= 500, m= 1000 PEL 1.8951 −0.1049 0.1190 1.8864 0.5371 0.0371 0.0166 0.5379

CEL 1.9012 −0.0988 0.1385 1.8927 0.5374 0.0374 0.0250 0.5357

𝜋 = 0.5

n= 200, m= 500 PEL 1.6157 −0.3843 0.1285 1.5961 0.6380 0.1380 0.0225 0.6371

CEL 1.6227 −0.3773 0.1467 1.6146 0.6382 0.1382 0.0411 0.6319

n= 500, m= 1000 PEL 1.6002 −0.3998 0.0714 1.5990 0.6402 0.1402 0.0166 0.6401

CEL 1.6056 −0.3944 0.0892 1.6016 0.6400 0.1400 0.0273 0.6375

is obtained by fitting the external data with the Log-normal distribution. We set the true value (𝛼, 𝛽) = (2, 0.5). The simula-
tion is conducted based on n= 200, m= 500 and n= 500, m= 1000 over 200 replicates. The results are reported in Table 3.
From this table, we can see that when 𝜋 is close to the true one 𝜋0 = 0.1, both PEL and CEL seem to be not too sensitive
to the misspecified 𝜋 values. However, when 𝜋 = 0.5 is far away from the true value 𝜋0 = 0.1, both PEL and CEL perform
a little bit poorly. In general, the standard deviations of PEL estimators are still smaller than those of the CEL estimators.

For the robustness analysis about the misspecification of underlying incubation period density scenario, the internal
data and external data are generated respectively from the mixture density function,

g(v, 𝜼) = 𝜋f (v, 𝜼) + (1 − 𝜋)
F(v, 𝜼)

𝜇
,

with 𝜋 = 0, 0.05, 0.1, 0.2, 0.5, where the true density function f of incubation period is chosen to be Gamma.

f (t) = 𝛽𝛼t𝛼−1 exp{−(t𝛽)}∕Γ(𝛼), t > 0,

with (𝛼, 𝛽) = (2, 0.5), but in our fitting, we treat it as the Weibull density. Again, the external auxiliary is derived by fitting
the Log-normal density model. For n= 200, m= 500 and n= 500, m= 1000 over 200 replicates, the results are reported in
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T A B L E 4 Simulation results for sensitive analysis with the misspecification incubation period density function

True Estimation

n= 200, m= 500 𝜋 = 0 𝜋 = 0.05 𝜋 = 0.1 𝜋 = 0.2 𝜋 = 0.5

𝛼 2.0000 1.3628 1.3795 1.3815 1.3998 1.4353

𝛽 0.5000 0.2431 0.2405 0.2387 0.2356 0.2292

Mean 4.0000 3.8023 3.8340 3.8557 3.8944 3.9739

Q0.05 0.7107 0.4583 0.4705 0.4798 0.4950 0.5396

Q0.25 1.9226 1.6368 1.6646 1.6855 1.7204 1.8135

Q0.50 3.3567 3.1462 3.1839 3.2111 3.2580 3.3705

Q0.75 5.3853 5.2767 5.3185 5.3468 5.3978 5.4980

Q0.90 7.7794 7.7136 7.7515 7.7738 7.8182 7.8695

Q0.95 9.4877 9.3961 9.4273 9.4423 9.4770 9.4795

Q0.975 11.1433 10.9850 11.0077 11.0139 11.0364 10.9837

Q0.99 13.2767 12.9779 12.9871 12.9801 12.9838 12.8516

n= 500, m= 1000 𝜋 = 0 𝜋 = 0.05 𝜋 = 0.1 𝜋 = 0.2 𝜋 = 0.5

𝛼 2.0000 1.3422 1.3532 1.3621 1.3761 1.4193

𝛽 0.5000 0.2418 0.2390 0.2381 0.2344 0.2287

Mean 4.0000 3.8460 3.8683 3.8800 3.9202 3.9883

Q0.05 0.7107 0.4872 0.5010 0.5033 0.5212 0.5563

Q0.25 1.9226 1.6828 1.7119 1.7188 1.7597 1.8360

Q0.50 3.3567 3.1962 3.2313 3.2426 3.2956 3.3904

Q0.75 5.3853 5.3237 5.3530 5.3690 5.4219 5.5095

Q0.90 7.7794 7.7546 7.7629 7.7831 7.8201 7.8701

Q0.95 9.4877 9.4332 9.4203 9.4430 9.4619 9.4726

Q0.975 11.1433 11.0192 10.9821 11.0069 11.0043 10.9701

Q0.99 13.2767 13.0100 12.9372 12.9644 12.9299 12.8303

Note: Table 4 summarizes the point estimates, mean, and quantiles, where 𝛼, 𝛽 are the scale and shape parameters; Mean is the
mean of incubation period, and Q0.05, Q0.25, Q0.50, Q0.75, Q0.90, Q0.95, Q0.975, Q0.99 denote the 5%, 25%, 50%, 75%, 90%, 95%, 97.5%,
99% quantiles of the incubation period. The parameters in the column corresponding to “True” are the theoretical parameters in
the Gamma distribution; the parameters in the column corresponding to “Estimation” are the sample estimated parameters in the
Weibull distribution.

Table 4. From this table, we can observe that our results are very robust and the underlying parameter estimates are close
to the true ones.

4 REAL DATA APPLICATION

The observed data are retrieved from municipal health committees in Zhejiang Province of China. Out of 1123 confirmed
cases, the available information contains age, gender, 14 clinical symptoms such as fever and cough, date of symptom
onset, and date of departure from Wuhan. From 19 January 2020 to 23 January 2020, there were 147 asymptomatic cases
who left Wuhan and later developed symptoms in Zhejiang Province. Define the forward time as the elapse between
departure from Wuhan and symptom onset. Note that before 19 January 2020, people were not aware of the severity of
COVID-19. On the other hand, starting from 19 January 2020, the Center for Disease Control and Prevention of China
began monitoring the outbreak of this epidemic. Various strict containment measures were implemented to minimize
human-to-human transmission. Therefore, we are quite sure that all cases included in the analysis were infected in
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T A B L E 5 Analysis results for the incubation period of COVID-19

PEL CEL MLE

Parameters Estimation
Confidence
interval Estimation

Confidence
interval Estimation

Confidence
interval

𝛼 2.36 (2.27, 2.53) 2.39 (1.90, 3.03) 2.58 (2.02, 3.95)

𝛽 0.11 (0.11, 0.12) 0.12 (0.11, 0.15) 0.12 (0.11, 0.14)

Mean 7.75 (7.10, 7.99) 7.07 (5.97, 7.73) 7.22 (6.31, 8.16)

Q0.05 2.48 (2.29, 2.61) 2.31 (1.42, 3.13) 2.57 (1.69, 4.01)

Q0.25 5.16 (4.78, 5.31) 4.74 (3.52, 5.54) 5.01 (3.93, 6.34)

Q0.50 7.48 (6.91, 7.71) 6.85 (5.59, 7.58) 7.05 (5.99, 8.12)

Q0.75 10.04 (9.16, 10.37) 9.14 (7.96, 9.85) 9.22 (8.13, 10.18)

Q0.90 12.45 (11.26, 12.95) 11.29 (10.08, 12.18) 11.23 (9.88, 12.33)

Q0.95 13.92 (12.53, 14.53) 12.61 (11.13, 13.91) 12.44 (10.76, 13.74)

Q0.975 15.19 (13.62, 15.91) 13.75 (12.01, 15.52) 13.48 (11.53, 15.03)

Q0.99 16.69 (14.89, 17.56) 15.08 (13.05, 17.44) 14.69 (12.32, 16.67)

Note: Table 5 summarizes the point estimates and 95% confidence intervals of parameters, mean, and quantiles, where 𝛼, 𝛽 are the
parameters of the Weibull distribution; Mean is the sample mean of incubation period, and Q0.05, Q0.25, Q0.50, Q0.75, Q0.90, Q0.95, Q0.975, Q0.99

denote the 5%, 25%, 50%, 75%, 90%, 95%, 97.5%, 99% sample quantiles of the incubation period, respectively.

Wuhan. The last date of our collected data was 24 February 2020, which was also selected to ensure that those 147 cases
met the criteria and assumptions in Qin et al,1 that is, those cases had records of both dates of departure from Wuhan and
dates of symptoms onset, and the follow-up times were long enough such that no additional biased sampling occurred in
this study.

In our real data analysis, following Qin et al,1 the density function of the forward time V , that is, the duration between
departure from Wuhan and symptom onset in Zhejiang Province is

g(v) = F(v)
𝜇

, v ≥ 0,

where F(⋅) is the survival function of Weibull distribution with the density function

f (t) = 𝛼𝛽(t𝛽)𝛼−1 exp{−(t𝛽)𝛼}, t > 0,

and 𝜇 = ∫ ∞
0 t f (t, 𝜼)dt for 𝜼 = (𝛼, 𝛽)T .

The auxiliary information is collected from Bi et al.3 In Bi et al,3 they treated the forward time as the time from arrival
to symptom onset in Shenzhen for m= 191 travelers. By fitting those observed forward times with a Log-normal density
function

h(v) = 1
v
√

2𝜋b
exp

{
−1

2

(
ln(v) − a

b

)2
}

,

they found the maximum likelihood estimators â = 1.22, b̂ = 0.85. The covariance matrix of (â, b̂) can also be estimated
by using the maximum likelihood estimation theory of misspecified models in White.10

Incorporating the individual-level forward time data with the auxiliary information from Bi et al,3 we estimate the
distribution of the incubation period using our proposed method. The results are reported in Table 5, where the 95%
confidence intervals are obtained through 500 bootstrap replicates. The estimated mean and median of incubation period
are 7.75 and 7.49 days, respectively. The 95%, 97.5%, and 99% percentiles are 13.92, 15.20, and 16.70 days, respectively. The
maximum likelihood estimation (MLE), the classic empirical likelihood estimation (CEL) without auxiliary information,
and their corresponding 95% confidence intervals are also obtained based on the observed data of Zhejiang Province. Our
proposed PEL method produces shorter interval lengths compared with those derived from CEL method.
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T A B L E 6 Sensitivity Analysis results for the incubation period of COVID-19

Parameters 𝝅 = 0.05 𝝅 = 0.1 𝝅 = 0.2 𝝅 = 0.5

𝛼 2.36 (2.21, 2.49) 2.25 (2.12, 2.46) 2.23 (1.91, 2.41) 1.79 (1.47, 2.11)

𝛽 0.12 (0.11, 0.13) 0.12 (0.12, 0.13) 0.13 (0.12, 0.14) 0.16 (0.15, 0.17)

Mean 7.61 (6.92, 7.74) 7.26 (6.65, 7.39) 6.89 (6.31, 7.09) 5.64 (5.14, 5.94)

Q0.05 2.44 (2.15, 2.53) 2.29 (1.98, 2.32) 2.05 (1.56, 2.21) 1.22 (0.76, 1.56)

Q0.25 5.07 (4.58, 5.13) 4.81 (4.36, 4.82) 4.45 (3.81, 4.67) 3.17 (2.47, 3.57)

Q0.50 7.36 (6.69, 7.44) 7.01 (6.44, 7.06) 6.61 (5.98, 6.81) 5.17 (4.45, 5.56)

Q0.75 9.86 (8.96, 10.07) 9.43 (8.62, 9.67) 9.02 (8.28, 9.29) 7.61 (7.03, 7.94)

Q0.90 12.23 (11.03, 12.58) 11.71 (10.67, 12.25) 11.32 (10.31, 11.74) 10.08 (9.28, 10.49)

Q0.95 13.67 (12.30, 14.15) 13.11 (11.88, 13.88) 12.74 (11.51, 13.35) 11.67 (10.56, 12.40)

Q0.975 14.93 (13.36, 15.52) 14.33 (12.93, 15.35) 13.99 (12.52, 14.79) 13.11 (11.67, 14.26)

Q0.99 16.39 (14.63, 17.15) 15.75 (14.15, 17.01) 15.45 (13.72, 16.64) 14.83 (12.96, 16.57)

Table 6 summarizes the point estimates and 95% confidence intervals of parameters, mean, and quantiles, where 𝛼, 𝛽 are the parameters
of the Weibull distribution; Mean is the sample mean of incubation period, and Q0.05, Q0.25, Q0.50, Q0.75, Q0.95, Q0.975, Q0.99 denote the 5%,
25%, 50%, 75%, 95%, 97.5%, 99% sample quantiles of the incubation period, respectively.

Next, we conduct a sensitivity analysis as in Qin et al1 by fitting a mixture density function

g(v, 𝜼) = 𝜋f (v, 𝜼) + (1 − 𝜋)F(v)
𝜇

, (4)

where f and F(⋅)∕𝜇 are the density functions of incubation period and forward time, and 𝜋 is the proportion that peo-
ple contracted COVID-19 disease when they departed from Wuhan. In particular, when 𝜋 = 0, the density function (4)
simplifies to (1).

For 𝜋 = 0.05, 0.1, 0.2, and 0.5, the results are reported in Table 6. Compared with Table 5, the variations of the incuba-
tion period distribution estimation for 𝜋 = 0 to 0.2 are small. However, the result for 𝜋 = 0.5 is a little bit far away from the
result for 𝜋 = 0. We have already observed this behavior from Table 3 in our simulation study in last section. We believe it
is unlikely that half of the COVID-19 patients were infected on their way out of Wuhan since in the early stage the number
of infected patients is not big enough to infect others instantly from crowed environments, such as bus and train stations
or airports. Qin et al1 also did a similar sensitive analysis and found the range of 𝜋 in (0, 0.2] may be more reasonable.

5 DISCUSSION

Some related works on utilizing empirical likelihood method to combine auxiliary information have been discussed,
among others, by Qin,7,12 Wu and Sitter,13 Chaudhuri et al,14 Rao and Wu,15 Chatterjee et al,16 Chaudhuri et al,17 and
Zhang et al.18 In this article, we have proposed an efficient estimator to synthesize summarized information and individual
level data. This approach can be viewed as a natural combination of the empirical likelihood method and confidence
distribution.19 It is shown that our method is theoretically valid and robust, even with the misspecified external model,
and is more efficient compared with the traditional empirical likelihood method. Simulation studies also demonstrate
that our method performs well under finite sample sizes and has a smaller variance compared with the classic empirical
likelihood method without any external information. Moreover, similar to Owen’s original empirical likelihood,8 we have
shown that the Wilks’ theorem holds to be true for the augmented log-empirical likelihood.

The application of our method in estimating the incubation period of COVID-19 also provides important signifi-
cance. By integrating the Zhejiang Province data and the external summarized information from Bi et al,3 we find the
estimated 95%, 97.5%, 99% quantiles are 13.92, 15.20, and 16.70 days, respectively. These numbers are smaller than those
reported in Qin et al.1 We believe this is due to small sample size problem since in general, a large sample size is needed
in order to estimate the tail probability accurately. The sample sizes 147 and 191 from Zhejiang province and Shenzhen,
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respectively, are much smaller than 1211 in Qin et al.1 The existing reports, for example, Lauer et al20 and Bi et al,3 even
from the same research team, may have contractive results due to small sample sizes and different data sets. Consider
a simple case that we can observe incubation periods directly. If the true probability that the incubation period no less
than 14 days is 0.1, then the 95% confidence interval error margin is ±1.96 ∗

√
0.9 ∗ 0.1∕147 = ±0.048. This error mar-

gin would be even larger if only forward times are observed. Nevertheless, methods discussed in this article may shed
light on combining auxiliary information in generalization of meta-analysis even if a misspecified model was used in the
summarized information.

As a general guidance on the choice of 𝜋 value from the range 0 to 0.2, we have following recommendation. If the
histogram looks like monotonic in the entire range, then 𝜋 = 0 is a good choice. Due to small sample size, from histogram
plot we do not exclude the possibility that the underlying forward time density may not be strictly monotonic. Then𝜋 = 0.2
might be a good choice. Nevertheless, the differences in mean and quantiles approximately range a half day to one day.
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APPENDIX A. REGULAR CONDITIONS

We assume the following conditions for theoretical derivation. For the convenience of description, denote 𝜶 =
(
𝜼T ,𝜽T)T ,

𝜶0 =
(
𝜼T

0 ,𝜽
T
∗
)T , and a(vi,𝜶) = a(vi, 𝜼,𝜽).

C1: The matrix E
[
𝜕aT(vi,𝜶0)∕𝜕𝜶

]
is of full rank and E

[
a(vi,𝜶0)a(vi,𝜶0)T] is positive definite.

C2: The function 𝜕aT(v,𝜶)∕𝜕𝜶 and 𝜕2ak(v,𝜶)∕𝜕𝜶𝜕𝜶T are continuous in a neighborhood of the true value
(
𝜼0,𝜽∗

)T . In
addition, ||𝜕aT(v,𝜶)∕𝜕𝜶||, ||𝜕2ak(v,𝜶)∕𝜕𝜶𝜕𝜶T|| and ||a(v,𝜶)||3 are bounded by some integrable function H(v) in
that neighborhood, here ak(v,𝜶) is the kth component of a(v,𝜶).

C3: Assume that the external data and internal observations are independent and identically distributed.

The conditions C1 and C2 are commonly assumed in empirical likelihood literature, see, for example, Qin.7 It is not
difficult to verify that the first two conditions are met for

a(𝜼,𝜽) =

(
𝜕 log h(v,𝜽)

𝜕𝜽
𝜕 log g(v,𝜼)

𝜕𝜼

)
.

C3 is a mild condition and it holds in most practical situations.

APPENDIX B. PROOFS

Proof of the consistency and asymptotic normality
Let 𝜷 = (�̃�T , �̃�

T
, �̃�

T
)T be the solutions to the optimization problem (3), and denote 𝜷 = (𝜼T ,𝜽T ,𝝀T)T as the parameter

vector. Following the asymptotic property of �̂� and the proof of theorem 8.2 in Qin,7 we can easily see (�̃�T , �̃�
T
, �̃�

T
)T =

(𝜼T
0 ,𝜽

T
∗ , 0T)T + Op(n−1∕3). This completes the proof of consistency.

Now we derive the convergence rate. Firstly, we calculate the first derivative of 𝓁A.

𝜕𝓁A

𝜕𝜼
= −

n∑
i=1

1
1 + 𝝀Ta (vi, 𝜼,𝜽)

(
𝜕aT (vi, 𝜼,𝜽)

𝜕𝜼

)
𝝀,

𝜕𝓁A

𝜕𝜽
= −

n∑
i=1

1
1 + 𝝀Ta (vi, 𝜼,𝜽)

(
𝜕aT (vi, 𝜼,𝜽)

𝜕𝜽

)
𝝀 − Σ̂

−1
(𝜽 − �̂�),

𝜕𝓁A

𝜕𝝀
= −

n∑
i=1

a (vi, 𝜼,𝜽)
1 + 𝝀Ta (vi, 𝜼,𝜽)

.

By the Taylor expansion of 𝜕𝓁A∕𝜕𝜷 around (𝜼T
0 ,𝜽

T
∗ , 0T)T , we have

0 = 1
n
𝜕𝓁A(�̃�, �̃�, �̃�)

𝜕𝜼
= 1

n
𝜕𝓁A(𝜼0,𝜽∗, 0)

𝜕𝜼
+ 1

n
𝜕2𝓁A(𝜼0,𝜽∗, 0)

𝜕𝜼 𝜕𝝀T (�̃� − 0) + op(𝛿n),

0 = 1
n
𝜕𝓁A(�̃�, �̃�, �̃�)

𝜕𝜽
= 1

n
𝜕𝓁A(𝜼0,𝜽∗, 0)

𝜕𝜽
− 1

n
Σ̂
−1
(�̃� − 𝜽∗) +

1
n
𝜕2𝓁A(𝜼0,𝜽∗, 0)

𝜕𝜽 𝜕𝝀T (�̃� − 0) + op(𝛿n),
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0 = 1
n
𝜕𝓁A(�̃�, �̃�, �̃�)

𝜕𝝀
= 1

n
𝜕𝓁A(𝜼0,𝜽∗, 0)

𝜕𝝀
+ 1

n
𝜕2𝓁A(𝜼0,𝜽∗, 0)

𝜕𝝀 𝜕𝜼T (�̃� − 𝜼0)

+ 1
n
𝜕2𝓁A(𝜼0,𝜽∗, 0)

𝜕𝝀 𝜕𝜽T (�̃� − 𝜽∗) +
1
n
𝜕2𝓁A(𝜼0,𝜽∗, 0)

𝜕𝝀 𝜕𝝀T (�̃� − 0) + op(𝛿n),

where 𝛿n = ||�̃� − 𝜼0|| + ||�̃� − 𝜽∗|| + ||�̃� − 0||. Thus, it holds that

⎛⎜⎜⎜⎝
�̃� − 𝜼0

�̃� − 𝜽∗
�̃� − 0

⎞⎟⎟⎟⎠ = n

⎛⎜⎜⎜⎜⎜⎝
0 0 𝜕2𝓁A(𝜼0,𝜽∗,0)

𝜕𝜼 𝜕𝝀T

0 −Σ̂
−1 𝜕2𝓁A(𝜼0,𝜽∗,0)

𝜕𝜽 𝜕𝝀T

𝜕2𝓁A(𝜼0,𝜽∗,0)
𝜕𝝀 𝜕𝜼T

𝜕2𝓁A(𝜼0,𝜽∗,0)
𝜕𝝀 𝜕𝜽T

𝜕2𝓁A(𝜼0,𝜽∗,0)
𝜕𝝀 𝜕𝝀T

⎞⎟⎟⎟⎟⎟⎠

−1 ⎛⎜⎜⎜⎝
op(𝛿n)

Σ̂
−1
(𝜽∗−�̂� )

n
+ op(𝛿n)∑n

i=1 a(vi,𝜼0,𝜽∗)
n

+ op(𝛿n)

⎞⎟⎟⎟⎠ .

Since
∑n

i=1 a(vi, 𝜼0,𝜽∗)∕n = Op(n−1∕2) and Σ̂
−1
(𝜽∗ − �̂� )∕n = Op(n−1∕2), it is clear that 𝛿n = Op(n−1∕2). That is, we have

(�̃�T , �̃�
T
, �̃�

T
)T = (𝜼T

0 ,𝜽
T
∗ , 0T)T + Op(n−1∕2).

Next we show the asymptotic normality. From the Taylor expansion results of 𝜕𝓁A∕𝜕𝜷 and the law of large numbers,
we have

0 =
𝜕𝓁A(�̃�, �̃�, �̃�)

𝜕𝜷

=
𝜕𝓁A(𝜼0,𝜽∗, 0)

𝜕𝜷
+ E

[
𝜕2𝓁A(𝜼0,𝜽∗, 0)

𝜕𝜷 𝜕𝜷T

] ⎛⎜⎜⎜⎝
�̃� − 𝜼0

�̃� − 𝜽∗
�̃� − 0

⎞⎟⎟⎟⎠ + op(n1∕2), (B1)

where

E
[
𝜕2𝓁A(𝜼0,𝜽∗, 0)

𝜕𝜷 𝜕𝜷T

]
= E

⎛⎜⎜⎜⎜⎜⎝

𝜕2𝓁A(𝜼0,𝜽∗,0)
𝜕𝜼 𝜕𝜼T

𝜕2𝓁A(𝜼0,𝜽∗,0)
𝜕𝜼 𝜕𝜽T

𝜕2𝓁A(𝜼0,𝜽∗,0)
𝜕𝜼 𝜕𝝀T

𝜕2𝓁A(𝜼0,𝜽∗,0)
𝜕𝜽 𝜕𝜼T

𝜕2𝓁A(𝜼0,𝜽∗,0)
𝜕𝜽 𝜕𝜽T

𝜕2𝓁A(𝜼0,𝜽∗,0)
𝜕𝜽 𝜕𝝀T

𝜕2𝓁A(𝜼0,𝜽∗,0)
𝜕𝝀 𝜕𝜼T

𝜕2𝓁A(𝜼0,𝜽∗,0)
𝜕𝝀 𝜕𝜽T

𝜕2𝓁A(𝜼0,𝜽∗,0)
𝜕𝝀 𝜕𝝀T

⎞⎟⎟⎟⎟⎟⎠
= −n E

⎛⎜⎜⎜⎜⎝
0 0 𝜕aT (vi,𝜼,𝜽)

𝜕𝜼

0 Σ̂
−1
∕n 𝜕aT (vi,𝜼,𝜽)

𝜕𝜽

𝜕a(vi,𝜼,𝜽)
𝜕𝜼T

𝜕a(vi,𝜼,𝜽)
𝜕𝜽T −a(vi, 𝜼,𝜽)aT(vi, 𝜼,𝜽)

⎞⎟⎟⎟⎟⎠
≜ −n

⎛⎜⎜⎜⎝
0 0 A13

0 A22 A23

A31 A32 −A33

⎞⎟⎟⎟⎠ .
Here, the notation ≜ means ‘definition’, and obviously, Aij = AT

ji for any i, j= 1, … , 3. Hence

√
n
⎛⎜⎜⎜⎝
�̃� − 𝜼0

�̃� − 𝜽∗
�̃� − 0

⎞⎟⎟⎟⎠ =
⎛⎜⎜⎜⎝

0 0 A13

0 A22 A23

A31 A32 −A33

⎞⎟⎟⎟⎠
−1

× 1√
n

⎛⎜⎜⎜⎝
0

−Σ̂
−1
(𝜽∗ − �̂� )

−
∑n

i=1 a(vi, 𝜼0,𝜽∗)

⎞⎟⎟⎟⎠ + op(1). (B2)
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Furthermore, Equation (B2) implies that

√
n

(
�̃� − 𝜼0

�̃� − 𝜽∗

)
= J−1UV−1 1√

n

⎛⎜⎜⎜⎝
−Σ̂

−1
(𝜽∗ − �̂� )

−
n∑

i=1
a(vi, 𝜼0,𝜽∗)

⎞⎟⎟⎟⎠ + op(1),

where

U =

(
0 A13

A22 A23

)
, V =

(
A22 0
0 A33

)
, J = UV−1UT ,

and according to Equation (B2), we have used the fact(
0 0
0 A22

)(
�̃� − 𝜼0

�̃� − 𝜽∗

)
+

(
A13

A23

)
�̃� = 1

n

(
0

−Σ̂
−1
(𝜽∗ − �̂� )

)
+ op

(
n−1∕2) (B3)

and

(
A31 A32

)(
�̃� − 𝜼0

�̃� − 𝜽∗

)
− A33�̃� = −n−1

n∑
i=1

a(vi, 𝜼0,𝜽∗) + op
(

n−1∕2) .
From this, easily we have

�̃� = A−1
33 (A31,A32)

(
�̃� − 𝜼0

�̃� − 𝜽∗

)
+ A−1

33 n−1
n∑

i=1
a(vi, 𝜼0,𝜽∗) + op

(
n−1∕2) . (B4)

Substituting (B4) into (B3), we have(
A13A−1

33 A31 A13A−1
33 A32

A23A−1
33 A31 A23A−1

33 A32 + A22

)(
�̃� − 𝜼0

�̃� − 𝜽∗

)

=

(
0 A13A−1

33

I A23A−1
33

)
× 1

n

⎛⎜⎜⎜⎝
−Σ̂

−1
(𝜽∗ − �̂� )

−
n∑

i=1
a(vi, 𝜼0,𝜽∗)

⎞⎟⎟⎟⎠ + op(n−1∕2).

Then it is straightforward to verify that

√
n

(
�̃� − 𝜼0

�̃� − 𝜽∗

)
= J−1UV−1 1√

n

⎛⎜⎜⎜⎝
−Σ̂

−1
(𝜽∗ − �̂� )

−
n∑

i=1
a(vi, 𝜼0,𝜽∗)

⎞⎟⎟⎟⎠ + op(1) (B5)

with

U =

(
0 A13

A22 A23

)
, V =

(
A22 0
0 A33

)
, J = UV−1UT .

Based on the asymptotic normality of �̂�, the independence between n−1∕2Σ̂
−1
(𝜽∗ − �̂�) and internal samples {vi}n

i=1, we can
show √

n

(
�̃� − 𝜼0

�̃� − 𝜽∗

)
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asymptotically converges to a zero-mean normal distribution with covariance matrix

var

[√
n

(
�̃� − 𝜼0

�̃� − 𝜽∗

)]
= J−1UV−1

(
A22 0
0 A33

)
V−1UTJ−1 = J−1

=

(
A13A−1

33 A31 A13A−1
33 A32

A23A−1
33 A31 A22 + A23A−1

33 A32

)−1

. (B6)

This completes the proof.

Proof of Wilks’ theorem
Denote 𝜷1 = (𝜼T

1 , �̃�
T
1 , �̃�1)T as the maximum augmented log-empirical likelihood estimate under the null hypothesis H0 ∶

𝜼0 = 𝜼1, and let𝜷0 = (𝜼T
1 ,𝜽

T
∗ , 0)T . From the proof of the consistency and asymptotic normality, we have𝜷 − 𝜷0 = Op(n−1∕2).

Applying the second-order Taylor expansion of 𝓁A (𝜼,𝜽,𝝀) for any 𝜷 in the O(n−1/2) neighborhood of the true value 𝜷0,
we have

𝓁A (𝜼,𝜽,𝝀) = 𝓁A
(
𝜼1,𝜽∗, 0

)
+
(
𝜷 − 𝜷0

)T 𝜕𝓁A
(
𝜼1,𝜽∗, 0

)
𝜕𝜷

+ 1
2
(
𝜷 − 𝜷0

)TE

{
𝜕2𝓁A

(
𝜼1,𝜽∗, 0

)
𝜕𝜷𝜕𝜷T

}(
𝜷 − 𝜷0

)
+ op(1).

Similar to the result in (B4), if the derivative of 𝜕𝓁A (𝜼,𝜽,𝝀) ∕𝜕𝝀 = 0, we can get

𝝀 = A−1
33 (A31,A32)

(
𝜼 − 𝜼1

𝜽 − 𝜽∗

)
+ A−1

33 n−1
n∑

i=1
a(vi, 𝜼1,𝜽∗) + op

(
n−1∕2) .

After some algebra, we have

𝓁A (𝜼,𝜽,𝝀) = 𝓁A
(
𝜼1,𝜽∗, 0

)
− 1

2n

n∑
i=1

aT(vi, 𝜼0,𝜽∗)A−1
33

n∑
i=1

a(vi, 𝜼0,𝜽∗)

+

(
𝜼 − 𝜼1

𝜽 − 𝜽∗

)T

UV−1

⎛⎜⎜⎜⎝
−Σ̂

−1
(𝜽∗ − �̂� )

−
n∑

i=1
a(vi, 𝜼0,𝜽∗)

⎞⎟⎟⎟⎠
− n

2

(
𝜼 − 𝜼1

𝜽 − 𝜽∗

)T

J

(
𝜼 − 𝜼1

𝜽 − 𝜽∗

)
+ op(1).

Denote

J =

(
J11 J12

J21 J22

)
.

Differentiating 𝓁A with respect to 𝜽 and using the fact that 𝜕𝓁A

(
�̃�, �̃�, �̃�

)
∕𝜕𝜷 = 0, we have

�̃� − 𝜽∗ = −J−1
22 J21

(
�̃� − 𝜼1

)
− n−1J−1

22

[
Σ̂
−1
(𝜽∗ − �̂�) + A23A−1

33

n∑
i=1

a(vi, 𝜼0,𝜽∗)

]
+ op(n−1∕2).

Let 𝝃1n = −A13A−1
33

∑n
i=1 a(vi, 𝜼0,𝜽∗) and 𝝃2n = −Σ̂

−1
(𝜽∗ − �̂�) − A23A−1

33
∑n

i=1 a(vi, 𝜼0,𝜽∗), then

𝓁A

(
�̃�, �̃�, �̃�

)
= 𝓁A

(
𝜼1,𝜽∗, 0

)
− 1

2n

n∑
i=1

aT(vi, 𝜼0,𝜽∗)A−1
33

n∑
i=1

a(vi, 𝜼0,𝜽∗) +
1

2n
𝝃T

2nJ−1
22 𝝃

T
2n

+ (�̃� − 𝜼1)T(𝝃1n − J12J−1
22 𝝃2n) −

n
2
(�̃� − 𝜼1)T(J11 − J12J−1

22 J21)(�̃� − 𝜼1)T + op(1).
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Similarly,

𝓁A

(
𝜼1, �̃�1, �̃�1

)
= 𝓁A

(
𝜼1,𝜽∗, 0

)
+ 1

2n
𝝃T

2nJ−1
22 𝝃

T
2n

− 1
2n

n∑
i=1

aT(vi, 𝜼0,𝜽∗)A−1
33

n∑
i=1

a(vi, 𝜼0,𝜽∗) + op(1).

Moreover, we have

RE(𝜼1) = 2𝓁A

(
�̃�, �̃�, �̃�

)
− 2𝓁A

(
𝜼1, �̃�1, �̃�1

)
= 2(�̃� − 𝜼1)T(𝝃1n − J12J−1

22 𝝃2n) − n(�̃� − 𝜼1)T(J11 − J12J−1
22 J21)(�̃� − 𝜼1)T + op(1).

= 1
n
(𝝃1n − J12J−1

22 𝝃2n)T(J11 − J12J−1
22 J21)−1(𝝃1n − J12J−1

22 𝝃2n) + op(1).

where the last equation is from (B5). Finally, using the fact

1√
n

(
𝝃1n − J12J−1

22 𝝃2n
)
= −

(
A13 − J12J−1

22 A23
)

A−1
33

∑n
i=1 a(vi, 𝜼0,𝜽∗)√

n
+ J12J−1

22
Σ̂
−1
(𝜽∗ − �̂�)√

n

converges to a mean zero normal distribution with covariance matrix J11 − J12J−1
22 J21, we can conclude the proof of Wilks’

theorem.


