
Neurocrit Care (2022) 36:974–982
https://doi.org/10.1007/s12028-021-01405-y

ORIGINAL WORK

Machine Learning for Early Detection 
of Hypoxic-Ischemic Brain Injury After Cardiac 
Arrest
Ali Mansour1,2†, Jordan D. Fuhrman3†, Faten El Ammar1, Andrea Loggini1, Jared Davis1, Christos Lazaridis1,2, 
Christopher Kramer1,2, Fernando D. Goldenberg1,2*  and Maryellen L. Giger3*

© 2021 Springer Science+Business Media, LLC, part of Springer Nature and Neurocritical Care Society

Abstract 

Background: Establishing whether a patient who survived a cardiac arrest has suffered hypoxic-ischemic brain injury 
(HIBI) shortly after return of spontaneous circulation (ROSC) can be of paramount importance for informing families 
and identifying patients who may benefit the most from neuroprotective therapies. We hypothesize that using deep 
transfer learning on normal-appearing findings on head computed tomography (HCT) scans performed after ROSC 
would allow us to identify early evidence of HIBI.

Methods: We analyzed 54 adult comatose survivors of cardiac arrest for whom both an initial HCT scan, done early 
after ROSC, and a follow-up HCT scan were available. The initial HCT scan of each included patient was read as normal 
by a board-certified neuroradiologist. Deep transfer learning was used to evaluate the initial HCT scan and predict 
progression of HIBI on the follow-up HCT scan. A naive set of 16 additional patients were used for external validation 
of the model.

Results: The median age (interquartile range) of our cohort was 61 (16) years, and 25 (46%) patients were female. 
Although findings of all initial HCT scans appeared normal, follow-up HCT scans showed signs of HIBI in 29 (54%) 
patients (computed tomography progression). Evaluating the first HCT scan with deep transfer learning accurately 
predicted progression to HIBI. The deep learning score was the most significant predictor of progression (area under 
the receiver operating characteristic curve = 0.96 [95% confidence interval 0.91–1.00]), with a deep learning score of 
0.494 having a sensitivity of 1.00, specificity of 0.88, accuracy of 0.94, and positive predictive value of 0.91. An addi-
tional assessment of an independent test set confirmed high performance (area under the receiver operating charac-
teristic curve = 0.90 [95% confidence interval 0.74–1.00]).

Conclusions: Deep transfer learning used to evaluate normal-appearing findings on HCT scans obtained early after 
ROSC in comatose survivors of cardiac arrest accurately identifies patients who progress to show radiographic evi-
dence of HIBI on follow-up HCT scans.
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Introduction
Despite the many advances in the field of resuscitation 
post cardiac arrest, hypoxic-ischemic brain injury (HIBI) 
leaves many survivors with severe neurological disability 
[1–4].

Patients who remain comatose at 24–72  h or more 
after resuscitation undergo neuroprognostication, aimed 
to detect signs of HIBI and predict projected long-term 
neurological function. Four main categories of tests are 
used to aid in achieving this purpose: clinical examina-
tion, electrophysiology, biomarkers, and neuroimag-
ing [5]. The time at which these tests are done and their 
association with outcome also vary. Although clinical 
findings, such as pupillary reflexes and somatosensory 
evoked potentials, remain the most robust tests associ-
ated with outcome, biomarkers, electroencephalography, 
and imaging have inconsistencies that make interpreting 
them more dubious and subject to caution. Therefore, a 
multimodal approach to prognostication that factors in 
multiple tests is often recommended [6, 7].

The radiographic hallmark of HIBI is cerebral edema, 
commonly evaluated on head computed tomography 
(HCT) as effacement of sulci and diminished gray–white 
matter differentiation in cortical and deep brain struc-
tures. Although magnetic resonance imaging (MRI) is 
arguably a more accurate modality with higher resolu-
tion and capacity at identifying HIBI, it is not always 
feasible, and HCT remains the more prevalent and acces-
sible neuroimaging modality for this patient population. 
Cerebral edema is often a progressive phenomenon that 
may or may not be appreciated by expert radiologists on 
initial HCT. Although there is presently no consensus 
on the optimal timing for performing brain computed 
tomography (CT) for neuroprognostication, most stud-
ies evaluate imaging done within the first 24 h, in which 
sensitivity of detecting cerebral edema is as low as 14% 
and increases to approximately 60% between 24  h and 
7  days [7, 8]. Absolute decrease in, difference between, 
and ratio between gray and white matter density (GWM 
ratio) have been investigated in relation to neurological 
outcome. Although an absolute decrease in gray matter 
density alone is an unreliable predictor of poor neurolog-
ical outcome, the predictive value increases when GWM 
ratio is considered. The main limitations to those studies 
include the time at which the analyzed HCT scan was 
performed (time from return of spontaneous circulation 
[ROSC] to HCT ranges anywhere from 4 to 72  h), and 
the choice of specific regions of interest within the brain 
to compare gray and white matter [9–12].

Recently, developments in machine learning consider-
ably improved automatic execution of computer vision 
tasks in medical imaging, including disease detection, 
diagnosis, and segmentation [9]. Notably, convolutional 
neural networks—a family of deep learning architec-
tures that identify desirable image features through 
optimized convolutional filters—perform comparably 
to experienced radiologists, with the added benefits of 
higher reading speeds and consistency. However, these 
models generally require a large amount of training data, 
often unavailable in medical imaging [13]. Therefore, 
many deep learning schemes have been developed in an 
attempt to circumvent this obstacle. One such technique 
is transfer learning, or the use of a model pretrained to 
perform a task in one domain that is then applied to a 
new domain [9, 13–16]. This approach preserves features 
that are useful for classification of the original image 
domain to classify images in the transferred domain 
while minimizing the need for new training data.

We hypothesize that progression of HIBI identified on 
follow-up HCT is in fact readily identifiable on an early 
initial scan and that the lower sensitivity observed within 
the first 24  h is more likely attributable to the subtle 
changes that evade the detection threshold of the human 
eye. As such, in a cohort of comatose survivors of cardiac 
arrest with reportedly normal HCT findings on presenta-
tion, we use machine learning to predict progression or 
not of HIBI only on the basis of the very first HCT scan.

Methods
Study COHORT
This is a case–control analysis of patients who suffered 
cardiac arrest, be it in the hospital or outside the hospi-
tal, in the time period between October 2017 and March 
2020. The Institutional Review Board of the University 
of Chicago approved the protocol (IRB 200,107). For this 
type of study, formal consent was not required. Inclusion 
criteria for the study were as follows: (1) presenting diag-
nosis of cardiac arrest, (2) age ≥ 18 years, (3) unrespon-
sive (comatose status) after ROSC, (4) noncontrast HCT 
imaging performed within 24 h of admission and deemed 
normal with no stigmata of HIBI by a board-certified 
neuroradiologist (in particular, no evidence of sulcal 
effacement, loss of gray–white matter differentiation, or 
compromise of cisternal spaces), and (5) available repeat 
HCT imaging within 2 to 10 days from the initial HCT 
scan. The following were the exclusion criteria: (1) dead 
on arrival, (2) failure to achieve ROSC, and (3) absence 
of HCT imaging within 24  h from arrest or absence of 
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follow-up HCT imaging within 10  days from that time. 
Although all patients had an initial HCT scan that was 
interpreted as lacking any signs of HIBI by a board-cer-
tified neuroradiologist, cases were defined as patients 
who suffered development of HIBI on repeat imaging 
and controls were patients who did not develop HIBI and 
continued to be interpreted as having no signs of HIBI. 
HIBI was defined on imaging as any evidence of sulcal 
effacement, loss of gray–white matter differentiation, or 
compromise of cisternal spaces.

Data Collection
For each patient, data regarding demographics, clinical 
presentation, Glasgow Coma Scale (GCS) scores, HCT 
scans on admission and follow-up, time intervals from 
presentation to initial imaging, time interval between 
HCT scans, laboratory studies, hospital length of stay, 
and discharge disposition were reviewed.

HCT images were reviewed by a board-certified neu-
roradiologist. Patients were categorized into two groups 
according to radiological reports of their follow-up HCT 
imaging. The first group included patients whose pre-
senting HCT imaging results were evaluated and deemed 
lacking any signs of HIBI and whose follow-up imaging 
maintained that status (no CT progression [NCTProg]). 
The second group included patients whose present-
ing HCT imaging results were also deemed lacking any 
signs of HIBI; however, the follow-up imaging results 
were deemed as showing signs of HIBI (CT progression 
[CTProg]). This was a retrospective evaluation of reports 
by neuroradiologists. No specific instructions regarding 
imaging review windows were dictated. Furthermore, 
reports commenting on chronic findings, such as stig-
mata of small vessel disease, chronic subdural collec-
tions, atrophy, or prior surgical interventions, were not 
factored as abnormalities. The purpose of the aforemen-
tioned was to best depict real-life practice and to not bias 
readers by the purpose of the current study.

Deep Transfer Learning
CT scans were windowed with a standard brain win-
dow with center 40 HU and width 40 HU, and CT slices 
presenting no brain anatomy were excluded from analy-
sis. The transfer learning approach used in this study 
was based on methods described by Antropova et  al. 
[13], which were expanded to account for the three-
dimensional information available in CT scans. Briefly, 
a VGG19 network architecture pretrained on the Ima-
geNet database (a collection of millions of natural non-
medical images) was used to extract quantitative features 
from only the initial HCT scan (no follow-up information 
included), as described in Fig. 1 [17]. The mean value of 
each feature map produced by the maximum pooling 

layers was used to form a normalized representative 
feature vector for each individual CT slice. These vec-
tors were maximum pooled in the axial dimension for all 
slices within a scan to obtain a scan-level representation.

Because of the limited data in this study, leave-one-
out-by-patient cross-validation was used. Principal com-
ponent analysis was performed on 53 of the 54 available 
scans for dimensionality reduction in an attempt to alle-
viate the risk of model overfitting. Then a support vector 
machine (SVM) was trained by using the principal com-
ponents for the task of classifying a scan as progressive 
(exhibited or would exhibit signs of HIBI on follow-up 
HCT scan) or nonprogressive (no signs of HIBI on fol-
low-up HCT scan). The single scan that was not included 
in the training set was then evaluated by using the SVM. 
This process of principal component analysis, SVM train-
ing, and single-scan testing was repeated so that each 
of the 54 scans served as the test scan exactly one time, 
and a prevalence scaling factor was applied to correct for 
class imbalance in the data set [18, 19]. This full workflow 
is depicted in Figs. 1 and 2, with the predicted SVM out-
put probability serving as a scan-level deep learning score 
(DLS) as the pipeline output.

To validate the performance of the deep transfer learn-
ing technique, an additional independent test set com-
posed of 4 CTProg and 12 NCTProg scans was evaluated 
by using the SVM trained with all 54 scans.

Statistical Analysis
Descriptive statistics were presented as means with 
standard deviations or medians with interquartile ranges 
(IQRs) (as appropriate) for continuous variables and as 
percentages for categorical variables. In univariate analy-
ses, categorical variables were compared by using Fisher’s 
exact test. A significance level was set at p < 0.05. All anal-
yses were performed with the use of Python program-
ming language (Python Software Foundation, https:// 
www. python. org/) and R version 3.6.1 (R Foundation for 
Statistical Computing, Vienna, Austria).

SVM classification performance between patients with 
CTProg and NCTProg was evaluated with receiver oper-
ating characteristic (ROC) curve analysis, with the area 
under the ROC curve (AUC) as the figure of merit. AUC 
confidence intervals (CIs) were determined through 
1,000 bootstrapping resampling iterations. Note that 
because of the relatively small amount of data, some 
bootstrap iterations of the validation set only contained 
NCTProg and were thus ignored.

Results
Basic Characteristics of the Population
The basic characteristics of the population are summa-
rized in Table 1. Overall, 54 patients were included in the 
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analysis. The median age (IQR) of our cohort was 61 (16) 
years, and 25 patients (46%) were female. The predomi-
nant race was Black, with 44 patients (81%). The median 
time to achieving ROSC was 22 (23) minutes (Table 1).

Clinical Features on Initial Neurological Assessment
Among the 54 patients, the median GCS score (IQR) was 
3 (3). At least one reactive pupil was appreciated in 43 
patients (80%). At least one corneal reflex was appreci-
ated in 29 patients (56%). A cough or gag reflex was pre-
sent in 34 patients (64%), and an oculocephalic reflex was 
appreciated in 26 patients (52%). Thirty-seven patients 
(68%) were breathing over the ventilator. The median 
motor component of the GCS score was 1 (no motor 
response). Finally, 30 patients (56%) suffered from myo-
clonus (Table 1). The median time from arrest to initial 
HCT scan in the entire cohort was 3 (2–17) hours. The 
median time between the first and follow-up HCT scan 
was 2 (2–7) days.

Comparing CTProg and NCTProg Cohorts
Twenty-nine of the 54 patients had a follow-up HCT 
scan that demonstrated progression (CTProg), compared 

with 25 patients who did not (NCTProg) (Table 1). The 
median time from cardiac arrest to initial HCT scan and 
the time between first and follow-up HCT scans was not 
different across the two groups (Mann–Whitney U-test, 
p = 0.408 and p = 0.398, respectively). The CTProg group 
had a median GCS score of 3 (2), compared with 6 (4) 
in the NCTProg group (p = 0.011). Targeted tempera-
ture management was done in 27 (93%) patients with 
CTProg, compared with 17 (68%) patients with NCTProg 
(p = 0.018) (Table 1).

Mortality and Mechanism of Death
Of the 54 patients, 34 (63%) died in-house. Those 
included 12 (48%) patients whose CT imaging results did 
not progress and 22 (76%) whose CT imaging results pro-
gressed serially (p = 0.035).

The mechanism of death was withdrawal of life-sus-
taining therapies in 18 (82%) patients with CTProg, com-
pared with 12 (100%) patients with NCTProg (p = 0.107). 
Cardiac death occurred in 2 (9%) patients with CTProg, 
compared with 0 (0%) patients with NCTProg (p = 0.27). 
Two (9%) patients with CTProg were declared brain 

Fig. 1 Diagram of the deep transfer learning technique used to examine individual head computed tomography slices. Salient feature maps were 
extracted from the maximum pooling layers of a VGG19 network and were mean pooled to form a representative feature vector
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dead, compared with 0 (0%) patients with NCTProg 
(p = 0.27) (Table 1).

Assessment of the Machine Learning Algorthm
In the task of distinguishing between patients with 
CTProg and NCTProg, the AUC was 0.96 (95% CI 0.91–
1.0). The ROC curve is shown in Fig. 3 [14]. The preva-
lence-scaled optimal operating point of the ROC curve 
was found to be a DLS of 0.494. Operating at this thresh-
old, performance included a sensitivity of 1.00, speci-
ficity of 0.88, accuracy of 0.94, and positive predictive 
value of 0.91. In evaluating the additional test set of 16 
scans (4 CTProg and 12 NCTProg) and operating at the 
same DLS threshold of 0.494, the AUC was 0.90 (95% CI 
0.74–1.00) (Fig. 3), with optimal operating performances 

(sensitivity = 1.00, specificity = 0.66, accuracy = 0.75, and 
positive predictive value = 0.5).

Comparing Clinical Variables with DLS in HIBI Prediction
Table 1 shows that the difference in DLS is more signifi-
cant than that of other variables. In a multiple variable 
logistic regression assessing DLS, pupillary reactivity, 
corneal reaction, VOR, and GCS score, DLS is the only 
variable significantly associated with progression (coeffi-
cient 275.35 [95% CI 106.826–443.875], p < 0.01).

Discussion
In this single-center study, we demonstrate that deep 
transfer learning can accurately identify a HCT signature 
of HIBI within the first 3 h after ROSC in comatose survi-
vors of a cardiac arrest.

The determination and quantification of HIBI is a cor-
nerstone of neuroprognostication in survivors of car-
diac arrest. Similarly, it plays a determinant role in the 
shared decision-making process that often culminates 
in withdrawal of life-sustaining therapies in this patient 
population.

HCT is routinely used as part of this process. Abso-
lute decrease in gray and white matter density, differ-
ence between gray and white matter density, and GWM 
ratio have been investigated in relation to neurological 
outcome. Although an absolute decrease in gray matter 
density alone is an unreliable predictor of poor neurolog-
ical outcome, the predictive value increases when GWM 
ratio is considered. The main limitations to those studies 
include the time at which the analyzed HCT scan was 
performed (time from ROSC to HCT ranges anywhere 
from 4 to 72 h) and the choice of specific regions of inter-
est within the brain to compare gray and white matter 
[9–12].

Our findings indicate that (1) a degree of identifiable 
injury to the brain may have already occurred in a num-
ber of patients who present normal-appearing findings 
on early HCT and (2) a significant number of patients 
presenting normal-appearing findings on HCT per-
formed, on average, within the first 3 h after ROSC dem-
onstrate significant abnormalities when HCT scans are 
evaluated with deep transfer learning.

Consideration for Early Distinction of Specific Endotypes 
of Cardiac Arrest Survivors
Our findings indicate that when early (within 3  h of 
ROSC) HCT scans with normal-appearing results are 
analyzed with deep transfer learning, two unique endo-
types of cardiac arrest survivors can be identified: one 
type that bares no features of HIBI and one that does. 

Fig. 2 Description of deep transfer learning pipeline, including 
VGG19-based feature extraction, feature dimension reduction 
through PCA, and evaluation through a support vector machine. CT 
computed tomography, PCA principal component analysis
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Because many of the therapies applied following ROSC 
intend to improve neurological outcomes, we suggest 
that the early stratification of survivors of cardiac arrest 
into these two distinct endotypes could serve to opti-
mize the selection process of patients for clinical trials 
in the future. This model could help select patients who 
do not exhibit early radiographic HIBI because this 
endotype is, arguably, more likely to benefit from early 
interventions aimed at preventing further hypoxic-
ischemic brain damage.

In addition, if our findings are prospectively repro-
duced and, at the same time, HCT progression (or 
presence of radiographic HIBI) is proven to definitively 
correlate with poor neurological outcome, we could 
also suggest that discussions about neurological prog-
nosis with patients’ surrogate decision makers could 
begin earlier than currently recommended.

Significance of Early Identification of Radiographic Brain 
Injury
The ability of the model to identify patients who will pro-
gress to radiographically discernable HIBI from those 
who will not, suggests that early on, changes on HCT 
already exist, albeit too subtle to discern by the human 
eye. Because substantial interobserver variability when 
identifying HIBI on HCT soon after out-of-hospital car-
diac arrest has been reported [20], we verified that the 
CTProg and NCTProg groups were not evaluated by 
any one specific radiologist. As a matter of fact, a total of 
ten different radiologists composed the pool that evalu-
ated the first scans. All those scans were read as normal, 
and the CTProg versus NCTProg determination was not 
more likely with any one particular radiologist.

The success of the automatic method in distinguish-
ing patients with CTProg from those with NCTProg, 

Table 1 Univariate analysis of CTProg and NCTProg groups

DLS is the most significant discriminator between the two cohorts

CT computed tomography; CTProg CT progression; DLS deep learning score; GCS Glasgow Coma Scale; GCS-M Glasgow Coma Scale-Motor; IQR interquartile range; 
NCTProg no CT progression; ROSC return of spontaneous circulation; TTM targeted temperature management; VOR vestibulo-ocular reflex; WLST withdrawal of life-
sustaining therapy

*p < 0.05

Total (N = 54) Progression (n = 29) Nonprogression 
(n = 25)

p value

Median age (IQR), yrs 61 (16) 59 (27) 62 (13) 0.77

Female sex (%) 25 (46) 15 (52) 10 (40) 0.389

Race (%)

 African American 44 (81) 24 (83) 20 (80) 0.795

 Whit 4 (7) 2 (7) 2 (8) 0.877

 Asian 1 (2) 0 (0) 1 (4) 0.277

 Unknown 5 (10) 3 (10) 2 (8) 0.767

 Median GCS score (IQR) 3 (3) 3 (2) 6 (4) 0.011*

 Median GCS-M (IQR) 1 (3) 1 (0) 3 (3) 0.034*

 Pupillary reactivity (%) 43 (80) 20 (69) 23 (92) 0.036*

 Presence of corneal reflex (%) 29 (56) 11 (41) 18 (72) 0.023*

 Presence of VOR (%) 26 (52) 9 (35) 17 (71) 0.010*

 Presence of gag/cough reflex (%) 34 (64) 15 (52) 19 (79) 0.038*

 Spontaneous respiratory drive (%) 37 (68) 19 (65) 18 (72) 0.609

 Myoclonus (%) 30 (56) 18 (62) 12 (48) 0.3

 TTM (%) 44 (81) 27 (93) 17 (68) 0.018*

 Median time to ROSC (min) 22 (23) 22 (20) 17 (15) 0.482

 Median time to first CT (min) 163 (551) 138 (182) 220 (382) 0.408

 Median time to second CT scan (min) 3,102 (3,011) 3,308 (2,863) 2,938 (3,825) 0.438

 Median time between CT scans (min) 2,872 (2,991) 2,990 (2,303) 2,832 (2,787) 0.398

 Mortality (%) 34 (63) 22 (76) 12 (48) 0.035*

Cause of death

 Cardiac death 2 (6) 2 (9) 0 (0) 0.27

Brain death 2 (6) 2 (9) 0 (0) 0.27

 WLST 30 (88) 18 (82) 12 (100) 0.107

 DLS – 0.45 (0.02) 0.48 (0.01)  < 0.001*
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particularly in the independent test set, suggests the 
presence of unique features within the images of the two 
cohorts. Given the presumed hypoxic-ischemic mecha-
nism of brain injury, this finding can be interpreted 
in two different ways. The first is that HIBI might have 
already occurred to its full extent at the time of the ini-
tial HCT scan. If true, this would suggest that neuro-
protective interventions started at this time could be 
of questionable utility. The injury would be potentially 
unmodifiable and determined by the clinical and tempo-
ral features of the cardiac arrest as well as the individual 
patient’s profile.

On the other hand, it is possible that some patients 
have suffered some degree but not the full extent of 
hypoxic-ischemic injury. The injury is, therefore, a step 
along a potentially modifiable pathway. In other words, 
although a degree of injury might have occurred, its pro-
gression and outcome could be potentially modified by 
neuroprotective therapeutic measures. The model could 
help detect the patient population that is along this path 
and for which medical optimization may be more critical.

Although it is also possible that the early identifica-
tion of brain injury with machine learning allows for a 
discrimination between different degrees of brain injury 
in the first few hours after ROSC, we have not quantified 

the degree of radiographic brain injury in follow-up HCT 
scans and therefore cannot comment on the potential 
discriminative power of the applied machine learning 
strategy in these two clinical scenarios. Furthermore, 
clinical characteristics, such as physical examination 
findings (GCS score, pupillary reactivity, and corneal 
reflexes), have been shown to correlate with neurological 
outcome, and although those variables are indeed differ-
ent in our cohort of patients, the purpose of this study 
is to emphasize the unique role of early HCT imaging 
in identifying HIBI progression and not to replace the 
aforementioned clinical variables. To further understand 
the contribution of the DLS to prediction of HIBI pro-
gression, we conducted a pilot study using our clinical 
variables; a classifier based purely on the clinical varia-
bles without the DLS had an AUC of approximately 0.76, 
compared with a classifier based on the DLS alone, which 
had an AUC of ~ 0.96. Adding the clinical variables to the 
DLS in a combined classifier does not improve the AUC. 
That being said, a model incorporating clinical as well 
as radiographic features is out of the scope of the cur-
rent work but is indeed the subject of future prospective 
research.

Our model does not predict mortality or withdrawal 
of life-sustaining therapies. It evaluates HCT images that 
are assessed as lacking signs of HIBI by the human eye 
and defines the cohort that will progress to show stig-
mata of HIBI on repeat imaging. In other words, it deter-
mines early on what HCT images bear features of HIBI 
that are not readily discernable by the human operator.

Limitations
This is a single-center study that will need prospective 
and multicenter validation. Also, the lack of a universally 
accepted radiographic definition of HIBI after cardiac 
arrest makes us rely on our neuroradiologists’ assess-
ments of HIBI on HCT in accordance with prior relevant 
literature [7, 8].

Additionally, because of the limited size of both the 
training and independent test data sets, there is a pos-
sibility for model overfitting and bias. Despite the 
promising results in both the leave-one-out-by-patient 
cross-validation technique and independent test set eval-
uation, a large diverse independent testing set is needed 
to further validate these results. The dynamic range of the 
DLS is small. There are multiple factors that could con-
tribute to this phenomenon. First, the task itself indicates 
that the HCT images are similar, with all scans read as 
normal by a board-certified radiologist; thus, we expect 
that the embedded representations in feature space are 
clustered closely together, both within and between the 
NCTProg and CTProg populations. A second potential 
cause is the limited amount of data causing overfitting 

Fig. 3 ROC curves for the leave-one-out cross-validation approach 
and the independent test set in the task of distinguishing between 
patients with CTProg and NCTProg obtained by using a proper binor-
mal model, with confidence intervals calculated through bootstrap-
ping. AUC area under the ROC curve, CTProg computed tomography 
progression, FPF false positive fraction, NCTProg no computed 
tomography progression, ROC receiver operating characteristic, 
TPF true positive fraction
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in the model and thus introducing a biased evaluation. 
Although we have attempted to alleviate the concern 
of significant overfitting by demonstrating strong per-
formance on the limited validation set and through CI 
estimation through bootstrapping, we acknowledge that 
there is still potential for a biased model. We are cur-
rently working to acquire a larger prospective data set 
for validation, but this lies outside the scope of this study. 
Given superior MRI sensitivity, it is indeed possible that 
some of the patients on presentation or follow-up HCT 
labeled as lacking radiographic signs of HIBI may have 
had HIBI on MRI. However, the particular focus of the 
study is to optimize CT interpretive potential and not 
claim any comparison or superiority to MRI.

Conclusions
Deep transfer learning reliably identifies HIBI in normal-
appearing findings on HCT performed within 3  h after 
ROSC in comatose survivors of a cardiac arrest. This 
may suggest the presence of two distinct and identifiable 
endotypes of brain injury in this population, opening the 
door for more individualized treatment algorithms as 
well as providing a potential for early determination of 
neurological outcome. In addition to prospective vali-
dation, next steps of this work will include prospective 
patient cohorts with MRI and HCT imaging obtained 
and analyzed in tandem as well as incorporation of clini-
cal variables into a combined clinical–imaging model.
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