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Abstract: Plants have evolved mechanisms to adapt to wounding, a threat occurring separately or
concomitantly with other stresses. During the last decades, many efforts have been made to elucidate
the wounding signaling transduction. However, we know little about the metabolic re-programming
under wounding, let alone whether and how strigolactones (SLs) participate in this progress. Here, we
reported a metabolomic and transcriptomic analysis of SLs synthetic and signal mutants in rice before
and after wounding. A series of metabolites differentially responded to wounding in the SLs mutants
and wild-type rice, among which flavones were enriched. Besides, the SLs mutants accumulated more
jasmonic acid (JA) and jasmonyl isoleucine (JA-lle) than the wild-type rice after wounding, suggesting
an interplay of SLs and JAs during responding to wounding. Further transcriptome data showed that
cell wall, ethylene, and flavones pathways might be affected by wounding and SLs. In addition, we
identified candidate genes regulated by SLs and responding to wounding. In conclusion, our work
provides new insights into wounding-induced metabolic re-programming and the SLs’ function.
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1. Introduction

Wound stress commonly occurs when plants suffer from various biotic attacks and
abiotic stresses (e.g., wind damage). In a few minutes to several hours post wounding, a
series of complex and fine-tuned responses occur, including reactive oxygen species (ROS)
status [1], calcium (Ca2+) contents [2], gene expression levels [3], and metabolism [4–6].
Wounding-regulated natural compounds have been reported [7]. Plants’ metabolic re-
sponses to wounding are a complex process, including the change of a series of volatile and
non-volatile metabolites. For instance, in various tropical agricultural species, wounding
triggers the release of volatile organic compounds (e.g., methanol, hexenal, and acetalde-
hyde), which are produced at relatively low levels under normal conditions. Besides, the
lipoxygenase pathway and lightweight oxygenated compounds are activated by wounding
in 1~2 min [6]. A series of non-volatile metabolites also respond to wounding. For example,
glucose and asparagine pile up in the wounded Mediterranean sclerophyllous tree, while
the contents of valine and leucine decline. In addition, wounding plants produce a signifi-
cantly higher content of secondary metabolites. Some of them are related to defense against
biotic and abiotic stress and wound recovery, including quinic acid, quercitol, choline,
N-acetyl group, and malic acid [8]. Herbivore attacks trigger the expression of flavonoid-
related genes and the accumulation of flavonoids in tea leaves (Camellia sinensis), which
further participate in the defense response against the tea green leafhopper [9]. In rice,
herbivory and mechanical stimuli perturbed phenylamide and increased the accumulation
of caffeoylagmatine [10]. However, the metabolic responses remain exploited through the
metabolome lens.
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Jasmonates (JAs), a class of oxylipins-derived phytohormone, respond to wounding
dramatically. Wounding triggers notable increases (~25-fold) in jasmonic acid (JA) and
jasmonyl isoleucine (JA-Ile) contents within 5 min [11]. The biosynthesis of JAs starts
with the release of linolenic acid from phospholipids by phospholipases (PLs) [12–14].
Linolenic acid is further subject to oxidation reaction catalyzed by 13-lipoxygenases [15]
and produces JA by a series of reactions. GH3 (GRETCHEN HAGEN)-family proteins
(OsGH3.3/OsJAR2, OsGH3.5/OsJAR1) conjugated JA to Ile or other amino acids [16,17].
JAs biosynthesis and signaling transduction transcriptionally and metabolically signaling
respond to wounding [18,19].

Plant adaptation is regulated by complicated phytohormone interactions [20,21]. In
recent decades, the JAs pathway has been reported vital for wounding responses [11,22]. In
addition, ethylene represses the expression of JAs synthesis-related genes, including a PLA1-
type phospholipase gene GY1, to reduce JAs levels and promote mesocotyl and coleoptile
growth [23]. JAs and ethylene interplay to regulate the biosynthesis of anthocyanins
and flavones. Ethylene inhibits anthocyanins biosynthesis in red Chinese pear fruits,
whereas JA induces anthocyanins and flavones biosynthesis, including velutin, luteolin,
chrysoeriol, and apigenin. The branches of the JA-induced anthocyanins pathway are
determined by ethylene [24]. Moreover, ethylene induces the accumulation of luteolin in
Matricaria chamomilla [25]. However, we know little about how JAs interplay with other
hormones to determine the metabolic responses to wounding.

Strigolactones (SLs) are a class of carotenoid-derived phytohormone containing more
than 30 molecules [26]. Firstly, DWARF27 (D27), an all-trans/9-cis-β-carotene isomerase,
catalyzes the reversible isomerization of all-trans-β-carotene into 9-cis-β-carotene, which
cleaves at the C9′-C10′ double bond and produces 9-cis-β-apo-10′-carotenal and β-ionone
under the catalyzation of a carotenoid cleavage dioxygenase CCD7 (also known as DWARF17,
D17). Then, CCD8 (i.e., DWARF10, D10) converts 9-cis-β-apo-10′-carotenal into carlactone
(CL), the precursor of canonical and non-canonical SLs [27]. DWARF14 (D14) interacts with
DWARF3 (D3) and DWARF53 (D53) in the presence of SLs, leading to the ubiquitination
and degradation of the nuclear-localized repressor D53 [28,29]. In addition to regulating
plant architecture and adaptation to environmental stresses [30,31], SLs are vital for plant
metabolism [32]. Recent studies suggest putative crosstalk between SLs and JAs [33]. SL-
RNAi tobacco plants accumulate more SLs signaling repressors (SMXL6/7) and JAs. Further
work revealed that SML6/7 directly interacts with and trigger the degradation of jasmonate
zim-domain (JAZs), which are repressors of JAs signaling. Then, the released basic helix-
loop-helix-leucine zipper transcription factor, MYC2, activates the JA signaling pathway and
induces the contents of anthocyanins and phenolamides [33]. However, whether and how
SLs participate in wounding signal transduction remains unclear.

Herein, we reported the metabolomic responses of rice under wounding stress. Using
rice mutants of SLs biosynthesis (d10) and signaling (d3, d14), we characterized the role
of SLs in metabolic re-programming under wounding. The contents of JA and JA-lle
significantly increased in the SLs mutants after wounding, implying crosstalk between
JAs and SLs. Transcriptome data and pathway analysis revealed that SLs might regulate
flavones and ethyne pathways. Furthermore, we identified candidate genes through which
SLs regulate metabolic responses to wounding.

2. Materials and Methods
2.1. Plant Materials

The SLs mutants were constructed in our previous work [34]. The rice plants were
cultivated in Hainan University (Haikou, China, N 20◦02′, E 110◦11′). All the seeds were
germinated for three days at 37 ◦C on filter paper soaked in distilled water and then planted
in seedbeds. Subsequently, two-week-old seedlings were planted by hydroponic culture
using Yoshida nutrient solution [35].

In metabolic and transcriptomic analyses, one-month seedlings were used and the
leaves were sampled and extracted under the normal condition and after half an hour of
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mechanical wound. The rice leaves were cut for 5 cm along the main vein with scissors. One
half of the cut leaf was sampled immediately as control, and the other was harvested 0.5 h
after wounding as treated samples. The upper second and third leaves of three independent
plants were harvested and combined into a biological replicate. Two biological replicates
were collected for each genotype.

2.2. Metabolic Sample Preparation and Metabolite Profiling

Metabolic profiling was performed as previously described [32]. The freeze-dried
leaves were ground into powder by using a grinder (MM 400, Retsch, Haan, Nordrhein-
Westfalen, Germany) at 30 Hz for 1.5 min. Then, ~100 mg of powder was weighed, and 70%
methanol-aqueous solution was added at 0.1 mg/mL. These samples were then extracted
by ultrasonication at 40 Hz for 10 min. After centrifugation and filtration (SCAA-104,
0.22 mm pore size; ANPEL, Shanghai, China), the samples were quantified by the MRM
method of LC-MS 8060 (Shimadzu, Kyoto, Japan) [36–38], setting the detection window
to 120 s and the target scan time to 1.5 s. A total of 615 transitions were monitored. The
Multiquant 3.0.2 was used to process the original data. We normalized the metabolites
contents through divided the relative signal strengths of the metabolites by the strength of
the internal standard (0.1 mg/L lidocaine) and then log2 transformed the values to further
improve the normalization.

2.3. The Analysis of Differntially Accumulated Metabolites (DAMs)

Principal component analysis (PCA) was performed to compare the contents of the
expressed metabolites profiles among the SLs mutants and wild-type rice before wounding
and after wounding using the PCAtools package in R. Heatmaps of metabolites were
generated using the complexheatmap package in R. The identification criteria of differential
metabolites were |log2 (fold change)| > 1 and p-value < 0.05, which was calculated by
univariate analysis (t-test). The volcano maps of SLs mutants and wild-type rice were used
ggplot2 package in R and the interest metabolites were filtered according to the log2 (FC)
and -log10 (p-value) of metabolites. The Venn plots of DAMs shared by SLs mutants and
wild-type rice were obtained by using online website (http://www.bioinformatics.com.
cn/static/others/jvenn/index.html, accessed on 20 March 2022). Then, the metabolites
only regulated in SLs-mutants and wild-type rice were manually checked to filter the
non-conforming metabolites.

2.4. RNA Sequencing

According to the protocol, we extracted the total RNA from the leaves with a TRIzol
reagent (Cat# DP424, TIANGEN Biotech Co. Ltd., Beijing, China), and a 2100 Bioanalyzer
(Agilent Technologies, Santa Clara, california, USA) was used to confirmed the integrity of
the total RNA. Then, high-quality RNA samples (OD260/280 = 1.8 to 2.2, approximately,
OD260/230 ≥ 2.0, RIN ≥ 8, > 1 µg) were used to construct the sequencing library. After
purified polyA mRNA from total RNA using oligo-dT-attached magnetic beads, which
were subjected to a fragmentation buffer. The first strand cDNA was synthesized using
reverse transcriptase, random primers, and the short fragments, followed by second strand
cDNA synthesis. Then, the synthesized cDNA was subjected to end repair, phospho-
rylation, and “A” base addition. Both sides of the cDNA fragments were added to the
sequencing adapters. After PCR amplification of the cDNA fragments, the 150 to 250 bp
target fragments were cleaned up. Paired-end sequencing on an Illumina HiSeq × Ten
platform (Illumina Inc., San Diego, CA, USA) was performed.

2.5. RNA-Sequencing Data Analyses

Our pipeline consists of the following steps to analysis data: first, the raw data were
processed by fastp v0.23.2 [39] with default settings to remove low-quality bases and
sequencing adapters. Then, Hisat2 v2.1.0 [40] with default parameters was used to map the
clean paired reads to the rice reference genome (MSU7.0). The mapped fragments for each
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gene were counted by featureCounts [41], and transcripts per million (TPM) were calculated.
Genes with averaged TPM > 1 (samples = 16) were considered expressed. DEG analysis
was performed with count tables in R v4.1.0 using DEseq2, and genes with a q-value < 0.05
and abs(log2fold-change) > 1 were classified as DEGs. The GO analysis was conducted with
DEGs by using online David website (https://david.ncifcrf.gov/tools.jsp, accessed on 29
April 2022). The online KOBAS website (http://kobas.cbi.pku.edu.cn/kobas3/genelist/,
accessed on 29 April 2022) was used for KEGG analysis. Then, R software was used to
draw the graph.

2.6. Gene Network Analysis

Protein–protein interaction (PPI) network was identified using STRING database
(https://string-db.org/, accessed on 30 April 2022) with oryza sativa as the reference to
retrieve protein–protein interactions. The network file was visualized using Cytoscape
(v3.7.2) [42] software to present a core and hub protein biological interaction.

2.7. MapMan Analysis

Differences in the expression of genes in different groups involved in each functional
module were shown with MapMan (version 3.6.0 RC1, Berlin, Germany). All genes that
could be annotated in regulatory pathways were tagged and their relative expression
heatmaps were used to show the response of certain metabolic pathways to the wounding
and SLs. TBtools (v1.098761) was used for heatmap of DEGs in each module [43].

2.8. Correlation Analysis of DEGs

We used the R software to calculate the correlation of DEGs and DAMs based on Pear-
son correlation coefficient. The correlation heatmap was drawn using R-package pheatmap.
Correlation filtering is based on p-value, |p| > 0.8, which is considered highly correlated.

3. Results
3.1. HPLC-MS/MS-Based Quantitative Metabolomic Analysis

To understand how metabolites respond to wounding and whether SLs participate in this
progress, we performed a high-performance liquid chromatography–electro spray ionization–
tandem mass spectrometry (HPLC–ESI–MS/MS) based widely-targeted metabolomic analysis
using the mutants of SLs biosynthesis (d10) and signaling (d3 and d14). A total of 615 metabolites
were detected, including both primary and secondary metabolites. Most primary metabolites
belong to lipids metabolism (160), amino acids and derivatives (58), nucleotides and deriva-
tives (21), organic acids (36), and vitamins (29). The detected secondary metabolites included
128 flavonoids, 24 terpenoids, and 45 acyl-sugars (Figure 1A). We performed a principal com-
ponent analysis (PCA) to visualize the metabolites’ distribution in all samples. Samples from
control and wounding conditions were clustered into two groups (Figure 1B), suggesting a
remarkable metabolic re-programming upon wounding. Moreover, in each cluster, samples
of the SLs mutants were distinguished from wild-type rice, implying that SLs affect metabolic
signatures in rice (Figure 1B). Consistent with the PCA results, the heatmap clustering sepa-
rated the wild-type and SLs mutants and wounded and unwounded. The metabolites content
was clustered into two categories. The upper category showed no obvious pattern in all sam-
ples, while the lower category showed lower content in SLs mutants. In particular, some
flavonoids decreased significantly after wounding in the SLs mutants. These results suggested
that flavonoids may be involved in the SLs-mediated response to wounding (Figure 1C).

Next, we identified differentially accumulated metabolites (DAMs,
|log2fold change (FC)| ≥ 1 and p-value < 0.05) upon wounding. In total, 51, 44, 59, and
35 wounding-responded DAMs were found in d10, d3, d14, and wild-type mutants, respec-
tively (Figure 2A,B). In wild-type plants, JA-lle and JAs displayed the strongest responses
to wounding, with a more than 147 and 11-fold increase, respectively. In addition, a series
of compounds responded to wounding. In total, 8 out of 21 wounding-upregulated DAMs
in wild-type mutants were flavonoids, including 5 tricin derivatives. Meanwhile, wound-
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ing depressed the production of 14 metabolites in the wild-type plants, including 4 lipids,
3 amino acids and derivatives, and 2 flavonoids. Nicotinamide-N-oxide and trigonelline were
the most significant DAMs, with a more than 93% loss in content after wounding (Table S1).
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Figure 1. Metabolomic analysis of the SLs mutants and wild-type (WT) plants before and after
wounding. (A) A total of 615 metabolites were detected in this study. (B) Principal component
analysis (PCA) and (C) heatmap of the 615 metabolites in SLs mutants (d10, d3, and d14) and wild-
type plants. PC1 and PC2 refer to the first and second principal components, respectively. WT means
wild type; d3, d10, and d14 represent mutants of DWARF3, DWARF10, and DWARF14, respectively.
WTw, d3w, d10w, and d14w samples were collected 0.5 h after wounding.

In the SLs mutants, the content of four and 6six compounds increased and decreased
upon wounding, respectively. Consistent with that in wild-type plants, JA-lle and JA
boosted after wounding in the SLs mutants, with a more than 148- and 16-fold increase,
respectively. Besides, the accumulation of two tricin derivatives increased after wounding.
In addition, six flavones were downregulated by wounding with 51~77% loss in SLs
mutants (Table S1).

Then, we compared wounding-responded DAMs in the SLs mutants and wild-type
plants. JA, JA-lle, and a tricin derivative (hereafter referred to as Group 1) showed
similar patterns in each genotype (Figure 2C). On the other hand, we found that seen
flavones are SLs mutants-only DAMs (Group 2); including vitexin, luteolin C-hexoside
derivative, selgin O-hexoside, C-hexosyl-chrysoeriol O-hexoside, tricin O-glucuronide-
O-hexoside, C-hexosyl-luteolin O-p-coumaroylhexoside, and C-hexosyl-chrysoeriol O-p-
coumaroylhexoside. Moreover, 21 DAMs were only identified in wild-type plants (Group 3).
These results implied that SLs function in rice metabolic responses to wounding
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Figure 2. Schematic representation of differential accumulation metabolites (DAMs) between mutants
and wild type. (A) DAMs in the SLs mutants (d3, d10, and d14) and wild-type plants. (B) Venn
diagrams showing DAMs shared between the SLs mutants and wild-type plants. (C) The DAMs that
accumulated in each group. WTw, d3w, d10w, and d14w samples were collected 0.5 h after wounding.

3.2. Transcriptome Analysis

To investigate the molecular basis of metabolic responses to wounding, we conducted
an RNA-Seq study using leaves of each genotype before and after wounding. On average,
we obtained 6.88 Gb clean reads for each sample, 97% of which could be mapped to the
reference genome of rice (Table S2). In total, 19,791 genes expressed (averaged TPM ≥ 1)
in 16 samples.

To test the reliability of the transcriptome data, we checked the expression of genes
regulated by SLs or JAs (Figure ??). As reported by Jiang et al. [28], D53 expressed at lower
levels in the SLs mutants than in wild-type plants. In addition, the wounding induced
JAs biosynthetic and JAs signaling genes, such as OsJAZ7, OsJAZ9, OsAOS1, OsbHLH148,
OsGH3.5, and OsMYC2.

To identify genes responding to the wounding, we characterized differentially ex-
pressed genes (DEGs) based on |log2FC| ≥ 1 and q-value < 0.05. In wild-type plants, we
identified 1242 wounding-upregulated and 184 wounding-downregulated DEGs (Table S3).
A total of 1458, 2454, and 2357 DEGs were identified in d3, d10, and d14, respectively
(Figure 4). Among them, the three mutants harbored 899 common DEGs, including
858 upregulated and 41 downregulated DEGs.
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Figure 4. Schematic representation of differentially expressed genes (DEGs) between the mutants and
wild type. (A) DEGs in the SLs mutants (d3, d10, and d14) and wild-type plants. (B) Venn diagrams
showing DEGs shared by the SLs mutants and wild-type plants. WTw, d3w, d10w, and d14w samples
were collected 0.5 h after wounding.

Then, in order to find DEGs that were affected by the SLs pathway in responding
to wounding, we compared wounding-responded DEGs in SLs mutants and wild-type
plants. The SLs mutants and wild-type plants shared 697 DEGs (Group 1), significantly
enriched in the gene ontology (GO) terms “response to wounding”, “regulation of jasmonic
acid-mediated signaling pathway”, “regulation of defense response”, “cell wall organiza-
tion”, “response to water deprivation”, “jasmonic acid biosynthetic process”, “intracellular
signal transduction”, “oxylipin biosynthetic process”, “response to cold”, “response to
salt stress”, and “response to abscisic acid” (Figure 5A, Table S4). Meanwhile, we iden-
tified 202 and 156 DEGs only in SLs mutants (Group 2) and wild-type plants (Group 3),
respectively (Figure 4A). Group 2 was significantly enriched in “transcription factor activ-
ity, sequence-specific DNA binding”, “serine-type endopeptidase activity”, and “cellular
response to heat”. Genes from Group 3 are likely to function in “growth factor activity”
and “nucleosome” (Table S4).
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Figure 5. Enrichment analysis of DEGs in each group. (A) Functional annotation based on DEGs
in Group 1. Results are summarized under three major functional classes: biological processes,
molecular functions, and cellular components. (B) Significantly enriched KEGG pathways among
DEGs in each group. The red and blue represent the p-values. Protein–protein interaction (PPI)
network constructed by DEGs in each group (C–E).

3.3. Pathway Enrichment Analysis

We performed the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis
with the DEGs (Table S5). The Group 1 DEGs were mainly from “plant hormone signal
transduction”; “plant–pathogen interaction“; “alpha-linolenic acid metabolism”; “MAPK
signaling pathway—plant”; “amino sugar and nucleotide sugar metabolism”, “phenylala-
nine, tyrosine, and tryptophan biosynthesis”; “linoleic acid metabolism”; “glutathione
metabolites”; and “biosynthesis of secondary metabolites” (Figure 5B, Table S5). Group 2
mainly consisted of genes from “glutathione metabolism”, “terpenoid backbone biosynthe-
sis”, and “synthesis and degradation of ketone bodies”. Group 3 genes were enriched in
“limonene and pinene degradation”, “monoterpenoid biosynthesis”, “flavone and flavanol
biosynthesis”, and “brassinosteroid biosynthesis” (Figure 5B, Table S5).

Besides, we predicted the protein–protein interaction (PPI) network among DEGs
using the STRING database [44]. In the PPI network constructed using Group 1 genes,
LOC_Os03g17700 (OsMPK3), LOC_Os05g49140 (OsMPK7), LOC_Os06g49430 (OsMPK12),
LOC_Os01g32660 (OsMKK6), LOC_Os03g55800 (OsAOS1), and LOC_Os03g16860 (OsHSP71.1)
were the hub genes involved in response to wounding in each genotype (Figure 5C). OsMPK3,
OsMPK7, OsMPK12, and OsMKK6 have been reported to be associated with biotic and
abiotic stress in rice [45]. The OsAOS1 protein catalyzes the formation of JA [46]. In addi-
tion, LOC_Os11g29870 (OsWRKY72), which depresses JA production by transcriptionally
repressing OsAOS1, apparently interacts with Group 2 DEGs (SLs mutants-only group) [47].
Meanwhile, LOC_Os01g25440 and LOC_Os03g02780 were potential interactors of Group 3
DEGs (wild-type-only group) (Figure 5D,E).

3.4. Differentially Expressed Metabolism-Related Genes

We mapped DEGs to the software MapMan’s MSUv7.0 database for gene annotation
and functional classification.
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To identify candidate genes of wounding-regulated metabolic pathways in the three
groups, we obtained “metabolic overview” profiles of DEGs using MapMan (Figure 6A).
The heatmap distribution showed that wounding-responded DEGs were mainly enriched in
cell wall and secondary metabolism. Lots of cell wall genes were significantly upregulated
in each genotype. Similarly, terpenes, flavonoids, and phenylpropanoids and phenolics
genes were upregulated in Group 1 and Group 2.
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Figure 6. MapMan analysis based “metabolic overview map” of DEGs in three groups. (A) Schematic
diagram of metabolic overview categories. The small heatmap in each section of the diagram shows
the DEGs mapped to the pathway and a small square indicates a transcript. Red, orange, and yellow
indicate upregulated genes in each group; blue, light sea green, and green mean downregulated
genes in each group. (B,C) DEGs related to (B) cell wall and (C) secondary metabolism. Heatmaps of
DEGs were drawn using the log2 (FC) value obtained from the pairwise comparison of samples. Red
and blue indicate upregulation and downregulation, respectively.

Then, we performed a heatmap analysis of DEGs in the functional modules of cell
wall and secondary metabolism. We identified 27 and 18 DEGs associated with cell wall
and secondary metabolism, respectively (Figure 6). Among them, 24 and 15 had similar
fold changes in the SLs mutants and wild-type plants. Meanwhile, the other six genes were
prone to larger increases following the wounding in the SLs mutants than in wild-type
plants (Figure 6B,C), implying the involvement in the SLs-mediated responses to wounding.

Then, we analyzed DEGs of biotic stress pathways in all three groups with the
overview map of “biotic stress” (Figure 7). Most DEGs were enriched in the ethylene,
cell wall, proteolysis, redox state, glutathione-S-transferase, and signaling. Although most
genes expressed at higher levels after wounding, ethylene and cell wall genes in Group
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3 were downregulated by wounding (Figure 7A). As ethylene and signaling pathways
occupied the most genes, we check and found 23 and 73 DEGs related to ethylene and
signaling pathways, respectively. Although 21 ethylene-related DEGs shared similar pat-
terns between wild-type plants and the mutants, the responses of LOC_Os07g22730 and
LOC_Os03g18030 to the wounding were mitigated and enhanced in the mutants, respec-
tively (Figure 7B). Moreover, among the 73 signaling-related DEGs, only LOC_Os06g11660
responded to the wounding more robustly in the SLs mutants (Figure 7C).
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Figure 7. MapMan analysis based “biotic stress pathways” of DEGs in three groups. (A) The
schematic diagram of biotic stress categories. The small heatmap in each section of the diagram shows
the DEGs mapped to that pathway, and a small square indicates a transcript. Red, orange, and yellow
indicate upregulated genes in each group; blue, light sea green, and green means downregulated
genes in each group. (B,C) DEGs related to ethylene metabolism (B) and signaling pathway (C).
Heatmaps of DEGs were drawn using the log2 (FC) value obtained from the pairwise comparison of
samples. Red and blue indicate upregulation and downregulation, respectively.

3.5. Conjoint Analysis of DEGs and DAMs

According to metabolism analysis, despite relatively low contents under the normal
condition, contents of JA and JA-lle in the SLs mutants were significantly higher than
that in wild-type plants after wounding (Figures 2C and 8A). To decode the molecular
mechanism of how SLs affected the production of JAs and JA-lle, we mapped DEGs to a
“JA synthesis” graph in MapMan (Figure 8B). The result showed that wounding triggered
the expression of JAs biosynthetic genes (Figure 8B). Then, the documented genes in JAs
biosynthesis, signaling, and degradation were further evaluated. A series of genes were
upregulated by wounding with different fold changes in the SLs mutants and wild-type
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plants (Figure 8C, Table S6). Most of them responded to the wounding more robustly in the
SLs mutants, especially biosynthesis-related genes (OsAOS1, OsOPR7, OsAOC, OsJAR2,
OsAOS2, OsACX3, and OsWRKY72). In conclusion, SLs affected the expression of JAs
pathway genes to regulate the accumulation of JAs and JA-lle upon wounding.
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Figure 8. The crosstalk between JAs and SLs pathways. (A) The abundance of JA and JA-lle in d10,
d3, d14, and wild-type plants. The data were represented as mean ± SD of two biological replicates.
The Student’s t-test analysis indicated a significant difference (* p < 0.05). (B) MapMan-based “JA
synthesis” of DEGs that regulated in three groups. The small heatmap in each section of the diagram
shows the DEGs mapped to the pathway, and a small square indicates a transcript. Red and yellow
indicate upregulated genes in each group; blue and green mean downregulated genes in each group.
(C) Genes related to JAs synthesis, signaling, and degradation. Heatmaps of DEGs were drawn using
the log2 (FC) value obtained from the pairwise comparison of samples. Red and blue indicate higher
and lower fold change which scale by row.

According to the metabolic analysis and pathways enrichment analysis, the SLs path-
way inhibited the flavones’ responses to wounding. Then, we mapped DAMs to the
flavones’ pathway (Figure 9A). Moreover, metabolome data showed that contents of most
flavones declined after wounding, especially in SLs mutants more than wild-type plants
(Figure 9B). We analyzed the expression of published and putative flavones’ synthetic genes
and found three genes involved in SLs-regulated flavones metabolism (Figure 9C). OsTHT1,
a hydroxycinnamoyl transferase gene inducing flavones’ accumulation and triggered by
JAs and pathogen treatments [48], had a higher fold change in the SLs mutants upon
wounding. However, CYP93G1 (catalyzing the flavanones converted to flavones [49]) and
OsUGT707A2 (a flavone 5-O-glucosyltransferase gene [50]) were upregulated by wounding
in the wild-type plants but displayed negative or no responses to wounding in the SLs
mutants. The accumulation patterns of these transcripts resembled those of flavones. In
conclusion, the SLs pathway affected the responses of flavones to wounding.
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Figure 9. SLs and wound affected the flavones’ pathway. (A) DAMs were mapped to the flavone
pathway. The small heatmap in each section of the diagram shows the DAMs mapped to the pathway,
and a small square indicates a metabolite. (B) Heatmaps of flavones contents. (C) Expression levels
of three genes related to flavones in SLs mutants and wild-type plants. Heatmaps were drawn using
the log2 (FC) value obtained from the pairwise comparison of samples. Red and blue indicated
upregulation and downregulation, respectively.

Since the flavonoids were mainly represented in Group 2 and Group 3, we ana-
lyzed the correlation between DAMs and DEGs from Group 2 and Group 3 to iden-
tify genes in SLs-mediated wounding-regulated flavones (Table S7). There were three
clusters in the correlation heatmap: (i) Cluster 1 was related to tricin O-caffeoyl-4-O-
(3-(4-hydroxy-3.5-dimethoxyphenyl)propanoic acid), epicatechin O-hexoside derivative,
tricin O-caffeoyl-4′-O-(syringyl alcohol)ether, and tricin O-glucuronide-O-hexoside; (ii)
Cluster 2 contained luteolin C-hexoside derivative, selgin O-hexoside, C-hexosyl-luteolin
O-p-coumaroylhexoside, C-hexosyl-chrysoeriol O-p-coumaroylhexoside, vitexin, and C-
hexosyl-chrysoeriol O-hexoside; and (iii) Cluster 3 was constituted of other metabolites (Fig-
ure 10A). With a correlation threshold of 0.8, we identified eight genes in Cluster 2, which
showed similar accumulation patterns with flavonoids (Figure 10B,C). LOC_Os03g19270,
LOC_Os06g09980, LOC_Os06g09990, LOC_Os06g11860, and LOC_Os08g26850 were posi-
tively regulated by wounding and expressed at higher levels in the SLs mutants. Meanwhile,
LOC_Os05g01730, LOC_Os09g26670, and LOC_Os09g26810 were negatively regulated by
wounding only in the SLs mutants.
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Figure 10. Candidate genes in SLs-inhibited flavones production. (A) Correlation coefficient cluster-
ing of DAMs and DEGs in Group 2 and Group 3. The horizontal axis represents DEGs. (B) Schematic
representation of correlation coefficients between eight highly correlated genes and metabolites of
flavones. Red represents positive correlation; blue represents negative correlation. Value in the color
block was the correlation coefficient. (C) Log2 (FC) of eight genes in SLs mutants and wild-type
plants.

4. Discussion

Although the signaling transduction of wounding has been well documented, the
metabolic re-programming under wounding remains to be explored on metabolome scales.
In this study, we analyzed widely targeted metabolome and identified metabolomic re-
sponses to wounding. By using the SLs mutants, we characterized the role of SLs in
wounding-induced metabolic re-programming.

Our work drew a whole picture of metabolic responses to wounding in rice. As well
documented in many species, JAs responds to wounding drastically. In addition, wounding
affected dozens of metabolites. For instance, tricin derivatives—a class of flavonoids—piled
up upon wounded, coinciding with flavonoids’ defensive role [51,52]. Similarly, leaf
herbivory induces a marked accumulation of flavonoids in tea [9]. However, the exact roles
of wounding-responding flavonoids remain to be explored.

Our data evidenced crosstalk between SLs and JAs pathways. The analysis with the
SLs mutants confirmed the participation of SLs in wounding responses. The impaired SLs
pathway enhanced the accumulation of JA and JA-lle after wounding. A study on tomato
defense against root-knot nematodes (RKNs) also provides evidence for the SLs-JAs crosstalk.
Accumulation of JAs in response to RKN infection is enhanced by silencing of SLs biosynthetic
genes and was suppressed by racGR24 [53]. Moreover, SLs signaling repressors (SMXL6
and SMXL7) directly interact with and accelerate the degradation of JAZs and amplify JAs
signaling [33]. Our work implied that biosynthetic or catabolic genes of JAs could be essential
for the crosstalk, whose responses to wounding were enhanced in the SLs mutants. The PPI
network analysis proposed that AOS1 and its repressor, WRKY72, could be hub genes for
wounding responses in the SLs mutants. That is, SLs and JAs interplay under wounding
through complicated mechanisms, which need further efforts to elucidate.

JAs regulates the biosynthesis of many metabolites, including inducing the accumula-
tion of cyanidin [54], luteolin, chrysoeriol, and apigenin [24,55]. The ethylene pathway has
been reported to be activated by JAs to depress anthocyanins production and JA triggers
the formation of flavone/isoflavone [24]. In this study, we also found wounding-induced
ethylene accumulation (Figure 7A), which could promote the accumulation of luteolin [25].
In addition, SLs transcriptionally induce Production of Anthocyanin Pigment1 (PAP1) and
stimulate the production of anthocyanin in Arabidopsis [56]. In addition, compared with
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the wild-type rice, SLs mutants displayed mitigated wounding-affected expression of
ethylene-related genes, implying an SLs–ethylene interaction on regulating the flavonoids
pathway. We found that JAs repress some flavones production only when the SLs pathway
was impaired. Our data suggested a complicated network through which JAs, ethylene,
and SLs regulate flavonoids.

5. Conclusions

In conclusion, this study revealed the metabolomic response to wounding and the
role of SLs. Our work discovered the SLs regulation on JAs accumulation and suggested a
network of SLs-mediated metabolic responses to wounding. These results provide new
insight into how plants metabolic adaptation and the SLs’ function.
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