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Jellyfish, such as Chrysaora quinquecirrha, hold an important evolutionary position
and have great ecological value. However, limited genomic resources are currently
available for studying their basic genetic and development processes. Here, we de novo
assembled the first high-quality reference genome of C. quinquecirrha, and successfully
annotated 21,606 protein-coding genes. Codon usage analysis identified the frequent
use of low-GC-content codons during protein-coding gene translation. Analysis of
the relative evolution rate indicated that jellyfish had a faster evolution rate than sea
anemones but slower rate than the species in Hydra. Phylogenetic analysis with two
other species of jellyfish indicated that Aurelia aurita and Nemopilema nomurai have
a closer relationship with each other than with C. quinquecirrha, with divergence from
their common ancestor occurring ≈475.7 million years ago. Our study not only showed
the genomic characteristics and molecular adaptive evolution of C. quinquecirrha, but
also provides valuable genomic resources for further study on complex developmental
processes and environmental adaptations.

Keywords: jellyfish, genome, evolution, assembly, adaptation

INTRODUCTION

Jellyfish of the phylum Cnidaria are lower invertebrate gelatinous zooplankton. They are considered
one of the most primitive branches of the “tree of life” and thus one of the earliest ancestral species
(Lucas and Dawson, 2014; Ou et al., 2015). Jellyfish are generally regarded as diploblastic animals
which has endoderm and ectoderm but lack of mesoderm. They further possess a primitive reticular
nervous system that controls muscle contractions and that consists of nerve cells connected through
nerve projections to form a neural network (Kellie et al., 1980; Ou et al., 2015). In addition,
several jellyfishes have no real eyes, but a relatively unsophisticated visual organ made up of fibrous
photoreceptors that sense changes in external light (Martin, 2002; Nilsson, 2004; Suga et al., 2008).

The increase in the frequency of jellyfish blooms in recent years has also drawn attention
due to their potential to transform marine ecosystems (Brotz et al., 2012; Duarte et al., 2013;
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Pitt and Lucas, 2014). Jellyfish are carnivores that feed on
zooplankton, fish eggs, and larvae, and can greatly impact
plankton populations when blooms occur (Lilley et al., 2009;
Acuña et al., 2011; Marques et al., 2015; Nagata and Morandini,
2018). However, very few animals feed on jellyfish, and thus
the large amounts of carbon sequestered within their bodies
is not transferred within the food web. As such, jellyfish are
often considered to be at the energy terminal and can seriously
affect the marine environment and ecological processes (Pitt
et al., 2005; Turk et al., 2008; Condon et al., 2011; Oguz
et al., 2012). Several studies have reported that jellyfish blooms
have an important relationship with their own physiological
reproduction (Hamner and Dawson, 2009; Kawahara et al.,
2012; Schiariti et al., 2014). The life cycle of most jellyfish
species consists of alternating modes of reproduction between
generations, i.e., polyp and medusa (Schiariti et al., 2014; Lee
et al., 2017). Under suitable environments, medusae reproduce
sexually to produce hydroids, which, in turn, reproduce asexually
to produce ephyrae. Finally, ephyrae develop into new medusae,
allowing jellyfish to bloom in a cycle of reproduction and growth
(Johnson et al., 2001; Fuchs et al., 2014; Schiariti et al., 2014).

There are about 2,000 kinds of jellyfish worldwide, including
∼200 species in the phylum Scyphozoa (Daly et al., 2007; Chang
E. S. et al., 2015; Costa et al., 2015). As a representative of
Scyphozoa, Chrysaora quinquecirrha is one of the most well-
known and well-studied jellyfish species, with high ecological
value along the Atlantic coast of the USA and Gulf of Mexico
(Cones and Haven, 1969; Calder, 1974; Johnson et al., 2001;
Meredith et al., 2016; Bayha et al., 2017). Genomics analysis
can help clarify the genetic information and evolutionary origin
of different species (Chang E. S. et al., 2015; Kim et al., 2019).
Although several jellyfish species’ genome has been studied (Ryan
et al., 2013; Gold et al., 2019; Jiang et al., 2019; Kim et al.,
2019; Leclère et al., 2019; Ohdera et al., 2019), the genome of
C. quinquecirrha has not yet been assembled or analyzed. In
this study, we de novo assembled the first high-quality reference
genome of C. quinquecirrha, and successfully obtained 21,606
protein-coding genes. Furthermore, based on genomics analysis,
we elucidated the evolutionary history and genetic changes of
C. quinquecirrha relative to closely related species. This study not
only provides valuable information on the evolutionary status
and genetic changes of jellyfish, but also provides a foundation
for future studies on the development and evolutionary origin of
multi-cellular animals.

MATERIALS AND METHODS

Sampling and Sequencing
Fresh muscle samples of jellyfish (Chrysaora quinquecirrha)
were dissected and prepared for DNA and RNA extraction.
For genome sequencing, we extracted high-quality DNA using
a Qiagen Blood & Cell Culture DNA Mini Kit for Nanopore
long-read (Oxford Nanopore, United Kingdom) and Illumina
short-read (insert size: ∼250 bp; Pair-end 150 bp) sequencing.
For RNA sequencing, RNA was extracted from muscle samples by
Trizol (Invitrogen) according to the manufacturer’s instructions

and sequenced on the Illumina platform (insert size: ∼250 bp;
Pair-end 150 bp).

Data Filtering
Nanopore long reads were filtered by the mean quality value of
each read with in-house Perl scripts, and only reads with a quality
value > seven were retained. For Illumina short reads, including
genome and transcriptome sequencing data, we used the same
standards for quality control. Specifically, any read with more
than 50% low-quality bases or 10% unknown bases were filtered,
and adaptor sequences and duplicated reads produced during
polymerase chain reaction (PCR) were also removed. Then, all
the remaining sequencing reads were used for further analysis.

Genome Characteristic Estimation
Genome characteristics were evaluated using the genomic short
reads based on the k-mer method. The reads were divided
into a 17-bp length with 1-bp walking length. The k-mer
frequency/number in each k-mer depth was then calculated, and
genome size was estimated by the total k-mer number and peak
k-mer frequency of 17-mer.

Genome Assembly and Quality
Evaluation
Although the Nanopore sequencing reads have a length
advantage over the Illumina sequencing reads, they show low
accuracy. In this study, we corrected the sequencing errors in
the Nanopore reads using NextDenovo.1 The corrected Nanopore
long reads were then used for genome assembly with WTDBG
(v2.1) (Ruan and Li, 2019) and parameters: -p 15 –k 7 –AS
2 –E 1 –s 0.05 –L 5000. We further corrected the sequencing
errors in the genome assembly with Racon (v1.2.1) and Pilon
(v1.21) (Walker et al., 2014). Then, we mapped the corrected
Nanopore reads to the assembled contigs by Minimap (v2.9) with
parameters: -a –x map-ont –k 17. The haplotigs and low coverage
contigs were removed by Purge_haplotigs (v1.1.1). The SSPACE-
LongRead (v1.1) was used anchor the contigs to scaffolds, and
Gapcloser (v1.10) was used to fill the gaps in the scaffold
assembly. To evaluate the integrity of the assembled genome, we
aligned all high-quality Illumina sequencing reads to the genome
using BWA (v0.7.12) (Li and Durbin, 2009). The integrity of
the protein-coding regions in the genome was evaluated by the
mapping ratio of transcripts using BLAT (v34) (Kent, 2002).

Repetitive Element Annotation
To identify more complete repetitive sequences in the genome,
we used RepeatModeler (v1.0.4)2 for de novo prediction of
repetitive sequences, and RepeatMasker (open-4.0.7) (Bedell
et al., 2000) for repetitive sequence prediction using both
the RepeatModeler results and the public repbase library.
RepeatProteinMask (open-4.0.7) was used for predicting
transposable elements (TEs) at the protein level, and tandem
repeats were analyzed by Tandem Repeat Finder (v4.04)
(Benson, 1999).

1https://github.com/Nextomics/NextDenovo
2http://www.repeatmasker.org/RepeatModeler/
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Annotation of Protein-Coding Genes
To exclude the influence of repetitive sequences in the assembled
genome during the coding-gene annotation process, we
masked all repetitive sequences and then employed coding-
gene annotation using different strategies. We first de novo
predicted the protein-coding genes using AUGUSTUS
(v2.5.5) (Stanke and Waack, 2003). We next downloaded
several published gene sets, including Hydra vulgaris
(GCF_000004095.1), Stylophora pistillata (GCF_002571385.1),
Acropora digitifera (GCF_000222465.1), Nematostella vectensis
(GCA_000209225.1), Exaiptasia pallida (GCF_001417965.1),
Aurelia aurita (GCA_004194415.1), and Renilla muelleri
(GigaDB) (Putnam et al., 2007; Chapman et al., 2010; Shinzato
et al., 2011; Baumgarten et al., 2015; Voolstra et al., 2017;
Gold et al., 2019; Jiang et al., 2019). We then aligned all gene
sets to the annotated C. quinquecirrha protein sequences
by tblastn (e = 10e-5) and predicted the gene structure
using Genewise (v2-2-0) (Birney et al., 2004). After this, we
de novo assembled the transcripts using Bridger software
(r2014-12-01) (Chang Z. et al., 2015) and used them for
coding-region prediction. Lastly, we merged the above results
using EvidenceModeler (v1.1.1) (Haas et al., 2008). To better
understand the biological functions of the annotated genes, we
aligned them to public databases, including the InterPro, Gene
Ontology (GO), SwissProt, TrEMBL, and Kyoto Encyclopedia of
Genes and Genomes (KEGG).

Orthologous Genes
Orthologous gene identification was conducted among these
10 species, including H. vulgaris, S. pistillata, A. digitifera,
N. vectensis, E. pallida, A. aurita, R. muelleri, Nemopilema
nomurai, Echinococcus granulosus, and C. quinquecirrha. Protein-
coding genes among these species were used for orthologous
relationship determination with OrthoMCL (v2.0.9) (Li et al.,
2003). From these results, the 1:1 single-copy genes among the
10 species were selected and used for specific analyses.

Phylogenetic Relationship Determination
and Divergence Time Estimation
To determine the phylogenetic relationships among the 10
species, we aligned the 1:1 single-copy genes using MUSCLE
(v3.8.31) (Edgar, 2004). We then conducted phylogenetic analysis
in RAxML (v8.2.10) (Stamatakis, 2014), with E. granulosus as
the outgroup. Divergence time analysis was conducted using the
MCMCtree program in PAML (v4.8) (Yang, 2007), and fossil
records downloaded from the TIMETREE website3 were used for
result calibration.

Codon Usage and Relative Evolution
Rate
The protein-coding genes were used for codon usage analysis
with CodonW (1.4.4; -all_indices -c_type 2 -f_type 4 -nomenu -
nowarn -totals) (Peden, 1999) and in-house Perl scripts. Relative
evolution rates among different species were analyzed using

3http://www.timetree.org

LINTRE (njboot -d7; tpcv -d7 -o 1) (Takezaki et al., 1995) and
MEGA software (Tajima’s Relative Rate Test) (Kumar et al., 2018),
with C. quinquecirrhaas the reference species and E. granulosus
as the outgroup.

Expansion and Contraction Analysis of
Gene Families
Gene family expansion and contraction were analyzed using
CAFÉ (v3.1) (De Bie et al., 2006) with three input files: i.e.,
(1) Phylogenetic relationships were determined by RAxML
(Stamatakis, 2014), (2) Divergence time was determined by
MCMCtree (Yang, 1997), and (3) Orthologous relationships were
determined by OrthoMCL (Li et al., 2003). The expanded or
contracted gene families in the three jellyfish species were selected
for further analysis.

RESULTS

High-Quality Reference Genome
Assembly of C. quinquecirrha
To acquire the C. quinquecirrha reference genome, we first
extracted DNA from muscle tissue for genome sequencing. We
then obtained 51.46 Gb of Illumina short reads (Supplementary
Table S1) and determined the genome characteristics (e.g.,
genome size, repetitive sequence content, heterozygosity ratio).
We used the 17-mer method and found the C. quinquecirrha
genome is very complex, with high heterozygosity and repeat
sequences, and has a genome size of 330.67 Mb (Figure 1).
To better complete the assembly, we next sequenced the
genome on the Nanopore platform (Promethion, Oxford
Nanopore Technology) and acquired 81.12 Gb of high-quality
reads, accounting for ∼245 genome coverage (Supplementary
Table S2). We then corrected the potential sequencing errors
in the Nanopore long reads with Nextdenovo1 and assembled
the genome with WTDBG (Ruan and Li, 2019). To further
improve the base accuracy of the acquired genome, we
polished the assembly by the Nanopore and Illumina sequencing
data with Racon and Pilon, respectively. Then, the haplotigs
and low coverage contigs were removed by Purge_haplotigs,
scaffolded by SSPACE-LongRead, and gap-filled by Gapcloser
software. Finally, we got a genome assembly with the contig
N50 and scaffold N50 length of 230.04 and 733.65 Kb,
respectively (Table 1). This could comparable with previously
published high-quality genomes of closely related species
(Supplementary Table S3). We then aligned the genome
assembly with the core gene set in BUSCO (Simão et al.,
2015), with nearly 80% of the conserved gene set among
eukaryotes were found in the genome (Supplementary Table S4).
We also mapped the Illumina short reads (Supplementary
Table S1) and de novo assembled transcripts (with 99.6%
BUSCO values) (Supplementary Tables S5–S7) and found
that most could be successfully aligned to the genome
assembly (Supplementary Tables S8, S9). Thus, we obtained a
high-quality (high accuracy and connectivity) reference genome
for C. quinquecirrha.
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FIGURE 1 | Genomic survey of C. quinquecirrha.

Genome Annotation of C. quinquecirrha
Genome annotation, which can greatly help to improve our
understanding of species, was used in the current study. By
combining the repetitive annotation results from several repeat
annotation software, we successfully acquired 149.86 Mb of
repetitive sequences, accounting for 44.49% of the assembled
genome (Supplementary Table S10). Furthermore, 40.78%
of the genome consisted of transposable elements (TEs)
(Table 2), which could be divided into long terminal repeats
(LTR, 4.07%), DNA elements (6.27%), short interspersed
nuclear elements (SINE, 0.46%), and long interspersed nuclear
elements (LINE, 5.70%). After repetitive sequence annotation,
we first masked all repetitive sequences in the genome and
employed protein-coding gene annotation by combining de
novo prediction, homolog-based annotation, and transcript-
based annotation. Finally, we merged the gene sets from the
different strategies using EvidenceModeler software (Haas et al.,
2008) and acquired 21,606 high-quality protein-coding genes
in the C. quinquecirrha genome (Supplementary Table S11).

We then compared and evaluated the annotation quality
of the gene sets and found the quality to be comparable
to that of closely related species (Figure 2). To better
understand the biological functions of these genes, we performed
functional annotation by aligning the protein sequences to the
public databases, including GO, KEGG, InterPro, SwissProt,
and TrEMBL. Most protein-coding genes could be found
in the databases (Table 3), suggesting that we acquired a
high-quality protein-coding gene set of the C. quinquecirrha
genome. In addition to the coding-genes have key roles
in biological processes, studies have shown that many non-
coding RNAs (ncRNAs) also participate in and regulate many
important physiological processes (Wilusz et al., 2009; Rinn
and Guttman, 2011; Wang and Chang, 2011; Ulitsky and
Bartel, 2013). Therefore, we systematically annotated and
identified the ncRNAs in the C. quinquecirrha genome, including
7,833 tRNAs, 857 rRNAs, 745 snRNAs, and 50 miRNAs.
These results could help clarify the functions of ncRNA in
C. quinquecirrha (Table 4).
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TABLE 1 | Statistics of C. quinquecirrha genome assembly.

Term Contig Scaffold

Length (bp) Number Length (bp) Number

N90 29,200 1,911 66,354 666

N80 60,058 1,158 205,342 365

N70 93,806 731 395,469 249

N60 147,444 457 555,468 178

N50 230,037 281 733,647 125

Max length (bp) 3,764,053 – 4,015,784 –

Total size (bp) 320,327,670 – 336,819,409 –

Total number (> 100 bp) – 4,456 – 2,496

Total number (> 10 kb) – 3,227 – 1,691

Repetitive Sequence Expansions in
C. quinquecirrha Genome
The genome sizes varied widely among Cnidaria species,
especially in jellyfish (Figure 3), but the reasons of the genome
expansion remain unclear. Thus, we compared the content of
TEs (including LINE, SINE, LTR, and DNA elements) and
coding regions among these species, and found that the main
contributors to jellyfish genome expansion were non-coding
regions (e.g., TEs), rather than coding regions (Figure 3). Further
analysis demonstrated that the largest expansion of TEs in the
C. quinquecirrha genome was that of SINE, with 5.40 times more
SINE than that found in N. nomurai (Figure 3). To clarify the
insertion history of TEs in jellyfish, we further analyzed the
expansion history and found that TE expansion occurred within
∼235 million years in the three jellyfish species studied, and that
the different insertion/expansion rates caused the differences in
genome size (Figure 4).

Orthologous Genes and Gene Family
Analysis
For comparative genomics analysis, we first downloaded the
protein-coding genes of several species, including N. vectensis,
A. digitifera, N. nomurai, E. pallid, S. pistillata, A. aurita,
R. muelleri, E. granulosus, and H. vulgaris. Cluster relationships

TABLE 3 | Functional annotation of protein-coding genes in C. quinquecirrha
genome.

Database Number Percentage (%)

InterPro 13798 63.86

GO 9733 45.05

KEGG 11049 51.14

SwissProt 11973 55.42

TrEMBL 16785 77.69

among these protein-coding genes were then determined by
OrthoMCL (Li et al., 2003). We identified 26,613 gene families
among the 10 species and 459 1:1 single-copy genes (Figure 5A
and Supplementary Table S12). To identify gene families that
may contribute to their unique characteristics, we conducted
gene family analysis for the three jellyfish species relative to the
other seven species, and found 728 gene families that specifically
existed in jellyfish (Figure 5B), suggesting the possible unique
functions of these genes in jellyfish. We further conducted
enrichment analysis of the specific gene families. Results showed
enrichment in several biological processes, including Hedgehog
signaling pathway (P = 0.001342) and TGF-beta signaling
pathway (P = 0.012341; Supplementary Table S13), thus
suggesting that these genes contributed to unique development
and adaptive evolution.

Phylogenetic Relationships, Divergence
Time, and Gene Family Expansion and
Contraction
Although the phylogenetic relationships of jellyfishes and
their closely related species have been investigated (Kayal
et al., 2018), the whole-genome level phylogenetic tree of
C. quinquecirrha and other species have not been studied.
Here, we analyzed their phylogenetic relationships using
RAxML software (PROTGAMMAJTT model; 100 bootstrap
replicates) (Stamatakis, 2014). Results showed that A. aurita and
N. nomurai has a close relationship than with C. quinquecirrha
(Figure 6A). Divergence time analysis indicated that A. aurita
and N. nomurai diverged 403.6 million years ago (Mya),

TABLE 2 | Transposable elements in C. quinquecirrha genome.

Type Repbase TEs TE protiens De novo Combined TEs

Length (bp) Percentage in
genome

Length (bp) Percentage in
genome

Length (bp) Percentage in
genome

Length (bp) Percentage in
genome

DNA 709,874 0.21 1,888,178 0.56 18,705,956 5.55 21,120,760 6.27

LINE 796,165 0.24 4,927,606 1.46 14,347,687 4.26 19,209,048 5.70

SINE 2,252 0.00 0 0.00 1,545,091 0.46 15,46,202 0.46

LTR 1,631,255 0.48 6,442,822 1.91 6,651,643 1.97 13,718,366 4.073

Other 8,929,221 2.65 394,266 0.12 13,124,857 3.90 15,697,233 4.66

UnKnown 37,621 0.01 0 0.00 69,551,725 20.65 69,589,343 20.66

Summary* 11,859,774 3.52 13,648,690 4.05 121,407,295 36.05 137,342,709 40.78

The summary* line shows the non-redundant transposable elements of the above six categories. The percentage number in this table was rounded with two decimal
places.
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TABLE 4 | ncRNA annotation in C. quinquecirrha genome.

Type Sub-types Copy (w) Average
length (bp)

Total length
(bp)

Percentage of
genome

miRNA – 50 128.82 6,441 0.001912

tRNA – 7,833 75.72 593,093 0.176086

rRNA rRNA 857 129.46 110,948 0.03294

18S 184 184.24 33,900 0.010065

28S 331 164.62 54,488 0.016177

5.8S 17 68 1,156 0.000343

5S 325 65.86 21,404 0.006355

snRNA snRNA 745 160.61 119,652 0.035524

CD-box 16 104.75 1,676 0.000498

HACA-box 0 0 0 0

Splicing 729 161.83 117,976 0.035026

and C. quinquecirrha diverged with the common ancestor
of A. aurita and N. nomurai 475.7 Mya (Figure 6A and
Supplementary Table S14). Furthermore, we conducted gene
family analysis and identified 85 expanded and 64 contracted
gene families (P < 0.05) in jellyfish. Functional analysis identified
2 GO and 30 KEGG terms were enriched in expansion,
respectively (Supplementary Tables S15, S16). We found
that biological processes, such as dorso-ventral axis formation

(P = 0.000264635), fatty acid degradation (P = 0.002908315),
and Notch signaling pathway (P = 0.005299582), were expanded
in jellyfish relative to closely related species (Supplementary
Table S16), suggesting genes in these families may have
important functions in jellyfish.

Codon Usage and Relative Evolution
Rate
Jellyfishes are relatively ancient and simple multi-cellular
organisms. Whether they exhibit similar codon usage with
other species remains unclear. Here, we performed codon usage
analysis in jellyfish and found it has no obvious differences
with closely related species (Supplementary Table S17). Based
on manually checking, we identified the frequent low-GC-
content codons usage in C. quinquecirrha, including Glu and Asp
(Supplementary Table S18), suggesting that low-energy codons
are more commonly used in C. quinquecirrha. We next analyzed
the relative evolution rate of species, with C. quinquecirrha
as the reference and E. granulosus as the outgroup. Results
indicated that jellyfish have a faster evolution rate than sea
anemones but a slower rate than the species in Hydra (Figure 6B
and Supplementary Tables S19, S20), suggesting different
survival pressures and environmental adaptations during their
evolutionary history.

FIGURE 2 | Statistics and comparison of protein-coding genes.
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FIGURE 3 | Genome size comparison among species.

FIGURE 4 | Repetitive sequence expansion and insertion history among species.

DISCUSSION

We de novo assembled the first high-quality reference genome
of C. quinquecirrha, with a scaffold N50 length of 733.65
Kb, and annotated 21,606 protein-coding genes. The ncRNAs
annotation, especially for miRNA, could help us study the

expression regulation of coding genes in the future. Comparative
genomics analysis indicated that the large C. quinquecirrha
genome was mainly due to non-coding region expansion. Codon
usage analysis indicated that C. quinquecirrha tends to use
low-energy codons in the protein-coding genes. Furthermore,
results demonstrated that C. quinquecirrha has a relatively
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FIGURE 5 | Gene family analysis of these species. (A) Gene family statistics among species. (B) Shared or specific gene families among species.

FIGURE 6 | Phylogenetic relationship and relative evolution rate analyses of these species. (A) Phylogenetic relationship among these species. (B) Relative evolution
rate among these species.

faster evolution rate than sea anemones but slower evolution
rate than the species in Hydra. Phylogenetic results indicated
that A. aurita and N. nomurai are more closely related to
each other than to C. quinquecirrha, with divergence between
their common ancestor and C. quinquecirrha occurring 475.7
Mya. Simple morphological considerations, several previous
studies got different phylogenetic relationships among these
species. Our study analyzed the phylogeny by the whole-genome
data could help us better understand the evolution and their
relationships in Cnidaria.
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