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Abstract

Motivation: Meta-analysis is essential to combine the results of genome-wide association studies

(GWASs). Recent large-scale meta-analyses have combined studies of different ethnicities, envi-

ronments and even studies of different related phenotypes. These differences between studies can

manifest as effect size heterogeneity. We previously developed a modified random effects model

(RE2) that can achieve higher power to detect heterogeneous effects than the commonly used fixed

effects model (FE). However, RE2 cannot perform meta-analysis of correlated statistics, which are

found in recent research designs, and the identified variants often overlap with those found by FE.

Results: Here, we propose RE2C, which increases the power of RE2 in two ways. First, we general-

ized the likelihood model to account for correlations of statistics to achieve optimal power, using

an optimization technique based on spectral decomposition for efficient parameter estimation.

Second, we designed a novel statistic to focus on the heterogeneous effects that FE cannot detect,

thereby, increasing the power to identify new associations. We developed an efficient and accurate

p-value approximation procedure using analytical decomposition of the statistic. In simulations,

RE2C achieved a dramatic increase in power compared with the decoupling approach (71% vs.

21%) when the statistics were correlated. Even when the statistics are uncorrelated, RE2C achieves

a modest increase in power. Applications to real genetic data supported the utility of RE2C. RE2C is

highly efficient and can meta-analyze one hundred GWASs in one day.

Availability and implementation: The software is freely available at http://software.buhmhan.com/

RE2C.

Contact: buhm.han@amc.seoul.kr

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Genome-wide association studies (GWASs) have identified numer-

ous single-nucleotide polymorphisms (SNPs) that are associated

with human traits (Manolio, 2010; Welter et al., 2014). For many

diseases, however, the identified variants explain only part of the

known heritability, which indicates the existence of undetected vari-

ants with small effects (Evangelou and Ioannidis, 2013; Manolio,

2013). To scale up genetic discovery, meta-analysis of GWASs has

become a popular tool to augment the sample size (Evangelou and

Ioannidis, 2013; Fleiss, 1993; Zeggini and Ioannidis, 2009).

Recently, the use of meta-analysis in GWASs has expanded to new

research designs, such as combining different related diseases

(Kiryluk et al., 2012; Lee et al., 2014; Perry et al., 2012), popula-

tions (Liu et al., 2015), environments (Kang et al., 2014), tissues

(Sul et al., 2013) and cancer types (Bhattacharjee et al., 2012;

Petersen et al., 2010). These differences between studies can mani-

fest as heterogeneity, which refers to effect-size differences. When

heterogeneity exists, the commonly used fixed effects model (FE) is

not optimal. The traditional random effects model (RE)

(DerSimonian and Laird, 1986) is also conservative and is not

powerful (Han and Eskin, 2011). To overcome this challenge, we re-

cently developed a modified RE (RE2) that has higher power under

condition of heterogeneity (Han and Eskin, 2011). RE2 has been

used widely in cross-population human disease analyses (Chimusa
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et al., 2014; Keller et al., 2014; Sapkota et al., 2014), cross-

environment mouse trait analyses (Kang et al., 2014), cross-

condition expression quantitative trait loci (eQTL) analyses (Sul

et al., 2013; Ye et al., 2014), and cross-feature neuroimaging ana-

lyses (Hibar et al., 2012; Stein et al., 2012).

However, RE2 has some limitations. First, RE2 cannot perform

meta-analysis of correlated statistics. Although the traditional as-

sumption of independence of statistics has been valid in conven-

tional study designs, it can be invalidated in new research designs.

For example, in cross-disease meta-analyses, it is common that some

controls are used in more than one study, which can cause correl-

ations of statistics (Dichgans et al., 2014; Kar et al., 2016;

Moskvina et al., 2013). Thus, in cross-disease analyses, both hetero-

geneity and correlations can occur. In a cross-tissue eQTL analysis

(Sul et al., 2013), the intra-individual similarity of gene expression

levels between different tissues can cause the correlations of statis-

tics. To account for these correlations, Lin and Sullivan extended FE

(Lin and Sullivan, 2009). However, for RE methods, no solutions

have been suggested. Recently, Han et al. developed a decoupling

approach that makes the statistics independent (Han et al., 2016).

The transformed data can be used for RE2. However, the optimality

of this approach has not been evaluated yet. The second limitation

of RE2 is that the identified variants by RE2 and FE overlap sub-

stantially. This is because RE2 is designed as a stand-alone method

that captures variants with and without heterogeneity. However, in

most of the meta-analyses of GWASs, it is essential to apply FE be-

fore applying RE2, because detecting variants with homogeneous ef-

fects is of primary interest. To the best of our knowledge, all

investigators who employed RE2 for meta-analyses of GWASs used

RE2 coupled with FE. Considering this practical situation, the cur-

rent implementation of RE2 could be suboptimal.

In the present study, we propose a new method, called RE2C,

which increases the power of RE2 in two ways. First, we generalized

the likelihood model of RE2 to account for correlations of statistics

and to achieve optimal power. To estimate the maximum likelihood

estimators of parameters efficiently, we developed an optimization

procedure based on spectral decomposition of the variance-

covariance matrix. Second, we modified the statistic to focus on the

heterogeneous effects that cannot be detected by FE. This modifica-

tion increased the power to identify new associations after the appli-

cation of FE. The statistic does not follow a known asymptotic

distribution; therefore, we developed an efficient and accurate P-value

approximation procedure using analytical decomposition of the statis-

tic. In our simulations, RE2C achieved a dramatic increase in power

compared with competing approaches, such as the decoupling ap-

proach (71% vs. 21%) when the statistics were correlated. Even

when the statistics were uncorrelated, RE2C achieved a modest in-

crease in power. Applications to real genetic data demonstrated that

RE2C improved the significances of the associated variants. RE2C is

efficient and can meta-analyze one hundred GWASs within one day.

The software is available at http://software.buhmhan.com/RE2C.

2 Materials and methods

2.1 Existing meta-analysis methods for independent

statistics
2.1.1 Fixed effects model

The FE method assumes that the magnitude of the true effect is com-

mon or fixed in every study in the meta-analysis. The inverse-

variance-weighted effect-size method (Cochran, 1954; de Bakker

et al., 2008; Fleiss, 1993; Mantel and Haenszel, 1959) and the

weighted sum-of-z-scores method (de Bakker et al., 2008; Han and

Eskin, 2011; Zaykin, 2011) are used widely. We only describe

the former, because the two methods are approximately equivalent

(Lee et al., 2016). Let X1; . . . ; XN be the effect-size estimates, such

as log odds ratios or regression coefficients, in N independent studies.

Under the FE model, the observed effect Xi of study i is the sum

of the true common effect l and the within-study error ei:

Xi ¼ lþ ei:

If the sample sizes of the studies are sufficiently large, Xi is normally

distributed. Let SE(Xi) be the standard error of Xi and let

Vi¼ SE(Xi)
2. It is common practice to use the estimated sample vari-

ance for Vi. Let Wi ¼ Vi
�1 be the inverse variance. The inverse-

variance-weighted effect-size estimator is the sum of Xi weighted

with weights Wi:

XFE ¼
P

WiXiP
Wi

: (1)

The variance of XFE is

VFE ¼
1P
Wi

:

It follows that the standard error of XFE is SE XFEð Þ ¼
P

Wið Þ�1=2.

Note that SEðXFEÞ is minimized only if the weights are inverse vari-

ances, which explains the method’s name (Cochran, 1954; Greene,

2012; Lee et al., 2016). We can then build a summary z-score,

ZFE ¼
XFE

SE XFEð Þ ¼
P

WiXiffiffiffiffiffiffiffiffiffiffiffiffiP
Wi

p ;

which follows N 0;1ð Þ under the null hypothesis of no association

ðH0 : l ¼ 0Þ. The P-value can be calculated as

pFE ¼ 2U � ZFEj jð Þ;

where U is the cumulative density function of the standard normal

distribution.

2.1.2 Random effects model (traditional)

In contrast to FE, the RE method models heterogeneity explicitly

and assumes that the true value of the effect size li of each study is

sampled from an underlying distribution. Suppose that the distribu-

tion has mean l and variance s2. The observed effect Xi is then the

sum of the common effect l and the deviation of the ith study’s

observed effect from l, say di ¼ ðli � lÞ þ ei (Cochran, 1954) such

that

Xi ¼ lþ di;

where the within-study error ei is uncorrelated with the true effect

sizes li. The variance in Xi is the sum of the between-study variance

and the within-study variance (Western and Bloome, 2009),

V dið Þ ¼Wi
�1 þ s2:

The most popular approach to estimate s2 is the method of moments

proposed by DerSimonian and Laird (DerSimonian and Laird,

1986, 2015). Given the estimated between-study variance bs2, the RE

effect size is calculated similarly to Equation (1):

XRE ¼
P

w�i XiP
w�i

;

where the weights are now w�i ¼ Wi
�1 þbs2

� ��1
instead of Wi.

Note that SE XREð Þ ¼
P

w�i
� ��1=2

.
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Similarly to FE, we can construct a z-score statistic

ZRE ¼
XRE

SE XREð Þ ;

and the P-value is

pRE ¼ 2U � ZREj jð Þ :

The traditional RE approach is equivalent to a likelihood ratio test

that assumes the same heterogeneity under both the null and the al-

ternative hypotheses (Han and Eskin, 2011). This assumption can

be conservative in GWASs; therefore, RE has limited power in

GWASs (Han and Eskin, 2011).

2.1.3 RE2 (Han and Eskin)

Han and Eskin proposed a modified RE method (RE2) that has bet-

ter power than RE or FE under conditions of effect size heterogen-

eity (Han and Eskin, 2011). The key difference between RE and

RE2 is that the latter assumes no heterogeneity under the null hy-

pothesis. This assumption is appropriate in many situations of

GWASs where we expect that the effect sizes are all zero under the

null hypothesis. The method is a likelihood ratio test that has the

fixed parameters l ¼ 0 and s2 ¼ 0 under the null hypothesis, as

follows:

Lo ¼
Y

i

1ffiffiffiffiffiffiffiffiffiffi
2pVi

p exp � X2
i

2Vi

� �
; (2)

L1 ¼
Y

i

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p Vi þ s2ð Þ

p exp � Xi � lð Þ2

2 Vi þ s2ð Þ

 !
: (3)

The roots of the partial derivatives of the equation (3) are not in a

closed form; therefore, the maximum likelihood (ML) estimates bl
and bs2 must be determined by using an iterative procedure. Hardy

and Thompson suggested a simple and efficient procedure based on

the Newton–Raphson method (Han and Eskin, 2011; Hardy and

Thompson, 1996). Given bl and bs2, the likelihood ratio statistic can

be constructed as follows:

SRE2 ¼
X

log
Vi

Vi þbs2

� �
þ
XX2

i

Vi
�
X Xi � blð Þ2

Vi þbs2
:

The value of s2 is restricted to be non-negative; therefore, as shown

by Self and Liang (Self and Liang, 1987), the statistic follows a

50:50 mixture of v2
1 and v2

2 asymptotically. Thus, the asymptotic P-

value is

p�RE2 ¼ 0:5 � P v2
1 � SRE2

� �
þ 0:5 � P v2

2 � SRE2

� �
In practice, because of the small number of studies (N), a tabulated

correction is necessary for an accurate P-value. We pre-calculated

the P-value table and the P-value is

pRE2 ¼ kðN; SRE2Þ � p�RE2

where kðN; SRE2Þ is the small sample correction factor.

2.2 Existing meta-analysis methods for correlated

statistics
2.2.1 The Lin-Sullivan method

Historically, meta-analysis methods focused mainly on summarizing

independent estimates. However, in recent research design, the stat-

istics are often correlated, for example, because of overlapping sub-

jects, which is common in cross-disease meta-analysis. Lin and

Sullivan (Lin and Sullivan, 2009) developed a meta-analysis solution

to account for these correlations. First, they showed that the correl-

ations of statistics could be calculated analytically. For example, in

a case/control design, the correlation between statistics of studies i

and j is approximated as

cij � nij0

ffiffiffiffiffiffiffiffiffiffiffiffi
ni1nj1

ni0nj0

r
þ nij1

ffiffiffiffiffiffiffiffiffiffiffiffi
ni0nj0

ni1nj1

r� �
=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ninj

� �q
where ni, nj and nij are the total number of ith and jth studies and

the number of overlapping subjects between the two (ith and jth), re-

spectively. Subscripts 1 and 0 denote the case and control status. Let

C ¼ rij

	 

N�N

be the correlation matrix of X ¼ X1; . . . ; XNf g. Given

C, one can easily calculate the variance-covariance matrix, X: Lin

and Sullivan suggested a statistic:

XLS ¼
~e 0X�1X

~e 0X�1~e

where ~e is an N � 1 vector with ones. The variance is Var XLSð Þ
¼ ð~e0X�1~eÞ�1: Therefore, one can obtain a z-score as well as a

P-value (Lin and Sullivan, 2009). This method does not assume het-

erogeneity; therefore, it can be considered as an extension of FE to

account for correlations.

2.2.2 The decoupling method

Recently, Han et al. (Han et al., 2016) proposed a method

called "decoupling" that can transform correlated data into independ-

ent data. As Lin and Sullivan showed, in many situations, the correl-

ation matrix C can be approximated analytically before the meta-

analysis. Han et al. calculate a transformed covariance structure:

Xdecoupled ¼ diag ~e 0 diag sð Þ � C � diag sð Þð Þ�1
� ��1

where s is the vector of standard errors, and diag(s) is a diagonal ma-

trix whose diagonals are s. The updated standard errors then become

SEdecoupled;i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xdecoupled½i; i�

q
where Xdecoupled½i; i� denotes the ith diagonal element of Xdecoupled.

The data become independent, and thus can be used for RE2 as well

as FE. Han et al. showed that when the decoupled data are used for

FE, the method is analytically equivalent to the Lin-Sullivan method.

Han et al. also showed that under conditions of heterogeneity, RE2

with decoupling (Decoupling-RE2) shows a higher power than FE

with decoupling. However, the optimality of Decoupling-RE2 has

not been evaluated.

2.3 RE2C
In the present study, we propose RE2C, a powerful random effects

method for meta-analysis of GWASs. RE2C is built upon RE2, but

with two modifications that improve its power: (1) accounting opti-

mally for correlations, and (2) focusing on heterogeneous effects

conditioned on the application of FE. C in RE2C refers to both cor-

relations and conditioning.

2.3.1 Optimizing for the meta-analysis of correlated datasets

We extended the RE2 model to include correlations between statis-

tics. Let x be the length n vector denoting the observed effect sizes.

Then, we could build a model

x ¼ l~e þ uþ e

where u 	 Nð0; s2IÞ are random effects reflecting between-

study heterogeneity and e 	 Nð0;RÞ are random errors. Given
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the correlation of statistics C, which can be approximated

analytically using the Lin-Sullivan approach (Lin and

Sullivan, 2009), we have R ¼ diag sð Þ �C � diagðsÞ where s is the

vector of the standard errors. Then, the variance-covariance

matrix of x is

H ¼ Var xð Þ ¼ Rþ s2I :

The likelihood functions under the null and alternative hypotheses

become

L0 ¼ ð2pÞ�
n
2 � jRj�

1
2 � exp �1

2
x0R�1x

� �

L1 ¼ ð2pÞ�
n
2 � Hj j�

1
2 � exp �1

2
x� l~eð Þ0H�1 x� l~eð Þ

� �
;

To build a likelihood ratio test, we must find the maximum likeli-

hood estimation (MLE) of the parameters l and s2. Previously, for

independent statistics, RE2 utilized an iterative procedure suggested

by Hardy and Thompson (Hardy and Thompson, 1996). However,

their method only considers independent statistics. Therefore, we

developed an optimization procedure that can be applied efficiently

for both independent and correlated statistics. We chose to use the

technique developed for the restricted maximum likelihood (REML)

framework. The key idea of our optimization procedure is to trans-

form the two-dimensional search into a one-dimension search using

the technique that was developed by Patterson and Thompson

(Patterson and Thompson, 1971). A similar technique has been used

previously to correct for population stratifications (Kang et al.,

2008).

We decomposed the observations using a direct sum, where

one of the decomposed observations is the observation for the

REML function after integrating out the fixed effects. That is, we

decomposed x into two matrix-vector multiplications of S and Q

such as:

x ¼ Sx � Qx;

where S is a transformation matrix of rank n� 1 and Q is a trans-

formation matrix of rank 1. The specific forms of S and Q for our

purpose are described below. The properties of the direct sum mean

that the log-likelihood function of the mixed model l1ð Þ can be

decomposed into two log-likelihood functions of independent obser-

vations as follows:

l1 ¼ l01 þ l001 :

The projection matrix S is an idempotent and symmetrical matrix

that integrates out the fixed effects (mean) of the observation x. In

our problem, matrix S is:

S ¼ I �~e ~e0 �~e
� ��1

~e 0
h i

¼

1 0

0 1
. . .

0

0

..

.

0 0

. .
. ..

.

. . . 1

266666664

377777775�
1

n

1 1

1 1
. . .

1

1

..

.

1 1

. .
. ..

.

. . . 1

266666664

377777775 :

Here, ~e is a vector of ones of size n. The matrix S satisfies

E Sxð Þ ¼ 0, i.e. S �~e ¼~0. Then, matrix Q becomes:

Q ¼~e 0H�1 :

Matrix Q satisfies the conditions covðSx;QxÞ ¼ 0 and SHQ0 ¼ 0.

Next, we considered the full log-likelihood l1 with the parameters of

interest s2 and l as follows

l1 l; s2jx
� �

¼ �1

2
nlog 2pð Þ þ log Hj j þ x� l~eð Þ0H�1 x� l~eð Þ
	 


S is an orthogonal projection matrix; therefore, S is in the form of

AA0, where A is an n� ðn� 1Þ matrix with orthonormal columns,

such that A0A ¼ I. To reduce the complexity of the restricted likeli-

hood function l01 for Sx, Harville (1974) suggested the use of the re-

stricted likelihood function for A0x, where the MLE for the two

likelihood functions are the same. As Harville showed, the restricted

likelihood can be shown as:

l01 s2jA0x
� �

¼ � 1

2
n� 1ð Þlog 2pð Þ þ log A0HA

�� ��þ A0xð Þ0 A0HAð Þ�1
A0xð Þ

h i
¼ �1

2
nlog 2pð Þ þ log Hj j þ x� bl~eð Þ0H�1 x� bl~eð Þ
	 


þ1

2
log 2pð Þ þ log~e0~e

�� ��� log~e 0H�1~e
�� ��	 


;

where bl ¼~e 0H�1x � ~e 0H�1~e
� ��1

. Let the orthogonal matrix, B, be the

eigenvectors of the matrix A0HA such that B0A0HAB is diagonal. Let

P ¼ AB. The matrix P then has the following properties: (i) P0P ¼ I,

(ii) PP0 ¼ S, (iii) SP ¼ P and (iv) P0S ¼ P0. Using the spectral decom-

position framework, the symmetric matrix SHS can be shown as:

SHS ¼ PdiagðnSRS þ s2~1ÞP0 (4)

where nSRS is the eigenvalues of the matrix SRS, where at least one

value is zero, and the n� ðn� 1) matrix P has the eigenvectors asso-

ciated with nSRS as the columns. We use ~1 to refer to a vector of

ones of size n� 1. Note that nSHS is equal to nSRS þ s2~1. Using the

properties of the matrix P and S, we have

P0HP ¼ P0SHSP ¼ diagðnSRS þ s2~1Þ:

Here, we considered the full (not restricted) likelihood function

whose l is substituted with bl.

l1 s2jx
� �

¼ �1

2
nlog 2pð Þ þ log Hj j þ x� bl~eð Þ0H�1 x� bl~eð Þ
	 


:

For our problem of finding the MLE, this modified function is suffi-

cient, because it satisfies that l ¼ bl at the MLE. Note that although

we focused on the full likelihood function to build a likelihood

ratio test, the same optimization procedure below can be applied

to the restricted likelihood function. Following Equation (4), we

could define the generalized inverse of the matrix SHS, SHSð Þg,

which is

SHSð Þg ¼ PdiagðnSRS þ s2~1Þ�1P0:

Next, we could transform x� bl~eð Þ0H�1 x� bl~eð Þ into a simpler ex-

pression as follows:

x� bl~eð Þ0H�1 x� bl~eð Þ ¼ x0S SHSð ÞgS0x

¼ x0PdiagðnSRS þ s2~1Þ�1P0x;

Thus, the likelihood becomes

l1 s2jx
� �

¼ �1

2
nlog 2pð Þ þ

Xn

i¼1

log nR;i þ s2
� ��� ��þXn�1

i¼1

g2
i

nSRS;i þ s2

� �" #
;
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where the scalar value nR;i is the ith eigenvalue of the matrix R, and

gi is the ith component of the vector P0x. Now, the transformation

has reduced the number of parameters to one (s2). Thus, we can use

a simple Newton-Raphson procedure to estimate the unknown par-

ameter, s2. The first and the second derivatives of the transformed

log-likelihood functions are:

dl1
ds2
¼ �1

2

Xn

i¼1

1

nR;i þ s2
� � þ 1

2

Xn�1

i¼1

g2
i

nSRS;i þ s2
� �2

 !
;

d2l1

d s2ð Þ2
¼ 1

2

Xn

i¼1

1

nR;i þ s2
� �2

� 1

2

Xn�1

i¼1

g2
i

nSRS;i þ s2
� �3

 !
:

In summary, using this optimization procedure, the parameter

estimation needs only the application of the Newton-Raphson

method to a single parameter, which is very efficient. Thus, we have

a high chance of obtaining the global optimum using a grid search

as the starting point for the Newton-Raphson procedure. After we

find the MLE, we can build a likelihood ratio test statistic,

log
Rj j

Rþbs2I
��� ���þ x0R�1x� x�~eblð Þ0 Rþbs2I

� ��1
x�~eblð Þ

264
375 5ð Þ

which follows a 50:50 mixture of v2
1 and v2

2 asymptotically.

2.3.2 Focusing on heterogeneous effects

We then modified the test procedure of RE2 to focus on heteroge-

neous effects. In most meta-analyses of GWASs, detecting variants

with homogeneous effects is of primary interest. For this reason, it is

often essential to apply FE before applying RE2, while accounting for

the increased multiple testing burden. We surveyed the literature that

cited and used RE2; at least in all the> 50 papers that we examined,

the studies used RE2 coupled with FE. Thus, considering this unique

situation of meta-analysis of GWASs, where the prior application of

FE is mandatory, we can improve the power of RE2 by focusing on

the heterogeneous effects that would not be identified by FE.

Specifically, we designed a statistic as follows,

SRE2C ¼
SRE2 if pRE2 
 pFE

0 if pRE2 > pFE

(

In short, this statistic can become significant only if the RE2 P-

value is more significant than the FE P-value. Although the statistic

looks simple, calculating the P-value of this statistic is non-trivial.

Obviously, unlike RE2, this statistic does not follow a known

asymptotic distribution. One possible way is to use a resampling ap-

proach that samples null z-scores repeatedly. However, P-values

typically observed in GWASs are extremely small < 5� 10�8
� �

. To

estimate such a small P-value using resampling, a large number of

samplings are required. Thus, in GWASs where millions of markers

are analyzed, resampling can be very slow.

To approximate the P-value of the new method efficiently, we

used the following strategy. Recall that the RE2 statistic is a likeli-

hood ratio statistic that measures the difference between the two

likelihoods: L0 in Equation (2) and L1 in Equation (3). We intro-

duced an intermediate likelihood function,

Lint ¼
Y

i

1ffiffiffiffiffiffiffiffiffiffi
2pVi

p exp � Xi � lð Þ2

2Vi

 !

which is similar to L1, but with a restriction of s2 ¼ 0: Then, the

RE2 statistic can be decomposed into the sum of the difference

between L0 and Lint and the difference between Lint and L1, as fol-

lows (Han and Eskin, 2011):

SRE2 ¼ ln
sup L1 s2; ljXi;Vi

� �� 
sup L0 ØjXi;Við Þf g

� �2

¼ ln
sup Lint ljXi;Við Þf g
sup L0 ØjXi;Við Þf g

� �2

þ ln
sup L1 s2; ljXi;Vi

� �� 
sup Lint ljXi;Við Þf g

� �2

¼
XX2

i

Vi
�
X Xi �XFEð Þ2

Vi

( )

þ
X

log
Vi

Vi þ s2

� �
þ
X Xi �XFEð Þ2

Vi
�
X Xi � blð Þ2

Vi þ s2

( )

¼ SFE þ SHet

where Ø indicates an empty set. The first statistic, SFE, is equal to

the square of the FE statistic (Z2
FE). The second statistic, SHet, tests

for nonzero between-study variance, similar to the Cochran’s Q test.

The two statistics are independent under the null hypothesis (Self

and Liang, 1987). Asymptotically, SFE follows v2
1, and SHet follows a

50:50 mixture of 0 and v2
1. However, the conditions for them to fol-

low their asymptotic distributions are different. Under the assump-

tion that the effect size (Xi) follows a normal distribution due to a

large sample in each study, which is the case in GWASs, SFE follows

v2
1 regardless of the number of studies (N). However, even under the

normality assumption, SHet follows a 50:50 mixture of 0 and v2
1 only

if N is large. N is small in typical meta-analysis of GWAS; therefore,

the true distribution of SHet can deviate greatly from the asymptotic

distribution. For our method, we approximated and tabulated the

distribution of SHet empirically for every possible N.

In the previous section, we extended the RE2 model to account

for correlations between statistics. Equation (5) can also be decom-

posed into two parts,

SFE ¼ x0R�1x� x�~eXLSð Þ0R�1 x�~eXLSð Þ
	 


;

SHet ¼
"

log
Rj j

Rþbs2I
��� ���þ x�~eXLSð Þ0R�1 x�~eXLSð Þ

� x�~eblð Þ0 Rþbs2I
� ��1

x�~eblð Þ
#
:

where XLS is the Lin-Sullivan estimator of l, which is

sup Lint ljx;Rð Þf g. SFE is equivalent to the square of the z-score of

the Lin-Sullivan method in this situation.

Now that the RE2 statistic can be decomposed into SFE and SHet

whose null distributions are known, given an observed RE2 statistic,

its P-value can be interpreted as an integral over a region in the two-

dimensional space. Specifically, in Figure 1, the RE2 P-value is the

volume of the region excluding the bottom left triangle (i.e. region

Aþ B). However, in RE2C, we only consider the region where

pRE2 
 pFE. Thus, for each SFE, we can search for SHet that would

satisfy pRE2 
 pFE, or

k N; SFE þ SHetð Þ � ½0:5 � P v2
1 > SFE þ SHet

� �
þ 0:5 � P v2

2 > SFE þ SHet

� �
� 
 P v2

1 > SFE

� �
:

Let this lower boundary of SHet that satisfies pRE2 
 pFE be

SHet:lowðSFE;NÞ. This boundary is plotted as a dashed line in

Figure 1. Then, given an observed RE2C statistic dSRE2C , we calcu-

lated the P-value as follows. We divided the range of SFE into K
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small bins (e.g. 1000 bins in [0,50]), denoted as xi (i ¼ 1; . . . ; K).

The approximated P-value is

pRE2C�
XK

i¼1

P SHet >maxð dSRE2C �xi; SHet:lowðxi;NÞÞ
� �

�v2
1ðxiÞ �Dx;

where Dx is the width of the bins. That is, we calculated the prob-

ability that SHet would be large enough to satisfy SRE2C� dSRE2C for

every bin of SFE, and integrated them together. We took the max-

imum function because if SHet is smaller than SHet:lowðxi;NÞ, then

SRE2C¼0 by definition. Thus, we calculated the volume of region A

in Figure 1. As a result, it always satisfies the equation:

pRE2C < pRE2

as long as pRE2 
 pFE, because we have removed region B in Figure

1. This shows that the RE2C P-value can never be less significant

than the RE2 P-value when those methods are used coupled with

FE, for the variants with pRE2 
 pFE. Note that the calculation of

the P-value is efficient because we have pre-calculated SHet:lowðx;NÞ
for every x and N and the cumulative density function of SHet for

every N. Thus, the computational complexity is only O(K).

Moreover, the complexity is not dependent on how small the

P-value is, unlike in the resampling approaches.

3 Results

3.1 Simulations
We evaluated the performance of RE2C using simulations. We

assumed seven studies, each of which comprised 2; 000 individuals,

half of which were controls and half were cases. We assumed a SNP

with a minor allele frequency (MAF) of 0.1, following the Hardy-

Weinberg equilibrium.

3.1.1 False positive rate

We assumed the null hypothesis of no association and evaluated the

false positive rate of RE2C. We repeated the null simulations 109

times and estimated the false positive rate as the proportion of the re-

peats whose P-value was 
 a, where a 2 f5� 10�2;5� 10�4; . . . ;

5� 10�8g. Table 1 shows that the false positive rates of RE2C were

well calibrated. We then assumed that the statistics were correlated,

with a correlation coefficient q¼0.4. The false positive rates for the

correlated statistics were also controlled (Table 1). There was a slight

conservative tendency, which was possibly caused by the errors in our

approximation of P-values using bins. However, the discrepancies

were very small.

3.1.2 Power for independent statistics

We compared the powers of FE, RE2 and RE2C. We generated

10 000 sets for meta-analysis, where we again assumed seven studies

with sample size equal to 2000 and a MAF of 0.1. In our simula-

tions, we considered the practical situations that FE was already

applied before the application of RE2 or RE2C. Thus, we considered

the combined use of RE2 (or RE2C) with FE where multiple tests

were accounted. Specifically, the power of FE was the proportion of

the sets whose P-value exceeded the genome-wide threshold

pGWAS ¼ 5� 10�8. The power of RE2 (or RE2C) was the propor-

tion of the sets whose FE or RE2 (RE2C) P-value exceeded

pGWAS=2 ¼ 2:5� 10�8. To model the effect size heterogeneity in our

simulations, we assumed four different effect size distributions. Let

l be a specific, assumed target log odds ratio. The four distributions

were as follows, in order of increasing amount of heterogeneity.

First, we assumed a unimodal distribution that was a normal distri-

bution with mean l and standard error l, truncated to [0, 2l].

Second, we assumed a uniform distribution spanning ½0; 2l�. Third,

we assumed a bimodal distribution that followed N(0, l2) truncated

to [0, l] with one half probability, and N(2l, l2) truncated to [l,

2l] with another half probability. These three distributions all had

mean l. Finally, we assumed a distribution representing opposite ef-

fects, which followed N(-1.2l, l2) with one-half probability and

N(1.2l, l2) with another half probability. Although opposite effects

between studies can be rare in genetic studies of the same disease,

they can occur in cross-disease meta-analyses or cross-tissue eQTL

analyses. Once we assumed one of the distributions above, we ran-

domly sampled bk, the log odds ratio in study k 2 1; . . . ;Kf g, from

the distribution. We then sampled the minor allele counts in control

and case samples assuming the control and case MAF, respectively.

The control MAF was assumed to be the same as the population

MAF (0.1), assuming a very small prevalence, and the case MAF

was MAFcases ¼ ebk �MAFcontrol=ð ebk � 1
� �

�MAFcontrol þ 1Þ. For

effective comparisons of power, we adjusted l for each distribution

such that the power of the most powerful method was approxi-

mately 70%.

Figure 2 shows the power comparison results. The powers of

RE2 and RE2C are shown as stacked bars. We assumed a prior ap-

plication of FE to random effect methods; therefore, we applied a

different color scheme to the proportion of datasets determined as

significant by FE (light grey) and the proportion of datasets where

the random effect methods newly identified as significant (dark

grey). Note that the height of light grey bar is slightly shrunk in

RE2/RE2C compared in FE, because the significance level was ad-

justed to one-half. As the heterogeneity increases, the combined use

of the random effect methods with FE gave increasingly higher

powers than compared with using FE alone, as expected. Under all

tested scenarios of effect size distributions, RE2C was the most

powerful. RE2C increased power of RE2 by 1.55, 1.85, 2.07 and

2.98% for unimodal, uniform, bimodal and opposite effects, re-

spectively. Although the increase in the absolute amount of power

was modest, the increase in relative power gain compared with FE

was non-negligible. For example, in the unimodal distribution, the

power gain of RE2C from FE was 1.71%, which was more than 10

times greater than that of RE2 (0.16%).

Fig. 1. Two-dimensional representation of SFE and SHet . Given the observed

statistic bS RE2C , pRE2C is the probability in area A, while pRE2 is the probability

in areas A and B

Table 1. False positive rates of RE2C

a 5.0�10�2 5.0�10�4 5.0�10�6 5.0�10�8

Independent input 4.8�10�2 4.8�10�4 4.7�10�6 5.5�10�8

Correlated input (q¼ 0.4) 4.7�10�2 4.6�10�4 4.5�10�6 4.0�10�8
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Fig. 2. Power of FE, RE2 and our new RE2C method for the meta-analysis of independent statistics. Assuming the statistics are independent, we simulated various

effect size distributions with differing amounts of heterogeneity. We considered the scenario that RE2 or RE2C is additionally applied to FE while accounting for

multiple testing. The power of RE2 and RE2C are shown as two-color stacked bars, where we colored the proportion identified by FE as significant in light grey

and the proportion that RE2/RE2C additionally identified as significant in dark grey
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Fig. 3. Power of Lin-Sullivan (LS), Decoupling-RE2 (DR2) and our new RE2C method for meta-analyzing correlated statistics. Assuming statistics are correlated

with correlation coefficient q, we simulated various effect size distributions with differing amount of heterogeneity. We considered the scenario that DR2 or RE2C

is additionally applied to LS while accounting for multiple testing. DR2 and RE2C power is shown as two-color stacked bars, where we colored the proportion that

LS was significant in light grey and the proportion that DR2/RE2C additionally identified as significant in dark grey
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3.1.3 Power for correlated statistics

Using a similar simulation scheme, we evaluated the power of RE2C

under the situation that the statistics were correlated. After we

sampled the effect sizes of the studies, we generated the observed effect

sizes assuming that they were correlated with correlation coefficient q.

We assumed q¼0.1 and q¼0.4, and calculated the power for each

setting. The value q¼0.4 was derived from assuming a cross-disease

analysis with 2000 cases and 3000 shared controls (Wellcome Trust

Case Control Consortium, 2007). The competing approaches in this

simulation were the Lin-Sullivan (LS) and the Decoupling-RE2 (DR2)

methods. As described in the Methods, the Lin-Sullivan method is an

extended FE method to account for correlations. Decoupling-RE2

refers to the application of the transformed data by decoupling ap-

proach, which became independent, to RE2. Figure 3 shows that

RE2C outperformed the other methods greatly in all scenarios of effect

size distributions and correlations. For example, for the uniform distri-

bution where q¼0.4, RE2C achieved 71% power while the power of

Lin-Sullivan method and Decoupling-RE2 were only 23.8% and

21.4% respectively. Surprisingly, Decoupling-RE2 performed poorly

even for large heterogeneity when the correlations were high (q¼0.4).

This demonstrates that although the application of the decoupled data

to RE2 is possible, it may not provide optimal power.

3.2 Applications to real data
We wanted to evaluate the utility of RE2C for real data. To this

end, we used the cross-disease analysis data of Moskvina et al.

(Moskvina et al., 2013) who performed a meta-analysis of association

results for the Alzheimer’s disease (AD) and the Parkinson’s disease

(PD). Moskvina et al. examined the meta-analysis P-values of 10 loci

known to be associated with AD and 18 loci known to be associated

with PD. The two diseases shared some controls Nshared ¼ 5571ð Þ;
therefore, there were correlations between the statistics of the two dis-

eases. To account for these correlations, Moskvina et al. used the Lin-

Sullivan method. However, the same variant may have differing ef-

fects on the two diseases. Therefore, random effect methods might

help in association tests. We obtained the reported effect sizes (OR)

and P-values for these 28 loci from the table shown in their manu-

script. We then calculated the standard errors from the OR and

P-values, and used them for meta-analysis. We removed three loci

whose OR was 1.00 (because the paper reported only two digits

below zero), and applied RE2C to the remaining 25 loci.

Table 2 gives the details of the collected data and the meta-

analysis results. Out of 25 loci, LS was the most significant in 13

loci. In all the remaining 12 loci, RE2C was the most significant.

Note that for the 13 loci where LS was the most significant, RE2C

P-values were completely non-significant (pRE2C ¼ 1). This is be-

cause RE2C was designed to be used with FE (LS), but focusing only

on loci with heterogeneity. We also show the results of an RE2C im-

plementation with optimization for correlated statistics but without

the technique for focusing on heterogeneous effects (denoted as

RE2C*), which shows that focusing on heterogeneous effects im-

proved P-values at these 12 loci. Overall, these results showed that

Table 2. Cross-disease meta-analysis results of the Alzheimer’s disease and Parkinson’s disease based on the reported data from Moskvina

et al.

Methods

Parkinson Disease Alzheimer Disease LS DR2 RE2C* RE2C

Chr Base Pairs SNP OR P OR P P P P P

Alzheimer Disease

1 207 819 492 1-207819492 0.61 0.062 0.50 0.058 0.016 0.019 0.02389 1

2 127 892 810 rs6733839 1.07 0.0098 1.23 5.2E-5 0.00029 0.00033 0.00017 3.0E-5

6 47 327 031 rs9367271 1.11 0.0014 1.06 0.339 0.0017 0.0020 0.00279 1

7 143 106 884 rs7806047 0.87 0.001 0.89 0.151 0.0007 0.0008 0.00118 1

8 27 466 181 rs1532277 0.99 0.709 0.81 1.8E-6 0.024 0.0011 8.11E-05 1.5E-5

11 60 045 900 rs7949816 0.95 0.073 0.82 0.00075 0.0084 0.010 0.00589 0.0012

11 85 677 094 11-85677094 1.20 0.0055 1.26 0.057 0.0019 0.002 0.00314 1

19 01 032 228 rs56059558 0.86 0.0023 0.84 0.05 0.0008 0.0009 0.001302 1

19 45 392 254 rs6857 0.95 0.154 5.55 4.4E-92 0.0002 2.9E-53 3.24E-94 1.6E-95

19 51 724 326 rs200656 1.06 0.089 1.06 0.23713 0.055 0.06 0.07461 1

Parkinson Disease

1 155 135 036 rs35749011 1.43 6.1E-5 1.02 0.938 0.00012 0.00014 0.00022 1

2 135 592 245 rs6758044 1.12 1.2E-5 0.96 0.383 0.0005 0.0003 7.99E-05 1.5E-5

2 169 119 178 rs13392079 1.14 1.1E-6 0.95 0.296 0.0001 3.2E-5 6.07E-06 1.0E-6

3 161 114 968 rs336549 0.90 9.4E-6 1.05 0.275 0.0004 0.0002 4.68E-05 8.5E-6

3 182 760 073 rs10513789 1.11 0.0007 1.01 0.921 0.001 0.0012 0.00164 1

4 15 737 882 rs4698413 1.15 4.4E-9 0.98 0.651 5.6E-7 2.2E-7 5.38E-08 8.2E-9

4 77 146 751 rs56275416 1.15 2.0E-6 1.01 0.84 3.8E-5 4.1E-5 2.80E-05 4.9E-6

4 90 646 886 rs356165 0.76 1.2E-28 1.04 0.38 9.4E-21 8.0E-25 3.81E-28 3.2E-29

6 32 440 158 rs7453703 1.10 0.0006 1.20 0.00021 1.4E-5 1.7E-5 2.68E-05 1

8 16 718 969 rs587738 1.10 0.00015 1.02 0.616 0.0008 0.0009 0.00117 1

8 89 647 688 8-89647688 1.63 1.9E-5 1.50 0.078 1.2E-5 1.4E-5 2.26E-05 1

12 40 582 993 rs2263418 1.24 1.5E-8 0.93 0.354 1.4E-6 5.6E-7 9.45E-08 1.5E-8

12 123 110 365 rs6489158 0.91 0.00018 0.93 0.119 0.0001 0.0002 0.00023 1

16 31 103 796 rs2359612 1.12 3.3E-6 1.08 0.073 2.8E-6 3.4E-6 5.55E-06 1

17 43 804 317 rs9897399 0.75 1.5E-19 0.92 0.107 1.4E-16 4.6E-17 8.19E-18 8.3E-19

We compared the results of the Lin-Sullivan method (LS), Decoupling-RE2 (DR2) and RE2C. RE2C* refers to an RE2C implementation with optimization for

correlated statistics but without the technique for focusing on heterogeneous effects. The most significant P-value among all methods is in bold-face.
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if RE2C is used in combination with LS, a high association test

power to detect both loci with and without heterogeneity is ob-

tained. Interestingly, RE2C found two loci (rs4698413 and

rs2263418) as genome-wide significant < pGWAS ¼ 2:5� 10�8
� �

that were not identified by LS alone.

We also performed additional real data analyses where statistics

were uncorrelated, to demonstrate the performance of RE2C for

combining independent datasets. The results are shown in

Supplementary Materials (Supplementary Table S1).

3.3 Efficiency
We evaluated the efficiency of the methods (Table 3). To this end,

we measured the running time of methods for the meta-analysis of

differing numbers of studies (from 2 to 100). We timed how long it

took to analyze 1 000 000 SNPs. We used the software R to run FE

and RE2C, and Java to run RE2. RE2C was highly efficient. The

estimated time to analyze a million SNPs in a meta-analysis combin-

ing 100 studies was 0.07 hours for RE2 and 0.44 hours for RE2C.

Our results imply that RE2C is suitable for future large-scale meta-

analyses, where the number of datasets to be combined is expected

to grow.

4 Conclusion

We proposed a new random effects model meta-analysis method

RE2C, which has an improved power for the detection of heteroge-

neous effects between studies. We optimized the statistic for meta-

analyzing correlated statistics, and modified the statistics to only focus

on heterogeneous effects. We expect that our method will be applied

to a wide range of study designs in the future, such as cross-disease or

cross-population studies, to help identify new associations.
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