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Abstract: Background: Wireless capsule endoscopy allows the identification of small intestinal
protruded lesions, such as polyps, tumors, or venous structures. However, reading wireless capsule
endoscopy images or movies is time-consuming, and minute lesions are easy to miss. Computer-
aided diagnosis (CAD) has been applied to improve the efficacy of the reading process of wireless
capsule endoscopy images or movies. However, there are no studies that systematically determine the
performance of CAD models in diagnosing gastrointestinal protruded lesions. Objective: The aim of
this study was to evaluate the diagnostic performance of CAD models for gastrointestinal protruded
lesions using wireless capsule endoscopic images. Methods: Core databases were searched for studies
based on CAD models for the diagnosis of gastrointestinal protruded lesions using wireless capsule
endoscopy, and data on diagnostic performance were presented. A systematic review and diagnostic
test accuracy meta-analysis were performed. Results: Twelve studies were included. The pooled area
under the curve, sensitivity, specificity, and diagnostic odds ratio of CAD models for the diagnosis
of protruded lesions were 0.95 (95% confidence interval, 0.93–0.97), 0.89 (0.84–0.92), 0.91 (0.86–0.94),
and 74 (43–126), respectively. Subgroup analyses showed robust results. Meta-regression found
no source of heterogeneity. Publication bias was not detected. Conclusion: CAD models showed
high performance for the optical diagnosis of gastrointestinal protruded lesions based on wireless
capsule endoscopy.

Keywords: artificial intelligence; computer-aided diagnosis; capsule endoscopy; polyp; tumor;
protruded; lesion capsule endoscopy; ulcer; hemorrhage

1. Introduction

Wireless capsule endoscopy (WCE) is the primary choice for the examination of pa-
tients with suspected small intestinal lesions who showed negative radiologic examination
results. With the technical advancements, such as optical assembly, battery, and sensor
modules, WCE allows the non-invasive visualization of all gastrointestinal mucosa. It pro-
vides about 50,000 images in one examination, and there is a minimal risk for discomfort or
procedure-related adverse events [1]. Despite these benefits in clinical practice, WCE has a
limitation in terms of interpretation. A tedious reading time of >1 h is needed, and there
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is a risk of oversight because only a few abnormal video frames might appear in a single
examination [1,2].

Computer-aided diagnosis (CAD) has been adopted for the immediate interpretation
of images obtained from gastrointestinal endoscopy [3,4]. These models use machine
learning-based algorithms or deep learning-based neural networks to find the local features
in given images and to provide an established model optimization [5]. An automatic
detection or classification of abnormal lesions on endoscopic images or movies has been
widely investigated and has shown promising results [6–9]. The most beneficial point of
the application of CAD models in clinical practice would be the reduction of the burden
on endoscopists [10]. CAD models could reduce the laborious reading time due to the
automatic detection and classification of gastrointestinal abnormalities. These can help in
detecting hidden or hard-to-detect lesions in real time, leading to a reduced miss rate of
important findings in WCE [11]. Another benefit would be its highly accurate diagnostic
performance, which is comparable to that of an endoscopist [7,9]. These CAD models are
expected to help in the automatic detection and diagnosis of important and hard-to-detect
lesions using WCE images, making it possible to automatically read the entire WCE movies.

Protruded lesions in the gastrointestinal tract include various abnormalities, such as
neoplasms, benign polyps, and other mucosal elevations (edematous ulcerations, venous
structures, such as varix or bleb). Identifying and making an accurate diagnosis for these
tumorous lesions are important, especially for lesions located in the small bowel, which
is difficult to access through conventional endoscopy. Previous studies have reported the
performance of each established CAD model in the diagnosis of protruded lesions using
WCE images [12–23]. However, there are no studies that systematically determine the
performance of CAD models in diagnosing gastrointestinal protruded lesions. The aim of
this study was to evaluate the diagnostic performance of CAD models for gastrointestinal
protruded lesions using wireless capsule endoscopic images.

2. Methods
2.1. Adherence to the Statement of Systematic Review and Diagnostic Test Accuracy
Meta-Analysis

This study was conducted in accordance with the statement of the Preferred Reporting
Items for a Systematic Review and Meta-analysis of diagnostic test accuracy (DTA) stud-
ies [24]. The protocol of this study was registered in the International Prospective Register
of Systematic Reviews database before the initiation of the systematic review (ID 276623).
The approval from the institutional review board of the Chuncheon Sacred Heart Hospital
was waived.

2.2. Literature Searching Strategy

Searching formulas were made using keywords related to the performance of CAD
models in diagnosing gastrointestinal protruded lesions using WCE images. Medical
subject headings, terminologies, or author keywords were used to establish searching
formulas (Table 1).

Two authors (C.S.B. and J.J.L.) independently conducted a database search of MED-
LINE through PubMed, Web of Science, and Cochrane Library using the pre-established
search formulas, from inception to August 2021. Duplicate articles were excluded. The titles
and abstracts of all identified articles were reviewed, and irrelevant articles were excluded.
Full-text reviews were subsequently conducted to determine whether the pre-established
inclusion criteria were satisfied in the identified studies. The references to relevant studies
were also reviewed to identify any additional articles. Any disagreements in the results
obtained from the searching process between the two authors were resolved by discussion
or consultation with a third author (G.H.B.).
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Table 1. Literature searching strategy.

Database: MEDLINE (through PubMed)

#1 “artificial intelligence”[tiab] OR “AI”[tiab] OR “deep learning”[tiab] OR “machine learning”[tiab] OR “computer”[tiab] OR
“neural network”[tiab] OR “CNN”[tiab] OR “automatic”[tiab] OR “automated”[tiab]: 536153

#2 “capsule endoscopy”[tiab] OR “capsule endoscopy”[Mesh]: 5136
#3 “protruded”[tiab] OR “polyp”[tiab] OR “tumor”[tiab] OR “tumors”[Mesh] OR “polyps”[Mesh]: 1295552

#4 #1 AND #2 AND #3: 52
#5 #4 AND English[Lang]: 51

Database: Web of Science

#1 artificial intelligence OR AI OR deep learning OR machine learning OR computer OR neural network OR CNN OR automatic
OR automated: 130090

#2 capsule endoscopy: 3549
#3 protruded OR polyp OR tumor: 840061

#3 #1 AND #2 AND #3: 110

Database: Cochrane Library

#1 artificial intelligence:ab,ti,kw or AI:ab,ti,kw or deep learning:ab,ti,kw or machine learning:ab,ti,kw or computer:ab,ti,kw or
neural network:ab,ti,kw or CNN:ab,ti,kw or automatic:ab,ti,kw or automated:ab,ti,kw: 60782

#2 MeSH descriptor: [capsule endoscopy] explode all trees: 132
#3 capsule endoscopy:ab,ti,kw: 726

#4 #2 or #3: 726
#5 MeSH descriptor: [tumors] explode all trees: 83592
#6 MeSH descriptor: [polyps] explode all trees: 1165

#7 protruded:ab,ti,kw or tumor:ab,ti,kw or polyp:ab,ti,kw:
#8 #5 or #6 or #7: 134070
#9 #1 and #4 and #8: 5

CAD, computer-aided diagnosis; WCE, wireless capsule endoscopy; tiab, searching code for title and abstract;
Mesh, Medical Subject Headings; ab,ti,kw, searching code for abstract, title, and keywords; Lang, searching code
for language; lim, searching code by limiting certain conditions.

2.3. Inclusion Criteria

The studies included in this systematic review met the following inclusion criteria:
studies designed to evaluate the diagnostic performance of CAD models for gastrointestinal
protruded lesions based on WCE images; studies that presented the diagnostic performance
of CAD models, including sensitivity, specificity, likelihood ratios, predictive values, or
accuracy, which enabled the estimation of true positive (TP), false positive (FP), false
negative (FN), and true negative (TN) values of CAD models; and studies written in
English. The exclusion criteria were as follows: narrative review articles, studies with
incomplete data, systematic review, or meta-analyses, proceedings with abstract only, and
study protocols. Full publications with PDF files of available proceedings were considered
full articles. Articles that met at least one of the exclusion criteria were excluded from this
study.

2.4. Methodological Quality

The methodological quality of the included studies was assessed by two authors
(C.S.B. and J.J.L.) using the second version of Quality Assessment of Diagnostic Accuracy
Studies (QUADAS-2). This tool comprised four domains, namely “patient selection,”
“index test,” “reference standard,” and “flow and timing,” and the first three domains have
an “applicability” assessment. The two authors (C.S.B. and J.J.L.) evaluated each part as
having either a high, low, or unclear risk of bias, and any disagreements in the results in
the searching process between the two authors were resolved by discussion or consultation
with a third author (G.H.B.) [25].
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2.5. Data Extraction, Primary Outcomes, and Additional Analyses

Two authors (C.S.B. and J.J.L.) independently extracted the data from each included
study, and the extracted data were cross-checked. If data were unclear, the corresponding
author of the study was contacted by e-mail. A descriptive synthesis was done through a
systematic review process, and a DTA meta-analysis was done if the included studies were
sufficiently homogenous.

The primary outcomes were the TP, FP, FN, and TN values of each study. For the
CAD of gastrointestinal protruded lesions using WCE images, the primary outcomes were
defined as follows: TP, the number of subjects with a positive finding on a CAD model and
with protruded lesions based on WCE images; FP, the number of subjects with a positive
finding on a CAD model and with no protruded lesions based on WCE images; FN, the
number of subjects with a negative finding on a CAD model and with protruded lesions
based on WCE images; and TN, the number of subjects with a negative finding on a CAD
model and with no protruded lesions based on WCE images. With these definitions, TP, FP,
FN, and TN values were calculated for each included study.

For additional analyses of meta-regression and subgroup analysis, the following
variables were extracted from each included study: published year, geographic origin of the
data (i.e., Asian vs. Western vs. Publica data or Unknown), type of CAD models, number
of total images included in the training datasets and test datasets, type of test datasets
(internal test vs. external test), and target conditions (polyps vs. tumors vs. other protruded
lesions).

2.6. Statistical Analysis

The hierarchical summary receiver operating characteristic (HSROC) method was
primarily adopted for the DTA meta-analysis [26]. A forest plot of the pooled sensitivity or
specificity and a summary ROC (SROC) curve were also generated. The level of heterogene-
ity across the included articles was determined based on correlation coefficients between the
logit-transformed sensitivity and specificity using the bivariate method [27] and asymmetry
parameter β, where β = 0 corresponds to a symmetric ROC curve in which the diagnostic
odds ratio (DOR) does not vary along the curve according to the HSROC method [26]. A
positive correlation coefficient and a β with a significant probability (p < 0.05) indicate
heterogeneity between studies [26,28]. A visual inspection of the SROC curve was also
done to identify the heterogeneity. Subgroup analysis by univariate meta-regression using
the modifiers identified during the systematic review was also conducted to identify the
reasons for heterogeneity. The METANDI and MIDAS packages in the STATA software
version 15.1 (College Station, TX, USA) were used for the DTA meta-analysis. Deeks’ funnel
plot asymmetry test was conducted to determine the publication biases. For the subgroup
analyses of less than four studies, the Moses-Shapiro-Littenberg method [29] was used
in the Meta-DiSc 1.4 (XI Cochrane Colloquium, Barcelona, Spain) software because the
METANDI and MIDAS packages in the STATA software require the inclusion of a minimum
of four studies for DTA meta-analysis.

3. Results
3.1. Study Selection Process

A total of 167 studies were identified from the literature searching process on the
three databases. One study was additionally identified by manual screening of references.
After excluding duplicate studies, additional articles were excluded after reviewing their
titles and abstracts. Full-text versions of the remaining 127 studies were obtained and
thoroughly reviewed based on the aforementioned inclusion and exclusion criteria. Among
these, 115 articles were excluded because these articles did not present the exact number
of test images used in each study or simply presented one or two diagnostic performance
outcomes. Therefore, the crude value of TP, FP, FN, and TN cannot be measured in the
excluded studies. Finally, 12 studies [12–23] for the CAD of gastrointestinal protruded
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lesions were included in the systematic review. A flow chart of the study selection process
is shown in Figure 1.
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Figure 1. Flow chart of the study selection process for the diagnostic performance of computer-aided
diagnosis for gastrointestinal protruded lesions using wireless capsule endoscopy.

3.2. Clinical Characteristics

Among the 12 studies [12–23] for the CAD of gastrointestinal protruded lesions using
WCE, a total of 28,148 images were identified (10,649 cases vs. 17,499 controls) for the assess-
ment of the diagnostic performance. Six studies [15,16,18,19,22,23] used endoscopic images
from Asian populations, and three studies [14,17,20] used endoscopic images from Western
populations. However, three studies [12,13,21] used public database images searched on
the internet or from unknown sources. In terms of the type of CAD model, a deep neural
network or convolutional neural network was used in four studies [12,17,20,22], while ma-
chine learning-based models were used in eight studies [13–16,18,19,21,23]. In the context
of the target lesions, seven studies [15–19,21,23] presented the diagnostic performance of
the CAD of intestinal tumors, and four studies [12–14,20] presented its diagnostic perfor-
mance for intestinal polyps. However, the study by Saito H et al. (2020) [22] presented
an indistinguishable performance of the CAD of protruded lesions. Therefore, subgroup
analyses were performed for the target lesions. The detailed clinical features of the included
studies are presented in Table 2.
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Table 2. Clinical characteristics of the included studies for the diagnosis of gastrointestinal protruded lesions in wireless capsule endoscopy images using
computer-aided diagnosis.

Study/Year Nationality of
Data

Type of CAD
Models

Type of
Endoscopic

Images
Training Dataset

Type of
Test

Datasets

Number of
Protruded
Lesions in

Test
Dataset

Number of
Controls in

Test
Dataset

TP FP FN TN Target
Conditions

Li B et al.
(2009) [12] unknown

Feature
analysis

(texture, color)
with MLP

Still cut
images

150 polyp images
and 150 normal
mucosal images

Internal test 150 150 134 6 16 124
for small bowel

polyp
diagnosis

Hwang S
(2011) [13] unknown BoW

model-SVM
Still cut
images

25 polyp images
and 50 normal

mucosal images
Internal test 50 100 33 5 17 95

For small
bowel polyp

diagnosis

Karargyris
A et al.

(2011) [14]
US

Texture
analysis with

SVM

Still cut
images unclear Internal test 10 40 10 13 0 27

For small
bowel polyp

diagnosis

Li B et al.
(2011) [15] China

Texture
analysis with

SVM

Still cut
images

550 tumor images
and 550 normal
mucosal images

Internal test 50 50 45 1 5 49
for small bowel

tumor
diagnosis

Li B et al.
(2011) [16] China

Texture
analysis with

an ensemble of
kNN, MLP, or

SVM

Still cut
images

450 tumor images
and 450 normal
mucosal images

Internal test 150 150 138 17 12 133
for small bowel

tumor
diagnosis

Barbosa DC
et al. (2012)

[17]
Portugal

Texture
analysis with

neural network

Still cut
images

700 tumor images
and 2300 normal
mucosal images

Internal test 700 2300 657 159 43 2141
for small bowel

tumor
diagnosis

Li B et al.
(2012) [18] China

Texture
analysis with

SVM

Stil lcut
images

540 tumor images
and 540 normal
mucosal images

Internal test 60 60 51 11 9 49
for small bowel

tumor
diagnosis
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Table 2. Cont.

Study/Year Nationality of
Data

Type of CAD
Models

Type of
Endoscopic

Images
Training Dataset

Type of
Test

Datasets

Number of
Protruded
Lesions in

Test
Dataset

Number of
Controls in

Test
Dataset

TP FP FN TN Target
Conditions

Li B et al.
(2012) [19] China

Texture
analysis with

SVM

Still cut
images

540 tumor images
and 540 normal
mucosal images

Internal test 60 60 53 2 7 58
for small bowel

tumor
diagnosis

Constantinescu
AF et al.

(2015) [20]
Romania

Texture
analysis with

neural network

Still cut
images unclear Internal test 32 58 30 5 2 53

for intestinal
polyp

diagnosis

Kundu AK
et al. (2020)

[21]

from http://www.
capsuleendoscopy.

org

Linear
discriminant
analysis with

SVM

Still cut
images

30 tumor images
and 1617 normal
mucosal images

Internal test 30 1617 26 130 4 1487
for small bowel

tumor
diagnosis

Saito H
et al. (2020)

[22]
Japan CNN Still cut

images
30,584 images of

protruding lesions Internal test 7507 10000 6810 2019 697 7981

for protruding
lesion

diagnosis
(small bowel)

Yamada A
et al. (2020)

[23]
Japan

Single Shot
MultiBox
Detector

Still cut
images 15933 images Internal test 1850 2934 1462 380 388 2554

for colorectal
tumor

diagnosis

CAD, computer-aided diagnosis; TP, true positive; FP, false positive; FN, false negative; TN, true negative; MLP, multilayer perceptron; BoW, Bag-of-Words; SVM, support vector
machine; RFE, recursive feature elimination.

http://www.capsuleendoscopy.org
http://www.capsuleendoscopy.org
http://www.capsuleendoscopy.org


J. Pers. Med. 2022, 12, 644 8 of 16

3.3. Methodological Quality Assessment

CAD models were established based on the input training data. Therefore, the quality
and quantity of the baseline training data are important. A sufficient number of training
images that have various important features are required to establish practical models.
Endoscopists should also participate in the labeling work for accurate preparation of
the training data. If the established CAD models used the training images from public
databases searched on the internet, the quality of these training data cannot be guaranteed.

The authors defined that proper learning requires at least 30 training images (quantity
standard) from real clinic hospital data (quality standard) labeled by endoscopists (quality
standard). If both the quality and quantity standards were satisfied, it was defined as a
low risk of bias in the patient selection domain. If only one of these quality or quantity
standards was satisfied, it was defined as unclear risk of bias. If both were not satisfied, it
was defined as a high risk of bias.

For the methodological quality assessment using QUADAS-2, only five
studies [15,17,20,22,23] were rated with a low risk of bias, six studies [12,14,16,18,19,21]
were rated with an unclear risk of bias, and one study [13] was rated with a high risk of
bias in the patient selection domain. The remaining domains were rated with a low risk of
bias in all the included studies (Figure 2). Therefore, the classification of methodological
quality in the patient selection domain was adopted as a modifier in the subgroup or
meta-regression analysis.
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3.4. DTA Meta-Analysis

Among the 12 studies [12–23] for the meta-analysis of the CAD of protruded lesions
using WCE, the area under the curve, sensitivity, specificity, positive likelihood ratio,
negative likelihood ratio, and DOR were 0.95 (95% confidence interval, 0.93–0.97), 0.89
(0.84–0.92), 0.91 (0.86–0.94), 9.3 (6.3–13.8), 0.13 (0.09–0.18), and 74 (43–126), respectively
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(Table 3, Figure 3). An SROC curve is shown in Figure 4. To investigate the clinical
utility of the CAD models, a Fagan nomogram was generated. Positive findings indicate
that gastrointestinal protruded lesions were detected by the CAD models, while negative
findings indicate that gastrointestinal protruded lesions were not detected. Assuming a 21%
prevalence of gastrointestinal protruded lesions based on WCE [30], the Fagan nomogram
shows that the posterior probability of ulcers or erosions was 71% if the finding of the CAD
model was positive and only 3% if the finding of the CAD model was negative (Figure 5).
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Figure 5. Fagan nomogram for the computer-aided diagnosis of gastrointestinal protruded lesions
using wireless capsule endoscopy images.

3.5. Heterogeneity Evaluation, Meta-Regression, and Subgroup Analysis

First, a negative correlation coefficient between the logit-transformed sensitivity and
specificity (r = −0.18) in the bivariate model analysis was observed, and an asymmetric β

parameter in the HSROC model showed an insignificant p-value (p = 0.57), suggesting that
heterogeneity does not exist in the included studies. Second, the study by Hwang (2011) [13]
showed a lower sensitivity, and the study by Karargyris et al. (2011) [14] showed a lower
specificity compared with the enrolled studies in a coupled forest plot of sensitivity and
specificity (Figure 3). These studies have a high risk of bias and an unclear risk of bias in the
methodology quality assessment, respectively (Figure 2). Therefore, a subgroup analysis
was conducted according to the methodological quality, and the performance was robust;
however, slightly higher values were observed in studies with high methodological quality
(Table 3). Third, the shape of the SROC curve was symmetric, and the 95% prediction
region was not wide, suggesting that there was no heterogeneity between the included
studies (Figure 4). Fourth, a meta-regression using the modifiers identified in the systematic
review was conducted, with no source of heterogeneity found (published year [p = 0.28],
number of test images [p = 0.33], type of CAD models [p = 0.17], and target disease (polyps
vs. tumors vs. other protruded lesions) [p = 0.47]). Finally, a subgroup analysis based on
the potential modifiers was performed, and the overall performance of the studies showed
robust results (Table 3).



J. Pers. Med. 2022, 12, 644 11 of 16

Table 3. Summary of performance and subgroup analysis of the included studies for the diagnosis of
protruded lesions in wireless capsule endoscopy images using computer-aided diagnosis.

Subgroup
Number of
Included
Studies

Sensitivity
(95% CI)

Specificity
(95% CI) PLR NLR DOR AUC

All the included
studies 12 0.89

(0.84–0.92)
0.91

(0.86–0.94) 9.3 (6.3–13.8) 0.13
(0.09–0.18) 74 (43–126) 0.95

(0.93–0.97)

Ethnicity of data

Asian 7 0.88
(0.83–0.91)

0.90
(0.84–0.93) 8.4 (5.4–13.2) 0.14

(0.10–0.19) 62 (33–117) 0.94
(0.92–0.96)

Public database or
unknown
ethnicity

2 0.84
(0.78–0.88)

0.95
(0.92–0.98)

16.3
(9.1–29.3)

0.20
(0.06–0.65) 81 (18–370) Null

Western
Published year 3 0.94

(0.92–0.96)
0.93

(0.92–0.94) 7.5 (2.4–23.2) 0.07
(0.05–0.09)

199
(142–280)

0.98
(0.97–0.99)

<10 years
(published within

10 years)
7 0.89

(0.84–0.93)
0.89

(0.85–0.93) 8.5 (5.8–12.4) 0.12
(0.08–0.18) 70 (36–135) 0.95

(0.93–0.97)

>10 years 5 0.91
(0.77–0.97)

0.92
(0.82–0.96)

10.9
(5.3–22.4)

0.10
(0.04–0.25)

107
(54–210)

0.96
(0.94–0.98)

Total number of
included images
for the training

dataset

100≤ 9 0.89
(0.86–0.92)

0.91
(0.87–0.94) 9.8 (6.5–14.6) 0.12

(0.09–0.16) 83 (46–151) 0.95
(0.93–0.97)

<100 or unknown 3 0.79
(0.70–0.87)

0.88
(0.83–0.93) 7.2 (1.9–26.9) 0.15

(0.03–0.71) 55 (23–134) 0.95
(0.91–0.99)

Total number of
included images

for the test dataset

100≤ 11 0.88
(0.84–0.92)

0.91
(0.88–0.94)

10.2
(7.1–14.6)

0.13
(0.09–0.18) 79 (46–134) 0.96

(0.93–0.97)

<100 1 Null Null Null Null Null Null

Methodological
quality of

included studies

High-quality 5 0.90
(0.84–0.94)

0.90
(0.84–0.94) 9.2 (5.3–15.8) 0.11

(0.07–0.18) 84 (34–208) 0.96
(0.94–0.97)

Unclear or
low-quality 7 0.88

(0.80–0.93)
0.91

(0.84–0.95) 9.4 (5.6–15.9) 0.13
(0.08–0.21) 72 (39–131) 0.95

(0.93–0.97)

Type of CAD
models

Neural
network-based 4 0.92

(0.91–0.94)
0.91

(0.84–0.95) 9.7 (5.5–17.3) 0.08
(0.06–0.11)

116
(53–254)

0.95
(0.93–0.97)

Machine
learning-based 8 0.86

(0.79–0.91)
0.90

(0.84–0.94) 8.8 (5.3–14.5) 0.16
(0.10–0.23) 57 (30–108) 0.94

(0.92–0.96)
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Table 3. Cont.

Subgroup
Number of
Included
Studies

Sensitivity
(95% CI)

Specificity
(95% CI) PLR NLR DOR AUC

Type of target
lesions

Tumors 7 0.89
(0.85–0.93)

0.91
(0.89–0.93)

10.0
(7.8–12.7)

0.12
(0.08–0.17) 85 (46–156) 0.95

(0.93–0.97)

Polyps 4 0.94
(0.68–0.99)

0.91
(0.79–0.96)

10.3
(4.6–23.0)

0.07
(0.01–0.39)

148
(40–548)

0.97
(0.95–0.98)

Other protruded
lesion 1 Null Null Null Null Null Null

CI, confidence interval; PLR, positive likelihood ratio; NLR, negative likelihood ratio; DOR, diagnostic odds ratio;
AUC, area under the curve; CAD, computer-aided diagnosis.

3.6. Publication Bias

Deeks’ funnel plot showed a symmetrical shape with respect to the regression line
(Figure 6), and the asymmetry test showed no evidence of publication bias (p = 0.56).
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4. Discussion
4.1. Main Findings

The CAD models showed high pooled performance values for the diagnosis of gas-
trointestinal protruded lesions based on WCE images. Practical values in Fagan’s nomo-
gram indicated the potential benefit of the CAD models in clinical practice. The meta-
regression analysis showed no sources of heterogeneity, and subgroup analyses demon-
strated a robust quality of evidence. Its diagnostic performance was high, regardless of
whether the protruded lesions were tumors or polyps.
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WCE has revolutionized the screening or diagnosis of gastrointestinal protruded
lesions. It has been the diagnostic choice for patients with obscure gastrointestinal hem-
orrhage. With the advancement of optical technology and its own advantages, such as
no risk of pain, air insufflation, or sedation, its indications are expanding. In addition to
small bowel lesions, the applications of WCE for gastric or colonic lesions are being stud-
ied [31,32]. The lack of mobility, a disadvantage that has been raised for a long time despite
its advantages, is being overcome by magnetic control or robotic capsule endoscopy [33,34].

Despite the benefits and advancement of WCE, its interpretation is still a tedious task
for endoscopists.

Considerable time and focused attention are required for the interpretation of the
whole images and movies of WCE. Therefore, there is a risk of oversight for important
images [1,2]. A suspected blood indicator using color or texture analysis has been studied
and used to improve the efficiency of interpretation [35,36]. Blood has a color that can be
easily distinguished from surrounding intestinal mucosa, but protruded lesions are often
similar in color and texture to the surrounding mucosa, making it difficult to distinguish
them.

CAD using machine learning or deep learning is suitable for fields that are either too
complex for conventional analysis methods or have no well-known rules. Combining a
big data analysis with CAD can potentially increase its accuracy because analyzing large
amounts of data can uncover unexpected associations or new trends. In this context, the
CAD models in each study showed a high performance, and this was robust when either
machine learning or deep learning was used to establish the CAD models. However,
neural network-based CAD models showed a slightly higher performance than traditional
machine learning-based CAD models (Table 3). This is presumed that image analysis
with local feature extraction can be highly optimized with its complex layers, deep node
calculations, and dimensional reductions for neural network-based CAD models [3,5].
Considering that the machine learning-based models in the included studies used color
or texture features, neural network-based models might focus on other local features or
combined features, such as the shape of the lesions or feature differences between the lesions
and surrounding mucosa. Explainable artificial intelligence analyses are being studied, and
the wide application of this analysis would reveal a discrete way of determination in the
CAD models [37].

4.2. Limitations

Several inevitable limitations were identified during the systematic review process.
First, experimental CAD models rather than practical models were established and studied.
All the performance metrics in the included studies were measured in an internal test
setting. Because a hypothesis was made in the model establishment, stating that observa-
tions fit certain statistical rules, external validation could confirm whether this hypothesis
is expandable or generalizable. Therefore, the confirmation of the performance of the
established models with new data is essential [9]. However, a practical model establish-
ment with external validation was not conducted in all the included studies. Second, the
number of studies with neural network-based model establishment [12,17,20,22] was lower
than that of studies with machine learning-based model establishment [13–16,18,19,21,23].
Neural network-based models do not always have a better performance than machine
learning-based models in all fields. However, considering that neural network-based mod-
els are being widely studied and the performance of the subgroup analysis showed slightly
higher values in the neural network-based models than those in the machine learning-
based models, the inclusion of more studies with neural network-based models would give
new implications for this topic. Third, the utilized images were retrieved from a single
institution [14–20,22,23]. Moreover, three studies [12,13,21] used public database images
searched on the internet or from unknown sources. Due to the unique characteristics of
patients in each institution, the CAD models developed from a single institution usually
have limitations for widespread implementation, and the quality of the training data based
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only on internet searching cannot be guaranteed [9]. Fourth, nine of the twelve studies were
published more than five years ago. Although the sensitivity analysis with the publication
year produced robust results, it is necessary to re-evaluate the main outcomes, including
future studies. Overall, training data with guaranteed quality and a balanced number
of CAD model types that focus on external test-oriented performance are required and
expected for future perspectives on this topic.

In conclusion, the CAD models showed high performance for the optical diagnosis of
gastrointestinal protruded lesions in WCE.
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