
A novel bi‑directional heterogeneous 
network selection method for disease 
and microbial association prediction
Jian Guan, Zhao Gong Zhang*, Yong Liu* and Meng Wang 

Introduction
The microbial community is composed of bacteria, fungi, protozoa, and eukaryotes. It 
has an important impact on human beings in the fields of food, agriculture, environ-
mental governance, and human health [1]. Microorganisms living in different organs of 
the human body can directly affect human health by regulating human immune system, 
drug metabolism and pathogen prevention [2]. Therefore, finding more links between 
microorganisms and diseases can not only help us better under- stand the pathogenesis 
of diseases, but also promote doctors’ diagnosis of diseases. In recent years, many com-
putational methods have been proposed to explore the potential correlation in biological 
information. The existing calculation methods applied to microbial disease association 
are mainly divided into three categories. The first is based on fractional functions, the 
second is based on network algorithms, and the third is based on machine learning.
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The first method, the Katz method proposed by Chen et al., is based on scoring func-
tion utilizing similarity and known association to predict the potential association 
between microorganism and disease. For association prediction, this method uses the 
number and length of paths between nodes in heterogeneous networks to predict [3]. 
Additionally, Li et al. [4] used Gaussian interaction profle kernel (GIP) similarity to build 
a weighted heterogeneous network for association prediction.

The second type of prediction method is to use machine learning technology to predict 
microbial disease association [5, 6]. Wang et al. [7] proposed a semi supervised model 
based on Laplace regularized least square algorithm. Peng et al. [8] combined multiple 
weak classifiers to form a strong classifier for prediction.

Lastly, methods based on random walk and matrix decomposition have also been 
explored to reveal potential microbial disease associations. Several methods use ordi-
nary random walk [9], double random walk of logic function transformation [10] and 
random walk based on hypergraph [11] to predict potential microbial disease associa-
tion. Qu et al. [12] used matrix decomposition and label propagation to infer potential 
associations. In addition, [13] proposed a method based on similarity constraint matrix 
decomposition to predict potential microRNA and disease associations. Several other 
methods have been proposed to predict microbial and disease associations based on 
network consistency projection [14] and multi similarity fusion tag propagation [15]. 
However, these methods still have some limitations. Because the sparsity of data and the 
singleness of methods limit the dissemination of information; these methods are difficult 
to extract the deep-seated Association of microorganisms (or diseases) from the data.

With the development of artificial intelligence, the method based on deep learning has 
been widely used in various fields. Long et al. proposed a framework to complete predic-
tion based on graph attention network and inductive matrix [16]. Lei et al. [17] used the 
combination of node2vec algorithm and rule-based reasoning to predict potential asso-
ciations. Liu et al. [18] have combined non negative matrix decomposition, random walk 
and capsule neural network to predict the association between microorganisms and dis-
eases. A method based on multi-component graph attention network (GATMDA) was 
proposed to predict the potential association between microorganisms and diseases [19]. 
However, many similarities of various microorganisms (diseases) have not been fully uti-
lized. Moreover, most of the previous methods rely on the known microorganism dis-
ease association for similarity calculation, thus these methods cannot achieve prediction 
when involving new diseases (or new microorganisms) due to the lack of training data.

In this paper, we propose a method (BDHNS), to predict microbial disease associa-
tion based on a bi-directional microbial disease heterogeneous network and selection 
model. The contribution of our approach is mainly reflected in the following three 
aspects. First, we constructed a bi-directional heterogeneous microbial disease net-
work based on the similarities between microorganisms and diseases. Different simi-
larities can more comprehensively reflect the relationship between microorganisms and 
diseases from different angles. Secondly, based on an enhanced bi-directional random 
walk, we learn the neighbor topology information of microorganism and disease nodes 
in bi-directional heterogeneous networks from the two directions of microorganism 
disease and disease microorganism. The multi-feature fusion of microorganism and dis-
ease nodes is helpful for the final prediction of microorganism disease association. In 
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heterogeneous networks, if all the neighbor information of each node is aggregated, the 
information of different types of nodes may also be aggregated, which will cause infor-
mation redundancy. Therefore, lastly, we propose a graph convolution-based selection 
model to selectively aggregate neighbor information of disease (microorganism) nodes. 
The improved prediction performance is demonstrated by comparison with the most 
advanced models, ablation experiments, and case studies based on the Loocv and Five-
fold cross-validation.

Materials and methods
In order to predict the potential association between microorganisms and diseases, we 
propose a method based on a bi-directional random walk and selection model (Fig. 1). 
Firstly, a bi-directional heterogeneous network containing microorganisms and dis-
ease nodes is established based on multiple similarities to integrate the Gaussian kernel 
similarity of microorganisms, the functional similarity of microorganisms, the seman-
tic similarity of diseases, and the similarity of disease symptoms. Secondly, we build an 
enhanced bi-directional random walk module to learn the neighbor topology informa-
tion of microorganisms and disease nodes. Then, a graph convolution based selection 
model is proposed to selectively aggregate the neighbor topology and attribute informa-
tion of each node in the network and calculate the association probability of node pairs.

Microbial disease association data

We downloaded microbial disease association data from the database HMDAD, includ-
ing 39 diseases and 292 microorganisms, covering 483 microbial disease associations. 
After removing duplicate records, we obtained 450 associations involving 39 diseases 
and 292 microorganisms. Subsequently, we used the data to construct the microbial 
disease association matrix A, if disease d(i) is associated with microorganism m(j), then 
A(i, j) = 1 , otherwise A(i, j) = 0.

Fig. 1  Overall flowchart of BDHNS. Step1: We fuse the calculated similarity of two microorganisms with 
the similarity of four diseases. Step2:We first build two one-way heterogeneous network respectively 
corresponding microorganisms and diseases, and then convert two one-way heterogeneous networks into a 
two-way heterogeneous network of microorganisms and diseases. Step3:We use the enhanced random walk 
and selection algorithm to predict the potential association between microorganisms and diseases
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Construction of bi‑directional heterogeneous network

Based on the similarity of many microorganisms and diseases, we constructed a bi-direc-
tional heterogeneous microbial disease network G = (V ,E) . Among them, node set V is 
composed of microbial node set Vm and disease node set Vd . Edge eij ∈ E represents the 
edge between a pair of nodes, Vi,Vj ∈ V  . Heterogeneous network G contains microbial-
microbial similarity, disease-disease similarity and bi-directional association between 
microorganisms and diseases based on disease similarity and microbial similarity.

Microbial similarity

The more diseases are associated with two microorganisms, the more likely they are to 
demonstrate the same function. GIP similarity of microorganisms was calculated based 
on this assumption. The specific calculation process of GIP similarity matrix GM of 
microorganisms m(i) and m(j) is as follows:

where A(m(i)) represents column i of A. rm
′ is a parameter that affects rm normalization 

and rm
′
= 1 . Nm indicates that the number of microorganisms is 292.

Information on the resident organs of microorganisms and their effects on disease 
can be obtained from HMDAD. If two microorganisms live in the same organ and are 
associated with similar diseases, there is a greater degree of similarity between them. In 
the same organ, if two microorganisms affect the same disease, the degree of similarity 
between them is 1, otherwise it is 0. The microbial function similarity matrix FM can be 
obtained by accumulating the effects of diseases on microorganisms in various organs. 
Then the FM is normalized to obtain the final FM. The normalization calculation pro-
cess is as follows:

where max(FM) and min(FM) are the maximum and minimum values in the matrix FM.
Given microbial GIP similarity matrix GM and microbial functional similarity matrix 

FM, the final microbial similarity matrix SM is integrated as follows:

Disease similarity calculation

Similar to the calculation method of microbial GIP similarity matrix, the calculation 
process is as follows:

(1)GM(m(i, j)) = exp −rm A(m(i))− A(m(j))
2

(2)rm = rm
′/

1

N

Nm
∑

i=1

||A(m(i))||2

(3)FM(m(i),m(j)) =
FM(m(i),m(j))−min(FM)

max(FM)−min(FM)

(4)SM(i, j) =

{

GM(i, j) if FM(i, j) = 0
(GM(i, j)+ FM(i, j))/2 else

(5)GD(d(i, j)) = exp
(

−rd
∥

∥A(d(i))− A(d(j))
∥

∥

2
)
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where A(d(i)) represents row i of adjacency matrix A. rd
′ set to 1. Nd is 39, represent-

ing the number of diseases. Each disease can be represented by constructing a directed 
acyclic graph (DAG), which contains the disease and all its ancestral diseases [20]. Thus, 
we can calculate the semantic contribution of each disease in DAG to each disease in our 
data. The calculation process is as follows:

where � is the semantic attenuation factor. The value of is set to 0.5.
By calculating the semantic contribution values of all diseases in DAG, the semantic 

values of diseases are calculated as follows:

where Vd includes disease D and all its ancestral diseases. The more common semantics 
the two diseases DAG contains, the more similar the two diseases will be. The semantic 
similarity between the two diseases is calculated as follows:

Two similar diseases may interact with similar genes [21], and the disease function 
similarity matrix can be calculated based on the interaction between disease-related 
genes. Humannet v2.0 database contains gene interactions [22], in which each inter-
action has a related log likelihood score (LLS) to evaluate the probability of functional 
linkage between genes. We can get the relevant genomes of diseases d(i) and d(j) that 
Gi = {gi1, gi2, ..., gim} and Gj = {gj1, gj2, ..., gjn} , respectively. where m is the number of 
genes in Gi and n is the number of genes in Gj . The association between gene g and gene 
set G = {gi, g2, ..., gk} is as follows:

where FSS represents the functional similarity score between genes, which is calculated 
as follows:

where LLS′ is the standardization of gene LLS, which is calculated as follows:

where LLSmax and LLSmin represent the maximum and minimum values in HumanNet 
respectively.

(6)rd = rd
′/

1

N

Nd
∑

i=1

||A(d(i))||2

(7)DD(d) =

{

1 if d = D
max

{

�× DD(d
′)|d′ ∈ children of d

}

if d �= D

(8)DV (D) =
∑

t∈Vd

DD(t)

(9)DSS(d(i), d(j)) =

∑

t∈T (d(i))∩T (d(j))D(i)(t)+ D(j)(t)

DV (D(i))+ DV (D(j))

(10)FG(g) = max
gi∈G

(FSS((g , gi)))

(11)FSS(gi, gj) =

{

1 ifi = j
LLS′(gi, gj) if i �= j

(12)LLS′(gi, gj) =
LLS(gi, gj)− LLSmin

LLSmax − LLSmin
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Finally, we calculate the disease functional similarity as follows:

By integrating disease GIP similarity, disease semantic similarity, disease symptom 
similarity (TD) and disease function similarity, the final disease similarity matrix SD is 
expressed as:

where symptom-based diseases similarity TD was calculated using the associations of 
diseases and symptoms. The associations between diseases and symptoms is extracted 
from the human symptomatic disease network [23]. Therefore, we use the vectors of 
diseases related symptoms and refer to the method in [23] to calculate the similarity 
between disease-disease based on cosine similarity measurement, and then obtain dis-
ease symptom similarity (TD).

Bi‑directional correlation calculation between microorganism and disease

For a given disease, the degree of correlation with different microorganisms is differ-
ent. For example, for a given disease d(i), some microorganisms related to d(i) have a 
strong similarity relationship, while others have no or low similarity relationship with 
d(i). Therefore, the similarity topology between microorganism and disease is used to 
calculate the correlation between disease (microorganism) and microorganism (disease). 
Specifically, we constructed a bi-directional heterogeneous network containing disease 
and microbial nodes. When calculating the correlation degree of disease to microorgan-
ism, the edge weight transferred from the disease network d(i)(i = 1, 2, ...,Nd) node to 
the microbial network m(j)(j = 1, 2, ...,Nm) node is defined as the sum of the weights 
from the disease node associated with microorganism m(j) to the d(i) node. Similarly, we 
can also calculate the degree of association between microorganisms and disease direc-
tion. Therefore, two new adjacent matrices A′

SD and A′

SM can be obtained based on the 
similarity matrices SD and SM. The calculation process is as follows:

where aik(ajk ) is the element on row i and column k (row k and column j) of adjacent 
matrix A.

Given the bi-directional correlation matrix A′

SD and A′

SM of microorganisms and 
diseases,microbial similarity matrix SM and disease similarity matrix SD, a bi-directional 
heterogeneous microbial disease network can be established. The adjacency matrix of 
bi-directional heterogeneous networks is Aall,

(13)DF(d(i), d(j)) =

∑

gt∈G(d(i))

FG(d(j))(gt)+
∑

gt∈G(d(j))

FG(d(i))(gt)

m+ n

(14)SD =
GD + DSS + TD + DF

4

(15)A
′

SD(i, j) =

nd
∑

k=1

SD(i, k)akj

(16)A
′

SM(i, j) =

nm
∑

k=1

aikSM(k , j)
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Learning neighbor topology enhanced bi‑directional random walk

The transition probabilities between slave nodes are uniformly distributed in ordinary 
random walks. In our bi-directional random walk, the transition probability matrix W ′

DM 
from disease to microbial node and W ′

MD from microbial network to disease network are 
redefined. W ′

DM and W ′

MD are as follows:

where ϕ ∈ (0, 1) is the jumping probability of walkers between disease network and 
microbial network. Wd is the transition probability matrix between disease networks, 
Wd(i, j) represents the jump probability from disease d(i) to disease d(j). Wd(i, j) is 
expressed as follows:

Similarly, the microbial network transition probability matrix Wm is expressed as follows:

In general random walk, the microbial disease transfer probability matrix and the disease 
microbial transfer probability matrix are transposed. Since our heterogeneous network 
is bi-directional, we propose an enhanced random walk to improve the comprehensive 
generalization ability of the bi-directional network, which can be described as follows:

where W is the transition probability matrix of all nodes in the bi-directional heteroge-
neous network, which is defined as follows:

Selection algorithm module based on graph convolution

Most methods will aggregate all the neighbor information of nodes in heterogeneous 
graphs (as shown in Fig. 2), which may lead to the aggregation of redundant informa-
tion to ignore the difference in local information of nodes [24]. Therefore, we adopt a 

(17)Aall =

(

SD A
′

SD

A
′

SM SM

)

(18)W
′

DM(i, j) = ϕ
aijA

′

SM(i, j)
∑nm

l=1 ailA
′

SM(i, l)

(19)W
′

MD(i, j) = ϕ
aijA

′

SD(i, j)
∑nd

l=1 aliA
′

SD(l, j)

(20)Wd(i, j) =

{

(1− ϕ)SD(i, j)/
∑nd

k=1 SD(i, k) if
∑nm

k=1 aik �= 0

SD(i, j)/
∑nd

k=1 SD(i, j)

(21)Wm(i, j) =

{

(1− ϕ)SM(i, j)/
∑nm

k=1 SM(i, k) if
∑nd

k=1 aki �= 0

SM(i, j)/
∑nm

k=1 SM(i, k) otherwise

(22)P(t + 1) = (1− r)×W × P(t)+ r × P(0)

(23)W =

(

Wd W
′

MD

W
′

DM Wm

)
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graph convolution-based selection algorithm to selectively aggregate the neighbor infor-
mation of each node in the network, so that our model can be applied to more practical 
scenarios.

We take the transition probability matrix W as the attribute matrix X of microbial and 
disease nodes, and propose a graph convolution based selection algorithm to selectively 
aggregate the neighbor topology and attributes of each node in the network, that is, 
based on graph convolution, we can aggregate them in the following two ways:

Method 1: When the graph convolution aggregates neighbors, all the neighbor infor-
mation of the node is aggregated, as shown in Fig. 3a.

The adjacency matrix Aall and attribute matrix X of the bi-directional heterogeneous 
network are used as the inputs of the graph convolution based selection algorithm mod-
ule, and the output of the graph convolution is,

where Ĥ is the node feature of the convolution output of the original graph, x is the 
attribute vector of the target node, and N(x) is the attribute vector of the neighbor node 
of the target node.

(24)Ĥ = f (x,N (x)|θ̂ )

Fig. 2  Heterogeneous map

4

5

6

1

3

2

4

5
6

1

(a)

4

5
6

(b)
Fig. 3  Select algorithm graph
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We use the node attribute vector of graph convolution output to calculate the asso-
ciation probability ŷ between microorganism and disease, as shown in the following 
formula:

where hm(i) and hd(j) represent the attribute vectors of disease node d(j) and microorgan-
ism node m(i) respectively, and A is the microorganism disease correlation matrix.

Method 2: In the application of graph convolution, only nodes of the same type are 
aggregated, as shown in Fig. 3b,

where Ĥ s is the node attribute of convolution output of graph after intervention. x is the 
node characteristic, φ is the causal intervention. Similarly, the microbial disease predic-
tion association probability ŷs after the intervention is also calculated based on formulas 
24 and 25.

Select algorithm

Two methods of aggregating neighbor information were used to obtain two prediction 
scores of microbial disease association, i.e. association probability ŷ of original predic-
tion and association probability ŷs of post intervention prediction. Our purpose is that 
the model can make the best choice between ŷ and ŷs for the final prediction, so as to 
reduce the impact caused by the local structural difference of nodes [25], which is calcu-
lated as follows:

where h is the selection function and e is the causal effect factor, which is defined as 
follows:

The final microbial disease association prediction probability is calculated as follows:

where m is the threshold.

(25)y(m(i), d(j)) =

m
∑

k=1

Sim(hm(i), hm(k))A(j, k)+
d
∑

k=1

Sim(hd(j), hd(k))A(k , j)

m
∑

k=1

Sim(hm(i), hm(k))+
m
∑

k=1

Sim(hd(i), hd(k))

(26)Sim(u, v) =

g
∑

k=1

ukvk

√

g
∑

k=1

u2k

√

g
∑

k=1

v2k

(27)Ĥ s = f (x,φ|θ̂ s)

(28)ȳ = h(ŷ, ŷs|e)

(29)
e = f (x,N (x)|θ̂ )− f (x, do(N = φ)|θ̂ )

= f (x,N (x)|θ̂ )− f (x,φ|θ̂ )
= ŷ− ŷs

(30)ȳ =

{

ŷ, e >= m
ŷs, e <= m



Page 10 of 15Guan et al. BMC Bioinformatics          (2022) 23:483 

Experimental evaluation and discussion
Parameter setting and evaluation index

Our model BDHNS runs on a GPU(Nvidia GeForceRTX2060). We quantitatively ana-
lyze the parameter random walk step number t, restart probability r and characteristic 
dimension d to determine their values. We set the restart probability r of random walk 
from 0.1 to 0.9. The embedding dimension d and the number of random walk steps t 
are set similarly to r, with d and t varying from 8 to 128 and from 5 to 30, respectively. 
In order to facilitate parameter tuning, one parameter is tested and the other param-
eters are fixed. When the restart probability r is 0.1, the number of steps t is 20, and the 
embedding dimension d is 64, our model has the best performance. We use all combi-
nations of parameter d, restart probability r and the range of embedded dimension d to 
construct our model.

Loocv cross validation and 5-fold cross validation were used to evaluate the perfor-
mance of our method and other state-of-the-art microbial disease prediction methods. 
In Loocv, each known association between microorganism and disease is selected as 
the test sample, while other known associations are training samples. In the 5-fold cross 
validation, the known association is regarded as a positive sample, and the unobserved 
association is regarded as a negative sample. All positive samples were randomly divided 
into five groups, four of which were put into the training set, and the rest were used for 
testing. In each cross validation, we randomly selected negative samples with the same 
amount as 4 groups of positive samples for training, and the remaining negative samples 
are used for testing.

Our evaluation indicators include true positive rate (TPR), false positive rate (FPR), 
receiver operating characteristic (ROC), and area under curve (AUC). The ROC curve 
can be drawn and the area under the ROC curve (AUC) can be obtained by sorting the 
samples with the scores of our method and different thresholds.

Ablation experiment

Under the Five-fold cross-validation and Loocv cross-validation, the ablation experi-
ment was used to verify the contribution of the enhanced random walk module and the 
graph convolution-based selection algorithm module to the prediction of microbial-
disease association (Table  1). In the absence of validation of enhanced random walk, 
AUC decreased by 6.2% and 2.8% respectively compared with our final model. The main 
reason is that the enhanced random walk module enhances the neighbor topology rep-
resentation of microorganisms and disease nodes, which may improve the prediction 
performance. Compared with the model without the selection module based on graph 
convolution, the AUC performance of our method is improved by 9.1% and 5.5% under 

Table 1  Results of ablation experiments on our method

Enhanced 
bi-directional random 
walk

Selection algorithm module 
based on graph convolution

Five fold cross 
validation Average AUC​

Loocv cross 
validation 
Average AUC​

× � 0.883 0.923

� × 0.854 0.896

� � 0.945 0.951
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five-fold cross-validation and Loocv cross-validation, respectively. This indicates that it 
is necessary to selectively aggregate the attributes of neighbor nodes.

Compare other methods

We compared our method with four microbial disease association prediction methods, 
including BiRHMDA [4], KATZ [3], LRLSNMDA [7], ABHMDA [8], Liu’s method [18], 
MGATMDA [19]. In five-fold cross-validation and leave-one-out cross-validation, all 
methods use the same data set for training and testing. Under the five fold cross valida-
tion and Loocv cross validation, the average curves of all methods are shown in Figs. 4 
and 5, respectively.

Fig. 4  ROC curve of five methods in 5-fold cross validation

Fig. 5  ROC curve of five methods in Loocv
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Under the five-fold cross validation, the AUC value of our model is the best, which 
is 0.945, which is 2.9% higher than Liu’s method, 4.4% higher than MGATMDA, 18.5% 
higher than BiRWHMDA method, 6.9% higher than ABHMDA method, 18.1% higher 
than KATZ method, and 13.8% higher than LRLSNMDA method. One possible reason 
why Liu’s method ranks second is that it integrates the linear features of microorganisms 
and diseases obtained based on non negative matrix decomposition and random walk 
and the nonlinear features obtained based on capsule neural network. The third ranked 
mgatmda utilizes the graph attention network (GAT) to deeply mine the complex asso-
ciation between microorganisms and diseases. BiRWHMDA, ABHMDA, LRLSNMDA 
and KATZ are shallow prediction methods, which are difficult to deeply integrate the 
multi-level attributes of microbials and diseases nodes. One possible reason why ABH-
MDA performs better than BiRWHMDA, LRLSNMDA and KATZ is that it integrates 
similarity information across multiple microorganisms. The results show that this infor-
mation is helpful to predict the microbial-disease association.

Under the Loocv cross validation, the AUC value of our method is still higher than 
that of other methods. The AUC value of our method is 0.951, which is 2.9% , 4%, 8%, 
6.7%, 12.6% and 8.8% higher than Liu’s method, MGATMDA, BiRWHMDA, ABHMDA, 
KATZ and LRLSNMDA, respectively.

Case studies

In order to further evaluate the predictive performance of our method for microbial-
disease association, we conducted case studies on colon cancer and ulcerative colitis. 
First, we can obtain the association probability of each microbial candidate disease and 
rank it in descending order. Then, the first 10 candidate microorganisms of each disease 
were selected for validation and analysis.

Colon cancer is a life-threatening malignant tumor. The risk of colon cancer is closely 
related to intestinal flora [25]. In this study, 9 of the top 10 candidate microorganisms 
related to colon cancer predicted by our method have been confirmed by experiments, 
as shown in Table 2. Clostridia may promote Colon cancer [26]. It is found that entero-
bacteriaceae and proteobacteria are very common in colon cancer [27, 28]. Sidhu et al. 
[29] was found that the bacteria that can produce butyrate in the intestinal microbiota of 
colon cancer patients were greatly reduced. Clostridium coccoides is one of the bacteria 

Table 2  Prediction results of top-10 Colon cancer-associated microbes

Disease name Rank Microbe name Evidence

1 Clostridia PMID: 24603888

2 Enterobacteriaceae PMID: 26143056

3 Clostridium coccoides PMID:21850056

Colon cancer 4 Haemophilus Unconfirmed

5 Clostridium PMID: 30857430

6 Proteobacteria PMID: 34650531

7 Firmicutes PMID: 34551683

8 Bacteroidetes PMID: 34551683

9 Lactobacillus PMID: 19647100

10 Staphylococcus PMID: 17530358
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that can produce butyrate. There is evidence that clostridium is associated with colon 
cancer [30]. Compared with normal people, fermicutes and bacteroidetes in colon can-
cer patients decreased and increased significantly respectively [31]. Lactobacillus has 
immunoregulatory effect on human colon cancer cells [32]. Studies have proved that 
staphylococcus can prevent cancer [33].

Ulterative colitis is a chronic inflammatory disease of colon and rectum. Its pathogen-
esis is closely related to intestinal microbial imbalance [34]. Methods 9 of the top 10 
candidate microorganisms related to ulcerative colitis predicted by us have been con-
firmed by experiments, as shown in Table 3. There is evidence that prevotella, clostrid-
ium difficile and proteobacteria have a great impact on the pathogenesis of ulcerative 
colitis [35–37]. Gryaznova et al. [38] reported patients with ulcerative colitis caused by 
staphylococcus aureus. There is evidence that haemophilus is increased in patients with 
ulcerative colitis [39]. Helicobacter pylori is also involved in the pathogenesis of ulcera-
tive colitis [40]. The abundance of firmicutes in lymph nodes of patients with ulgenera-
tive colitis is very high [41]. Erysipelotrichaceae was found to be a key bacterium related 
to ulcerative colitis [42]. It was found that the number of coriobacteriaceae decreased in 
patients with ulcerative colitis [43].

In conclusion, case studies of two diseases show that our method can indeed find 
potential microbial disease associations.

Summary
We propose a new microbial disease prediction method to learn and integrate multi-
ple characteristics of diseases and microorganisms. Bi-directional heterogeneous 
networks are established to help integrate similarities and associations between micro-
organisms and diseases. An enhanced random walk module is established to learn the 
neighbor topology information of microorganisms and disease nodes. In order to selec-
tively aggregate node features, a graph convolution-based selection algorithm is further 
established. In the Loocv and 5-fold cross-validation, the improved performance of our 
method in AUC was demonstrated by comparing with several microbial disease predic-
tion models. The performance of our method is further demonstrated by the case stud-
ies of colon cancer and ulcerative colitis. In the future, we can integrate more types of 
data, such as gene sequencing and human metabolite data, to help predict the potential 

Table 3  Prediction results of top-10 Ulcerative colitis-associated microbes

Disease name Rank Microbe name Evidence

1 Prevotella PMID: 16585651

2 Clostridium difficile PMID: 21272802

3 Staphylococcus aureus PMID: 21683308

Ulterative colitis 4 Haemophilus PMID: 33748490

5 Proteobacteria PMID: 250187840

6 Helicobacter pylori PMID: 30430119

7 Firmicutes PMID: 30239655

8 Erysipelotrichaceae PMID: 32169445

9 Coriobacteriaceae PMID: 31812509

10 Clostridia Unconfirmed
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association between microorganism and disease. In addition, nodes in heterogeneous 
networks can be connected through different semantic meta paths. Therefore, in the 
future, we will integrate the information from the meta path in our method.
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