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A grand unified model for liganded gold clusters
Wen Wu Xu1,2, Beien Zhu1, Xiao Cheng Zeng2,3 & Yi Gao1,4

A grand unified model (GUM) is developed to achieve fundamental understanding of rich

structures of all 71 liganded gold clusters reported to date. Inspired by the quark model by

which composite particles (for example, protons and neutrons) are formed by combining

three quarks (or flavours), here gold atoms are assigned three ‘flavours’ (namely, bottom,

middle and top) to represent three possible valence states. The ‘composite particles’ in GUM

are categorized into two groups: variants of triangular elementary block Au3(2e) and

tetrahedral elementary block Au4(2e), all satisfying the duet rule (2e) of the valence shell,

akin to the octet rule in general chemistry. The elementary blocks, when packed together,

form the cores of liganded gold clusters. With the GUM, structures of 71 liganded gold

clusters and their growth mechanism can be deciphered altogether. Although GUM is a

predictive heuristic and may not be necessarily reflective of the actual electronic structure,

several highly stable liganded gold clusters are predicted, thereby offering GUM-guided

synthesis of liganded gold clusters by design.
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L
iganded gold clusters have attracted intensive interest
over the past 10 years owing to their broad and practical
applications in catalysis1, electrochemistry2, quantum

electronics3 and biomedicine4. A grand challenge to scientists
in this field, however, is the precise determination of atomic
structures of liganded gold clusters. To date, atomic structures
of tens of liganded gold clusters have been determined via
X-ray crystallography5–63. Nevertheless, these revelations appear
serendipitous as the structural determination largely hinges on
availability of single crystals for the liganded gold clusters.
Although density-functional theory computation has been widely
applied to predict the structures of many gold clusters64–78,
ultimate confirmation still requires X-ray crystallography
measurements. Theoretical efforts have also been made in the
past for more general unification models to comprehend
stabilities of liganded gold clusters with apparently very
different and seemingly unrelated complex structures. For
example, Wade–Mingos counting rules79,80 can provide a
simple rationale of various shapes of ‘electron-deficient’
polyhedral clusters in terms of the number of skeletal electron
pairs, particularly for borane and carborane clusters. However,
few gold clusters can be rationalized by the Wade–Mingos
counting rules81, especially for the gold clusters with a high
number of interstitial atoms, whose structures have been precisely
resolved60,61. The superatom complex (SAC) model proposed
by Walter et al.82 suggests that the high stability of several
spherical-like ligand-protected gold clusters26,55,60 is due largely
to the strong electron shell closures, an important concept
that stems from the jellium model83. The total 16 electronic
shell-closing ligand-protected gold clusters (all from previous
experiments) are summarized in Supplementary Table 1. Cheng
et al. developed the super valence bond (SVB) model84 to explain
the electronic stability of non-spherical shells of Au38(SR)24

(ref. 53). They suggest that the bi-icosahedral Au23
(þ 9) core of

Au38(SR)24 can be viewed as a superatomic molecule. Later, the
superatom network (SAN)66 model, coupled with the adaptive
natural density partitioning analysis85, have been also invoked by
Cheng et al. to explain the high stability of certain low-symmetry
ligand-protected gold clusters. A key notion in the SAN model
is that the core of Au nanoclusters can be viewed as a network
of n-centered two-electron (n¼ 2–6) superatoms. A tetrahedral
unit with two valence electrons has also been identified by Jin and
co-workers58 through an account of the number of valence
electrons and tetrahedral units in a serial of structurally resolved
double-helical gold clusters (Au28(SR)20, Au36(SR)24, Au44(SR)28

and Au52(SR)32)44,49,56,58. Recently, the Borromean-ring
diagrams for the Au25(SR)18 (refs 42,43), Au38(SR)24 (ref. 53)
and Au102(SR)44 (ref. 60) clusters have been proposed by Pradeep,
Whetten and co-workers86 to explain high stabilities of these
clusters. All the theoretical models developed thus far are mainly
to address stabilities of a subset of gold nanoclusters, rather than
the entire set of 71 reported liganded gold clusters. As such,
exceptional cases to these independent models abound. Hence, a
grand unified model that can go beyond these previously
developed models (SAC, SVB, SAN and so on) for
understanding stabilities of all ligand-protected gold clusters is
called for. Here we present a grand unified model (GUM) that
can offer a universal description of the structures of diverse
liganded gold clusters.

In this communication, the triangular elementary block
Au3(2e) and tetrahedral elementary block Au4(2e) are identified
to describe the stabilities of 71 liganded gold nanoclusters
(Supplementary Table 2) reported up to date. On the basis of the
GUM, deeper insights into structure evolution of the liganded
gold nanoclusters can be obtained, namely, the structure
evolution of the gold core cannot be viewed simply as addition

of Au atoms, but rather as seamless packing of the elementary
blocks. In addition, several stable liganded gold clusters are
predicted.

Results
GUM development and quark model analogy. The development
of the GUM is based on detailed analysis of the structures of all 71
liganded gold clusters (Supplementary Table 2) either determined
from previous experiments (54 crystallized structures) or
predicted from density-functional theory computation
(17 structures) over the past three decades. The scheme of grand
conceptual unification of the diverse structures of these 71
liganded gold clusters is motivated from the quark model in
particle physics wherein six types of quarks, known as
flavours, are conceptualized as a unification scheme for composite
particles, such as protons and neutrons, and exotic hadrons, in
terms of their valence quarks. For instance, it is known that
protons, neutrons alike are not elementary but are viewed as
bound states of the elementary valence quarks and antiquarks. All
quarks are characterized by a set of quantum numbers, such as
fractional electric charge of ±2/3 or ±1/3. In an analogous
fashion, here, we assign a gold atom as the ‘elementary particle’
but with one of three ‘flavours’ due to its three possible valence
states, that is, 1e, 0.5e and 0e. The three flavours are named as
bottom, middle and top, respectively. Through close inspection of
the 71 known clusters, we identify two ‘composite particles’,
namely, the triangular Au3 and tetrahedral Au4 elementary
blocks, in analogy to the protons and tetraquarks, respectively.
We find that both elementary blocks satisfy the duet rule, that is,
the high tendency of having two electrons in the valence shell.
As a result, depending on the flavour of each constituent gold
atom, the triangular elementary block can exhibit in total 10
variants of valence states (named as D1–D10), whereas the
tetrahedral elementary block can exhibit in total 15 variants of
valence states (named as T1–T15) (Fig. 1). We show that for all 71
liganded gold clusters, once the outer ligands are effectively
detached from the inner Au cores (see below), the resulting Au
cores are universally packed by the elementary blocks. Hence, the
stabilities of the liganded gold clusters are due to the high stability
of each individual elementary block.

Duet rule. Note that the duet rule elucidated here is akin to the
textbook octet rule, a well-known and the first chemical rule of
thumb in general chemistry. The octet rule is a valence-electron
counting rule for the explanation or prediction of electronic
structure and chemical bonding of molecules made of
main-group elements. The other two valence-electron counting
rules (that is, the second and third rules of thumb), namely, the
18-electron rule and Wade’s rule, are newer chemical rules of
thumb for understanding chemical structures of organometallics
and polyhedral cluster compounds, respectively. Below, we report
that in conjunction with the GUM, the duet rule of the valence
shell for the elementary blocks can be treated as the fourth rule of
thumb for understanding diverse liganded gold clusters.

Evidences on stabilities of the elementary blocks. In GUM, both
elementary blocks triangular Au3 and tetrahedral Au4 entail only
two valence electrons [Au3(2e) and Au4(2e)], thereby both
having strong electron shell closures. As shown in Fig. 2, the
two valence electrons are delocalized in the shell-closing
elementary blocks Au3(2e) and Au4(2e), consistent with the SAC
model82. Moreover, from an experimental perspective, the Au3

core of crystallized [Au3(IDipp)3]1þ [IDipp¼ 1,3-bis(2,6-
diisopropylphenyl)imidazol-2-ylidene] (ref. 5) and the Au4 core
of [Au4(PR3)4]2þ (ref. 6) (Supplementary Table 2) are essentially
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the same as the elementary blocks Au3(2e) and Au4(2e),
respectively, supporting the high stabilities of the Au3(2e) and
Au4(2e). The high stabilities of Au3(2e) and Au4(2e) structures can
be also shown from ab initio computation. In Supplementary
Table 3, the formation energies of five isoelectronic species,
Au2(2e), Au3(2e), Au4(2e), Au5(2e) and Au6(2e), are listed. Only
the triangular Au3(2e) and tetrahedral Au4(2e) exhibit highly
negative formation energies, which provides another piece of
strong evidence of their high stabilities. In addition, both
elementary blocks exhibit larger highest/lowest occupied/
unoccupied molecular orbital (HOMO/LUMO) gaps than their
isoelectronic counterparts (Supplementary Table 3).

Electron counting protocols for effective detachment of
ligands. All ligand-protected Au clusters are composed of an
inner Au core and a number of outer ligands. The first step
toward developing the GUM is to find effective protocols to

detach the protection ligands from the Au core so that the vast
complex factors of the outer ligands can be removed while all
ligand-protected Au clusters can be reduced to bare Au cores for
structural analysis. Note that different elements or functional
groups that are directly bonded with an Au atom at the core
surface are in different valence-electron states. As such, if one is
to focus on the valence state of the inner Au core, equivalent
electron counting is required to effectively detach all protection
ligands from the Au core. The following electron-counting
protocols for effective detachment of different types of ligands
can be undertaken (see Fig. 3 for graphical illustrations):

First, each SR group and Au atom embedded in the
gold–thiolate staple motifs possess � 1e and 1e valence electron,
respectively. To effectively detach the smallest staple motif from
the Au core, the net number of valence electrons of the staple
motif should be converted to zero. To this end, each of the two
Au atoms (on the Au core) bonded with SR is considered to
transfer 0.5e valence electron to the staple motif. As such,
equivalent electron counting for effective detachment of the staple
motif is achieved (Fig. 3a). Second, for SR group bonded with two
Au atoms on the Au core, again, each of the two Au atoms
(on the core) is considered to transfer 0.5e valence electron to the
SR group so that equivalent electron counting for effective
detachment of the SR group is achieved (Fig. 3b). Third, for
halogen ligand X (X¼ F, Cl, Br and I) bonded with a single Au
atom on the Au core, each Au atom is considered to transfer 1e
valence electron to the X atom so that equivalent electron
counting for effective detachment of the X atom is achieved
(Fig. 3c). Fourth, the phosphine group is known as a weak ligand,
thereby possessing 0e valence electron. As such, each Au atom
bonded with the phosphine group still maintain its original 1e
valence electron upon detachment with the phosphine group
(Fig. 3d).

In summary, depending on the ligands, for example, PR3, X, SR
or gold–thiolate staple motifs, Au atoms on the Au core can
exhibit one of the three flavours: bottom (1e), middle (0.5e) and
top (0e) after effective detachment of the protection ligands from
the Au core. Note also that when two elementary blocks are fused
together via sharing a single Au atom, the shared Au atom
contributes 0.5e valence electron to each elementary block. As
such, the fused elementary blocks can be effectively separated via
the protocol shown in Fig. 3e.

Prototypical liganded clusters. As shown in Supplementary
Table 2, once the ligands are effectively detached from the Au
cores, the Au cores of all 71 ligand-protected gold clusters can be
universally decomposed into a number of the triangular Au3

(D1–D10) and/or tetrahedral Au4 (T1–T15) elementary blocks.
Two prototypical structures are analysed here as two examples
while other eight representative structures are either briefly
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Δ1

Δ6

T1 T2 T3 T4 T5

T10T9T8T7T6

T11 T12 T13 T14 T15

Δ7 Δ8 Δ9 Δ10

1+

2+ 1.5+ 1+ 1+ 0.5+

0.5–0000.5+

0.5– 1– 1– 1.5– 2–

0.5– 1– 1– 1.5– 2–

Triangular elementary block Au3

Tetrahedral elementary block Au4

0.5+ 0 0 0.5–

Δ2 Δ3 Δ4 Δ5

b (bottom)

1e

[3b]1+

[1b1m1t]0.5–

[1b2m1t]0[2b1m1t]0.5+

[1b1m2t]0.5– [1b3t]1– [2m2t]1– [1m3t]1.5– [4t]2–

[2b2t]0

[4b]2+ [3b1m]1.5+

[1b2t]1– [1m2t]1.5– [3t]2–[2m1t]1–

[3b1t]1+ [2b2m]1+ [1b3m]0.5+

[3m1t]0.5–[4m]0

[2b1m]0.5+ [1b2m]0 [2b1t]0 [3m]0.5–

0.5e

m (middle)

0e

t (top)

Figure 1 | Valence states of the triangular and tetrahedral elementary

blocks. Ten variants (D1–D10) of valence states for the triangular elementary

block Au3 and 15 variants (T1–T15) of valence states for the tetrahedral

elementary block Au4 due to constituent Au atoms having three possible

flavours (b for bottom flavour, m for middle flavour and t for top flavour),

and the requirement of duet rule (that is, having 2e valence electrons).

Colour code of Au atom: magenta (b), dark yellow (m) and yellow (t).

Au3 (2e) Au4 (2e)

Figure 2 | The computed delocalized occupied orbitals (1S2) of Au3(2e)

(left) and Au4(2e) (right). Colour code: Au—yellow.
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illustrated here or elaborated in the Supplementary Figs 1–8.
The remaining cases can be analysed in similar fashion.

The first prototype structure we consider is [Au6(dppp)4]2þ

(dppp¼ 1,3-Bis(diphenylphosphino)propane)9, which is
composed of four dppp ligands (each with 0e valence electron)
and an Au6

2þ core (Fig. 4a). The Au6 core consists of two
triangular Au3 blocks. According to the electron-counting
protocol, the six Au atoms of the Au6 core are all bonded with
phosphine ligands and thus have 1e valence electron or the
bottom flavour. Two positive charges are equally distributed in

the two triangular Au3 blocks. Thus, both triangular Au3

elementary blocks are in the D1 valence state (Fig. 4b).
The second prototype structure we consider is Au40(SR)24

(ref. 56). The Au core of Au40(SR)24 can be viewed as a
combination of an Au7 and a Kekulé-like Au18 structure (Fig. 5a).
The Au7 core is composed of two tetrahedral Au4 blocks, fused
together by sharing an Au atom. The latter contributes 0.5e
valence electron to each tetrahedral Au4 block. Other six vertex
Au atoms are bonded with the SR group and each contributes
0.5e valence electron to the resident tetrahedral Au4 block.
Thus, each of the four vertex Au atoms in the tetrahedral Au4

block has the middle flavour so that each tetrahedral Au4

elementary block is in the T9 valence state (Fig. 5b). Moreover,
the Kekulé-like Au18 structure can be viewed as six tetrahedral
Au4 blocks fused together in a loop with six sharing Au atoms
(Fig. 5c). Again, each of the six tetrahedral Au4 elementary blocks
is in the T9 valence state.

Finally, eight other representative clusters are considered.
The structure decompositions of eight other representative
clusters in terms of elementary blocks as well as their
corresponding valence states are shown in Supplementary
Figs 1–8. Specifically, the structure decomposition of three largest
ligand-protected gold clusters, Au102(SR)44 (ref. 60), Au130(SR)50

(ref. 61) and Au144(SR)60 (ref. 78), are given below. According to
the ‘divide-and-protect’ formulation87,88, the Au102(SR)44 can be
written as Au79[RS-Au-SR]19[RS-Au-SR-Au-SR]2. Each of the
two Au atoms in the Au102(SR)44 shared by two [-RS-Au-SR-]
staple motifs can be viewed as the Au atom with 0e valence
electron (that is, top flavour). As such, the Au79 core of
Au102(SR)44 is composed of 29 elementary blocks and their
corresponding valence states can be described by [5D1, D3, 16D5,
2T4, 2T5, T7 and 2T9] (Supplementary Fig. 9), giving rise to 58
valence electrons in total (corresponding to the strong electron
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shell closure, according to SAC model82) for Au102(SR)44. The
Au105 core of Au130(SR)50 is composed of 40 elementary blocks
and their corresponding valence states include 5D3, 11D5, 4T4,
3T5 and 17T9 (Supplementary Fig. 10), giving rise to 80 valence
electrons in total for Au130(SR)50. The Au114 core of Au144(SR)60

is composed of 42 elementary blocks and their corresponding
valence states include 20D5, 13T4, 3T5 and 6T9 (Supplementary
Fig. 11), giving rise to 84 valence electrons in total in Au144(SR)60.

Discussion
In general, the inner Au cores of all the ligand-protected gold
clusters are composed of elementary blocks (Supplementary
Table 2 and Fig. 6), each having two valence electrons (Fig. 1),
whereas the outer ligands with 0e valence electron provide the
geometry constraint and arrangement of valence electrons in each
elementary block to satisfy the duet rule. In Supplementary
Fig. 12, we show several possible valence states for two fused
tetrahedral Au4 blocks (Au7) protected by either SR or PR3

groups in various liganded gold clusters. Our analysis indicates
that the fused tetrahedral Au4 elementary blocks in the four
predicted stable clusters, Au10(SR)6, [Au9(SR)4(PR3)2]1þ ,
[Au8(SR)2(PR3)4]2þ and [Au7(PR3)6]3þ , are in the 2T9, 2T5,
2T4 and 2T2 valence states, respectively, whereas the constructed
Au8(SR)2(PR3)4 and Au7(PR3)6 clusters are expected to be less
stable due to their violation of the duet rule. Note that a
recent experimental investigation of Au25(SR)18 in its three
oxidation states, that is, Au25(SR)18

� 1/0/þ 1, provides more
compiling evidence on the effect of violation of the duet rule

(or deviation from the strong electron shell closure) to the
symmetry of the Au13 core and stability of the cluster89. The
obtained three crystalline structures in the related three oxidation
states demonstrate that the structural distortion (in the Au core in
particular) increases with the decreased superatomic valence from
1S21P6 to 1S21P4 as the Au25(SR)18

� 1 cluster has the eight-electron
shell-closing configuration82 1S21P6, and thus the highest thermal
stability. The other two oxidation states, Au25(SR)18

0/þ 1, are less
stable due to the incomplete 1P superatomic orbital. Likewise,
the structural distortion observed in the two oxidation states,
Au25(SR)18

0/þ 1, can be understood based on GUM. The Au13 core
of Au25(SR)18

� 1 can be decomposed into four elementary blocks
and their corresponding valence states can be described as [2D5

and 2T9] (Supplementary Table 2). Clearly, the number of valence
electrons in both oxidation states, Au25(SR)18

0/þ 1, dissatisfies the
duet rule. As a consequence, lower thermal stability and larger
structural distortion in the highly symmetric Au13 core are
expected, consistent with the experimental evidence89.

The GUM does not only offer a universal structural
characterization of all 71 liganded gold clusters, but it also
provides deeper insights into structure evolution of the Au
clusters. In Fig. 6, a structure evolution map for the Au cores with
increasing number of elementary blocks is presented. Indeed, the
structure evolution of the Au cores can be understood through
various routes of packing the elementary blocks. For example, two
elementary blocks with T9 valence state can yield either the Au8

core of Au24(SR)20 (ref. 39) via direct packing or the Au7 core of
Au20(SR)16 (ref. 33) via sharing a vertex Au atom. Two
elementary blocks with T4 valence states can give rise to the
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Au6 core of [Au6(PR3)6]2þ (ref. 7) through sharing one common
edge. With gradually increasing the number of elementary blocks,
larger Au core structures can be formed while adjusting the
overall charge of the liganded gold clusters to meet the duet rule.
In summary, the structure evolution of the Au core cannot be
viewed simply as addition of Au atoms (Supplementary Fig. 13),
but rather as seamless packing of the elementary blocks while
obeying the duet rule.

In addition to structure unification, the GUM can be utilized
for predicting new structures of liganded gold clusters. From the
structure evolution map shown in Fig. 6, one can see that there
are many vacant spaces, suggesting many missing liganded
gold clusters yet to be synthesized. We construct a series of
ligand-protected gold clusters (shown in dotted squares in Fig. 6)
on the basis of GUM to fill some vacant spaces in Fig. 6.
The elementary blocks and their valence states for the Au cores of
all constructed clusters are depicted in Supplementary Fig. 14.
These clusters exhibit large computed HOMO–LUMO gaps
(Supplementary Table 4), suggesting potentially high chemical
stabilities.

In particular, a class of hitherto unreported ligand-protected
hollow Au clusters are presented here. For example, Au36(SR)12

can be constructed by using the C12 fullerene as a template. C12

fullerene exhibits eight polygons: four quadrilaterals and four
pentagons (Fig. 7a). Replacing all C atoms of the C12 fullerene
with 12 fused tetrahedral Au4 gives rise to the Au30 core (Fig. 7b)
of Au36(SR)12, followed by adding [-RS-Au-SR-] staple motifs on
the unfused Au atoms to build the complete Au36(SR)12 cluster
(Fig. 7c). The Au30 hollow cage in Au36(SR)12 is composed of 12
fused elementary blocks all at the T9 valence state. The
Au36(SR)12 cluster exhibits a large computed HOMO–LUMO
gap of 2.20 eV and has no imaginary vibrational frequencies. An
ab initio molecular dynamics simulation of the Au36(SR)12 cluster
at 355 K for 10 ps suggests high thermal stability of the
Au36(SR)12 cluster (Supplementary Fig. 15 and Supplementary
Methods). Figure 7f shows another example of ligand-protected
hollow Au cluster, namely, Au42(SR)14, constructed by using the
C14 fullerene (Fig. 7d) as a template. The Au35 hollow cage
(Fig. 7e) in Au42(SR)14 is composed of 14 fused elementary

blocks all at the T9 valence state. The computed HOMO–LUMO
gap of Au42(SR)14 is 2.00 eV, suggesting high chemical stability.
Interestingly, the Au36(SR)12 and Au42(SR)14 can be rewritten as
Au30[Au(SR)2]6 and Au35[Au(SR)2]7, respectively, consistent with
the ‘divide-and-protect’ formulation87,88.

In conclusion, a grand unified model that can incorporate
previously developed independent models (SAC, SVB, SAN and
so on.) is developed to address stabilities of all ligand-protected
gold clusters. On the basis of the GUM, all 71 liganded gold
nanoclusters can be decomposed into several elementary blocks
of triangular Au3(2e) and tetrahedral Au4(2e). Although GUM is
a predictive heuristic and may not be necessarily reflective
of the actual electronic structure, a series of highly stable liganded
gold clusters are predicted, which provides a guide to synthesizing
new ligand-protected gold clusters. Hence, the GUM can offer
not only new insights into the packing and structure evolution
of the 71 liganded gold clusters known as of today, but
also a systematic route toward rational design and
characterization of liganded metal clusters to inspire future
experimental synthesis.

Data availability. The authors declare that the data supporting
the findings of this study are available within the article
and its Supplementary Information files, and all relevant data are
available from the authors.
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