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Abstract

Background: As mobile technologies become ever more sensor-rich, portable, and ubiquitous, data captured by smart
devices are lending rich insights into users’ daily lives with unprecedented comprehensiveness and ecological validity. A
number of human-subject studies have been conducted to examine the use of mobile sensing to uncover individual
behavioral patterns and health outcomes, yet minimal attention has been placed on measuring living environments
together with other human-centered sensing data. Moreover, the participant sample size in most existing studies falls well
below a few hundred, leaving questions open about the reliability of findings on the relations between mobile sensing
signals and human outcomes. Results: To address these limitations, we developed a home environment sensor kit for
continuous indoor air quality tracking and deployed it in conjunction with smartphones, Fitbits, and ecological momentary
assessments in a cohort study of up to 1,584 college student participants per data type for 3 weeks. We propose a
conceptual framework that systematically organizes human-centric data modalities by their temporal coverage and spatial
freedom. Then we report our study procedure, technologies and methods deployed, and descriptive statistics of the
collected data that reflect the participants’ mood, sleep, behavior, and living environment. Conclusions: We were able to
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collect from a large participant cohort satisfactorily complete multi-modal sensing and survey data in terms of both data
continuity and participant adherence. Our novel data and conceptual development provide important guidance for data
collection and hypothesis generation in future human-centered sensing studies.

Keywords: multi-modal sensing; human-centered computing; smartphone; Fitbit; BEVO Beacon; ecological momentary
assessment; health; college students

Introduction

Human health and behavioral research is primarily conducted
in laboratories under conditions that poorly approximate real-
world conditions. While this model has been successful, it may
miss key aspects of human behaviors that are elicited only dur-
ing more natural conditions or interactions. This concern has
driven interest in developing and using remote sensing tech-
nologies to measure individuals completing their normal day-
to-day activities in their natural environment. An explosion in
modern technologies, many of which are in common use, now
provide the ability to monitor and understand health and hu-
man behavior in ways not previously possible. Smartphones,
smart home devices, wearables, and online digital behaviors
provide new ways to track sleep, emotions, spatial mobility, ac-
tivity, environmental exposures, and social interactions to name
just a few. These technological advances offer opportunities to
unobtrusively collect real-time data on a wide range of social-
behavioral and health variables with less participant burden and
more ecological validity than ever before [1].

In the past decade we have seen growing effort worldwide
in collecting real-time sensing and experience-sampling data
from human participants in natural, uncontrolled settings [2–
6]. Smartphones are the staple of sensing hardware to measure
different aspects of daily behavior [7]. Four main categories of
behavioral patterns can be captured passively: (i) mobility tra-
jectories, measured by GPS and further processed into location
clusters that represent significant places visited [8]; (ii) physi-
cal activity, measured by accelerometer and further processed
into activity status labels such as walking and staying still [9];
(iii) social context, reflected in different modes including tele-
phone calls, message exchange, and physical proximity detected
by Bluetooth, which can be used to reconstruct social networks
[10]; and (iv) interaction with the device, such as screen unlock
status and app use, which are logged by the smartphone itself
[11]. Additionally, ecological momentary assessment (EMA) sur-
veys can be deployed to actively collect participants’ self-reports
of mood, behavior, and well-being in real time.

While many aspects of behavior and health can be captured
in smartphone sensing data including EMAs with satisfactory
ecological validity, we realize that other key dimensions of well-
being are better measured using complementary technologies.
A person spends a substantial proportion of their time at home,
but measurements of their home environment are not gener-
ally investigated in existing studies in parallel with other as-
pects of daily behavior. To this end, we developed a home en-
vironment sensing device, named “BEVO Beacon,” that is ca-
pable of continuously collecting and uploading multiple mea-
sures of indoor air quality. This device can provide critical in-
sights into a participant’s living environment and evaluate its
behavioral and health implications. Additionally, sleep is a crit-
ical health outcome and independent variable that is difficult
to measure objectively using unobtrusive instruments. We ar-
gue that it is especially beneficial to utilize the sleep-measuring
capability of wearable devices such as Fitbit to validate EMA
answers.

Furthermore, the vast majority of existing human sensing
studies used fewer than a few hundred participants [12]. A larger
sample is needed to obtain more reliable assessments of the
correlations between key behavior and health measures, espe-
cially when a large number of variables is assessed. Reflecting
these considerations, we conducted a multi-modal human sens-
ing study named UT1000, for which we recruited >1,000 col-
lege students as participants over 2 deployments and distributed
a variety of sensors and instruments including smartphone,
Fitbit, BEVO Beacon, and EMA. The resulting data allow us to
pursue research questions that previous data were unable to
accommodate.

With numerous types of technologies and methods poten-
tially available to measure individual humans’ health, behavior,
and environment, we begin in the next Section by proposing a
novel conceptual framework that organizes the various modali-
ties of human-centric data based on their properties. Then, we
present the study design and the types of data collected in our
UT1000 Project in Section “The UT1000 Project”. We visualize the
concurrent data streams collected during the study and eval-
uate their completeness in Section “Data Validation”. In Sec-
tion “Reuse Potential” we outline potential analytical and re-
search applications for which our data can be useful. Through
this study we are able to gain comprehensive understandings
of the lives of college students and learn valuable lessons about
the design, deployment, and data analysis for large-scale human
sensing studies.

Conceptual Framework

Figure 1 illustrates the conceptual framework that we devised
for organizing different technologies and methods for observ-
ing human outcomes based on properties of their data collection
procedure and resulting data.

A primary property of human-centric data is its temporal
coverage, represented by the x-axis from low (left) to high (right).
Temporal coverage is defined by the inherent suitability of a data
modality to monitor extended proportions of time of an indi-
vidual’s daily life. Data modalities that can provide only single-
time observations are on the low end of the temporal coverage
dimension. Examples include (i) traditional survey inventories
that are designed to provide a 1-time diagnosis of a potential pa-
tient and (ii) medical procedures that typically require in-person
clinical visits such as electroencephalography, electrocardiogra-
phy, and buccal swab sampling. Some data collection methods
or technologies accommodate measurements taken at multi-
ple points in time, thus are placed mid-range along the tem-
poral coverage dimension. Examples include (i) self-reports in
response to EMAs delivered via mobile devices and (ii) record
data such as transaction history, which contains user informa-
tion logged at different times of user engagement with a service
or services. The highest temporal coverage is achieved by contin-
uous tracking. Various sensors embedded in devices that people
carry where they go and install where they stay belong in this
category, such as smartphones, wearable devices, and environ-
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Figure 1: Human-centric data modality framework.

mental sensors used as smart home technology. Wearable de-
vices including smartphones tend to benefit from an even higher
level of temporal coverage than environmental sensors. This is
because wearable devices are able to accompany and monitor
the user at all times as long as the user keeps the devices on
their person and powered on, thus observing the user for longer
periods of time compared to environmental sensors, which can
only offer human-centric sensing capability when the individ-
ual in question remains within their proximity (e.g., home envi-
ronment sensors are only human-centric when the person is at
home).

A second property of human-centric data is their spatial free-
dom, represented by the y-axis in Fig. 1 ranging from fixed (bot-
tom) to mobile (top). Spatial freedom is defined by the ability
of a data modality to reflect an individual’s health, behavior,
and environment at a variety of locations. Data modalities with
greater temporal coverage tend to permit a wider range of loca-
tions where an individual can be monitored, a.k.a. higher spatial
freedom. For this reason the coordinate space presented in Fig. 1
is a triangle. A discrete-time measurement of low temporal cov-
erage is typically taken at a specific location, only allowing min-
imal spatial freedom, thus occupying the left vertex of the tri-
angle. However, spatial freedom may vary greatly among instru-
ments that can track users continuously over time. For example,
both a PM2.5 sensor installed at home and a smart wristband
can be considered as having high temporal coverage; however,
they correspond to fixed and mobile, respectively, on the spatial
freedom dimension.

The temporal coverage and spatial freedom of a data modal-
ity is often governed by the unobtrusiveness [13] of the technol-
ogy or method producing it. Data modalities of higher temporal
coverage and spatial freedom are usually produced by devices
and procedures that are more user-friendly, more portable, and

overall less burdensome for the user. Unobtrusive methods al-
low for more naturalistic and non-interfering ways to monitor a
participant’s daily life, thus producing measures of greater eco-
logical validity. We identify a major correlation between eco-
logical validity and temporal coverage/spatial freedom: mea-
sures of high ecological validity tend to enable observations
over extended periods of time and with greater mobility. How-
ever, the relation between ecological validity and temporal cov-
erage/spatial freedom is not a necessary one. In the classic ex-
ample of the study by Barker and Wright of Raymond Birch [14],
in which a research team followed an individual around for a
whole day making observations every few minutes, temporal
coverage and spatial freedom are both high; however, ecological
validity is low because the observation method was extremely
intrusive.

The example data modalities shown in Fig. 1 are based on
how the generating methods are naturally and realistically car-
ried out. For example, a buccal swab procedure takes a few min-
utes to complete but it requires a high level of participation and
effort from the patient; therefore even though technically buc-
cal swabs can be frequently administered, we still consider it
to be a highly intrusive, 1-time measurement. Many human-
monitoring technologies, over their course of development, have
seen themselves ascend on the temporal coverage scale and of-
ten on spatial freedom as well. For example, blood glucose test-
ing used to require clinical visits, thus the burden was high; how-
ever, as the technology for on-body continuous glucose moni-
toring becomes perfected, blood glucose measurements can be
obtained with unprecedentedly high unobtrusiveness, allowing
its temporal coverage and spatial freedom to increase as well.

A critical challenge in interdisciplinary research joining
social sciences and engineering is the high-fidelity mapping
between human-centric constructs and technology-advanced
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methods. Our framework provides an interface between the con-
structs and the methods based on their temporal and spatial
characteristics and implications for ecological validity and un-
obtrusiveness. Thus it can help social scientists locate fitting
methods to measure the constructs of interest. Furthermore,
this framework can be used to guide data collection and hypoth-
esis generation concerning interrelations of different aspects of
human behavior. Researchers can delineate a subarea in the tri-
angle to serve as the scope of their own data collection. Hypothe-
ses or research questions can be straightforwardly formulated
by linking 2 spots on the triangle and querying the relationship
between the 2 corresponding data modalities. Moreover, the 2D
space describes 1 individual and can be conceptually stacked up
to represent a group of individuals and their data and descrip-
tors. Linkage between slices representing different individuals
can inform the generation of research questions into the rela-
tions between individual outcomes and interpersonal interac-
tions.

The UT1000 Project

The UT1000 Project is a multi-modal data collection study con-
ducted at the University of Texas at Austin to measure aspects of
the health, behavior, and home environment of a large-scale par-
ticipant cohort using a wide variety of technologies and meth-
ods, including traditional surveys, swabbing, EMAs, smartphone
sensing, wearable trackers, and environmental sensors. We un-
dertook 2 deployments, one in the fall of 2018 and the other in
the spring of 2019, totaling 1,584 participants (62% female) and
lasting 3 weeks each. Participants for this study were recruited
through an introductory psychology course. Enrolled students
were instructed to sign up for the EMA and smartphone sensing
components of the study as a class assignment that counted to-
ward their final grade. Students who did not want to self-track
using a smartphone were given the option to record their behav-
iors and moods by answering e-mailed EMA questions or keep-
ing a daily diary. The other data modalities such as those from
the wearable trackers and environmental sensors, on the other
hand, were collected in return for experimental credits, which
the students used as partial fulfillment of the course require-
ments. The following subsections outline the different compo-
nents of the UT1000 Project including the purpose, procedure,
and types of data collected. Discussions of different study com-
ponents are organized into 3 main categories based on the data
modalities, namely, single-time, multiple-time, and continuous
measures, following an order of temporal coverage from low to
high consistent with the horizontal dimension of Fig. 1.

Single-time measures

Home Environment and Health survey
The Home Environment and Health (HEH) questionnaire con-
sists of 63 questions asking students to report on home envi-
ronment factors such as their current living situation including
number of roommates, number and type of pets, and flooring
type; their recent health and medical histories including colds,
allergies, and influenza shots received; and other behaviors such
as hand-washing frequency and use of electric scooters. A full
list of the HEH questions is provided in Additional File 1. The
purpose of this survey was to obtain a better understanding of
the participants’ home environment and to clarify discrepancies
found in the other data streams.

The HEH questionnaire was a voluntary survey sent directly
to participants via the e-mail address they provided to register

for the study. Completing the HEH survey was a prerequisite for
the subsequent home environment sensing component of the
study. The survey was sent once during the first 2 weeks of the
study period. Participants were asked to fill out the survey on
the basis of their situation when they received it rather than
some time in the past or the future. A total of 56 participants
completed the HEH questionnaire, with 46 in fall 2018 and 10 in
spring 2019.

Student environment and buccal swabbing
A subset of the study participants were provided with a dust
sampling kit to collect dust samples from various surfaces in
their home and classroom environment. The same participants
who completed the HEH survey were given the kits (N = 56).
The kit consisted of 6 individually packaged phosphate-buffered
saline Tween-20 (PBST) wetted FLOQswabs R© (manufactured by
COPAN, Murrieta, CA, USA) and 6 corresponding plastic reseal-
able test tubes in which participants would place the swabs after
collecting samples. Participants were asked for identification in
order to gather sampling materials from a refrigerator-equipped
storefront created ad hoc in a convenient place at a central loca-
tion of the university. Testing materials to be distributed to dif-
ferent participants were labeled with distinct barcodes so that
we could easily trace the materials back to the participants and
streamline the checkout process.

Participants followed instructions to collect samples from
the interior and exterior of their front door trim; cellphone
screen; living room floor; heating, ventilation, and air condi-
tioning (HVAC) filter or air diffuser if applicable; and a desktop
where they normally sit when attending university classes. Af-
ter sample collection, participants sealed swabs in the provided
test tubes and placed them in their refrigerator until transporta-
tion to the university laboratory. When participants returned
the testing materials, material barcodes were scanned, the iden-
tity of the participant cross-referenced to the materials, and the
temperature-sensitive samples were stored until transfer to a
−20◦C freezer daily after storefront closure. They were asked
to provide feedback on the challenges while performing home
sampling and also whether they were willing to submit a buc-
cal swab. If they consented, the research assistant in charge of
operating the storefront would ask the participant to use a swab
to collect a sample from the inside of their cheek. Samples were
then stored in a small, resealable test tube and refrigerated be-
fore transfer to −62◦C daily after storefront closure.

The dust samples are useful to help understand the partici-
pants’ home environment more deeply beyond the HEH survey
and what they might be exposed to on campus when attending
classes. Examination of the dust samples can determine what
types of microbial exposures commonly occur in students’ in-
door environments. Buccal swabs can be used for a variety of
reasons but were conducted as part of this study to investigate
how certain chemical markers such as cytokine levels are related
to mood and stress in participants.

Multiple-time measures

Ecological momentary assessment
EMAs involve brief questions about a participant’s behavior and
feelings that are answered in real time while the participant
is in their natural environment. EMAs were administered us-
ing the Beiwe mobile application [15] running on their smart-
phones at regularly scheduled times throughout each day. For
both the Fall 2018 and the Spring 2019 cohorts, EMAs were drawn
from 4 categories of questions: sleep questions, momentary con-
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text questions, momentary well-being questions, and an audio
question. The full text of these questions is provided in Addi-
tional File 2. Briefly, the 3 sleep questions were designed to as-
sess the duration and quality of sleep, momentary context ques-
tions were designed to determine what the participant was do-
ing and with whom they were doing it, and 5 well-being ques-
tions sampled participants’ mood (sadness, loneliness, content-
ment, and stress) and energy level on a Likert scale. The audio
question asked the participant to describe what they were doing
and to include a brief segment of background noise.

Both the Fall 2018 and Spring 2019 cohorts received EMAs
at 5 different times during the day. At 9:00 each morning they
received the 3 sleep questions, 4 momentary context questions
that were framed to assess the 15 minutes prior to receiving the
EMAs, and 5 mood questions that were framed to assess how
they feel at the moment. At 12:00 pm, 3:00 pm, and 6:00 pm
participants received EMAs that were similar to those from the
morning, except that the sleep questions were removed and the
audio question was added. Each night at 9:00 they received the 4
momentary context questions and 5 mood questions that were
framed to assess participant behaviors and feelings across the
entire day.

Continuous measures

Smartphone
Passive monitoring data were collected using the Beiwe digital
phenotyping platform, which is a freely available open-source
system that includes mobile phone applications for Apple iOS
and Google Android operating systems, and a back-end server
implemented in Python. The back-end server was run using
Amazon Web Services cloud-based computing infrastructure.
The back end includes a study administration web application
for designing and conducting Beiwe studies and monitoring
their progress, an API for sending study parameters to and re-
ceiving data from the mobile phone applications, a database for
storing study state information, and an encrypted Amazon Sim-
ple Storage Service bucket for storing study data. The Beiwe de-
velopers maintain versions of the app in the Apple App store and
Google Play store for easy deployment to study participants.

The full set of passive monitoring parameters are provided
in Additional File 3. Owing to differences in operating system
security settings and device capabilities, different data sources
were collected on Android and iOS devices. There were 195 out
of the total 1,584 participants who were Android users. Basic
device and operating system information (make, model, ver-
sion), accelerometer, GPS, and power state data were available
and collected on both devices. iOS-specific data sources include
gyroscope, magnetometer, the proximity of the device to the
user, and whether the phone is connected to the internet by
WiFi or cellular. Android-specific data sources include a list of
WiFi routers and Bluetooth devices in the phone’s proximity; the
time, duration, and hashed phone numbers for incoming and
outgoing calls; and time, message length, and hashed phone
numbers of incoming and outgoing text messages. To main-
tain participant privacy, WiFi and Bluetooth identifiers, and tele-
phone numbers are encoded with a hashing function. The func-
tion is unique, however, so calls to the same destination and
proximity to the same WiFi access points can be tracked across
time.

The Beiwe mobile application was configured to store col-
lected information locally and to upload it only when connected
to the internet using WiFi. If an error was encountered during
transmission, the app stores the data and retries transmission

until receiving an indication that the data were successfully re-
ceived by the back end. Each data source is stored in its own set
of CSV files that are broken down and organized by timestamp.
These files are encrypted on the phone before being transmitted
over an SSL connection to the back end. When received, the data
are unencrypted, processed to correct for errors, and update
received data statistics, and then re-encrypted for storage. All
encryption is performed using randomly generated participant-
specific encryption keys.

As per the study design, participants were instructed to
download and allow all permissions for the Beiwe platform. Each
participant had a randomly generated identification tag that
consisted of 8 letters and numbers and was prompted to create
their own password after entering a temporary password given
to them by the study coordinator. Participants did not have di-
rect access to their data and used the login credentials when
completing the EMA surveys.

Wearable activity tracker
Participants’ activity and sleep patterns were captured using the
Fitbit Charge2TM wearable activity trackers. The devices require
participants to input their height, weight, gender, and age to ac-
curately calculate the number of steps taken, calories burned,
and the wearer’s heart rate. In addition, participants can track
different exercises by selecting them from the device’s interface
or through the paired smartphone application. Most Fitbit prod-
ucts, including those supplied to the study participants, are ca-
pable of passively monitoring the wearer’s sleep as long as the
device detects that the user has been asleep for a minimum
number of hours. The wearer’s sleep is subdivided into 4 cat-
egories based on movement and heart rate: awake, light, deep,
and rapid eye movement (REM). Over the past few years, many
studies have looked at the accuracy and utility of using Fitbit and
other personal monitoring devices in sleep studies [16–18]. Re-
sults from these studies show that these devices can be useful
when determining total sleep time, awake time, and the amount
of time spent in REM sleep.

Similar to the swabs, each Fitbit was numbered, barcoded,
and provided to participants also at the storefront location if
they consented to participate in the activity-monitoring compo-
nent of the study. In addition to receiving the device, each partic-
ipant was required to register a Fitbit account and download the
smartphone application if they did not already hold an account.
Participants were asked to wear the activity monitors as much
as possible, removing them only when bathing, participating in
aquatic activities, or charging the device. Participants were in-
structed to wear the Fitbit monitor over a period of ≥2 weeks
and were free to use the device outside of the study require-
ments. If it was broken or damaged, participants were given a
new device to register and use for the remaining portion of the
study.

Building environment and occupancy beacon
The Building EnVironment and Occupancy (BEVO) beacon is a
low-cost sensor platform that we developed in-house that is ca-
pable of measuring multiple indoor environmental quality (IEQ)
variables in addition to detecting Bluetooth and WiFi signals.
The BEVO Beacon consists of a Raspberry Pi (RPi) 3B+ micro-
computer connected to a variety of environmental sensors ar-
ranged into a 15 × 15 × 10 cm housing made of plywood and
acrylic (see Fig. 2). The RPi can detect Bluetooth devices and
WiFi access points in its proximity, which can help determine
occupancy. The RPi is additionally capable of storing data cap-
tured by itself and the co-locating IEQ sensors on a local mi-
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Figure 2: Building EnVironment and Occupancy (BEVO) Beacon.

cro SD card, and then uploading the data to a cloud-based stor-
age system hosted by the Texas Advanced Computing Center
once connected to WiFi. Table 1 outlines the environmental sen-
sors used in BEVO Beacon and the variables that they mea-
sure. The RPi is housed in a lower compartment, separated from
the sensors and wired to a small fan to help with heat regu-
lation. To avoid the possibility of re-sampling air trapped in-
side the device’s housing, and further help with heat manage-
ment, the environmental sensors are housed in a compartment
above the RPi with their inlets/exhausts exposed to the ambient
air. The BEVO Beacon requires a 5B micro-USB portal connec-
tion to power. See Additional File 4 for a detailed 3D sketch of
the BEVO Beacon and a full list of the electronic components
enclosed.

The commercially available sensors used on the BEVO Bea-
con afforded us 2 benefits. These sensors were low in cost (less
than US$100), which allowed us to develop and deploy more de-
vices than typically done when measuring indoor air quality.
The second benefit is that these sensors serve as the base units
in many other commercially available IEQ products. Using the
base units rather than off-the-shelf devices ensures that there is
no proprietary algorithm that alters the raw values measured by
the sensors. However, reliability and accuracy are 2 main issues
surrounding the use of low-cost sensors because they use less
sophisticated electronics than high-grade reference monitors
that can cost more than US$10,000. Our beacon development ef-
fort is a step toward integrating low-cost sensors to achieve high
home-sensing performance.

BEVO Beacons were each assigned a number and a barcode.
Only the participants who completed the HEH survey were eligi-
ble to receive a BEVO Beacon. Participants who were eligible and
consented to participation were instructed to stop by the store-
front and check out the device. At check-out, the device was sup-
plied to the participant along with a 5V micro-USB to wall outlet
adapter. Participants were instructed to power the device using
any open outlet in their home. In total, we distributed 15 BEVO
Beacons: 5 in Fall 2018 and 10 in Spring 2019.

Data Validation
Data collected

To showcase the diverse data streams collected from our partic-
ipants, we plot in Fig. 3 data collected from a particular partic-
ipant’s smartphone, Fitbit, and BEVO Beacon on a given day (30
March 2019) as an example. The top one-third of Fig. 3 shows
the data types collected by the Beiwe smartphone platform. We
conducted temporal clustering [19] with the raw GPS traces and
processed them into periods of stay at significant places (repre-
sented by the colored vertical bands) and periods of movement
between significant places (represented by the white spaces be-
tween the colored bands). We used Open Street Map API to query
for the place type of the significant places found. We show the
geographic location and venue type of the significant places, as
well as the trajectory and time of the third transition period of
the day (“Move3”) in the 2 maps on top. In total on 30 March 2019
the participant made 6 stays at 3 distinct places (residence hall,
art museum, and entertainment venue) and made 5 trajectories
of movement between them. The participant spent her entire
night and most of the morning (midnight to ∼11:00 am) at the
residence hall (red band/dot), which was her main residence.
Notice that even though the trajectory of Move3 (top right map)
passes through the residence hall it did not register another pe-
riod of stay, suggesting that the participant merely swung by the
residence hall without making a stop for an extended period of
time.

During the 3-week official study period, we were able to
record some GPS [20] and accelerometer data [21] from ∼950 par-
ticipants each day. Within these days, data completeness for GPS
and accelerometer followed a highly regular and well-synced
daily cycle where the least percentage of participants submit-
ted data in the early morning hours and the highest during the
evening hours. Averaging the hourly completeness percentages
gives us a daily average of ∼65% of the participants submit-
ting data during any given hour. In addition to mobility infor-
mation, smartphone acceleration magnitude is plotted as black
dots and episodes of unlocked screen as short grey bands. We
observe that periods of high acceleration magnitude correspond
well with periods of movement between places. Screen activity
[22], on the other hand, varies heavily depending on the place:
e.g., the screen stayed unlocked during the entire Stay3 at the en-
tertainment venue but locked during Stay4 at the art museum.
Moreover, the participant responded to an EMA survey at 9:00
am [23], providing a self-report of her sleep quality and hours
of sleep, as well as the semantics of her location at the moment.
The participant did not respond to any EMA questions scheduled
at other times of the day. Her answer “dorm; campus” to the lo-
cation question matches with the significant place detected by
GPS.

The middle one-third of Fig. 3 shows 3 data streams recorded
by Fitbit [24]: heart rate (BPM), calories expended (Calories), and
steps taken (StepTotal). The patterns of fluctuation of the 3 data
streams are largely in sync with one another, with values sig-
nificantly higher during the day than during the night. Three
points of peak values in heart rate and calories (11:00 am, 4:00
pm, 9:00 pm) visibly correspond to time intervals of high smart-
phone accelerometer readings, suggesting a positive correlation
between smartphone accelerometry and physical activity sta-
tus recorded by wearable devices. The bottom one-third of Fig. 3
shows 4 data streams recorded by BEVO Beacon [24], all of which
are metrics of indoor air quality. Note that only when the partic-
ipant is located at her home (indicated by red band in this plot,
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Table 1: IEQ variables measured by the environmental sensors housed in the BEVO Beacon

Variable Unit Sensor Notes

TF ◦F Adafruit SHT31-D Occupant thermal comfort
RH % Adafruit SHT31-D Occupant thermal comfort
PM μg/m3 Plantower PMS5003 EPA-specified criteria air pollutant with respiratory health

implications
TVOCs ppb Adafruit SGP30 Compounds whose exposure is related to various health

implications such as respiratory issues and cancer

EPA: Environmental Protection Agency; ppb: parts per billion; PM: particulate matter; RH: relative humidity; TF: temperature in Fahrenheit; TVOCs: total volatile organic
compounds.

specifically Stay1, 2, 5) is she exposed an environment described
by these metrics; when she goes away, the metrics merely reflect
her home environment status that does not affect her directly.
We observe a sharp rise in humidity and PM concentration be-
tween 4:00 and 5:00 am, which could indicate a change in the
HVAC system.

Data quality

We evaluate our data’s quality by 2 measures of completeness:
first, the amount of time each participant stays in the study and
continues to submit data, actively and passively; second, when
the data type is continuous, the proportion of time during the
entire period of participation that data are available. The first
metric is important because it represents participant adherence
and a higher value in it (or, closer to the length of the intended
study period) indicates more successful participation. The latter
measure is also important in that it represents data continuity
and a higher value in it indicates fewer data-missing intervals
during the total period of time a participant is submitting data.

In Fig. 4 we present the completeness of 4 major types of data
that we collected, namely, EMA, smartphone, Fitbit, and BEVO
Beacon. In Fig. 4A, we show the number of participants (height
of bars) who submitted answers to daily EMAs for all different
numbers of days (horizontal position of bars), as well as the per-
centage of participants (projection of red dots on vertical axis
on right) who submitted answers to daily EMAs at least a certain
number of days (horizontal position of red dots). We observe that
>60% of participants submitted daily EMA answers for >14 days
and >20% for >21 days.

In Fig. 4B, we show the distribution of participants with re-
spect to the total duration of time that they were contributing
smartphone GPS data (i.e., adherence, on the horizontal axis)
and the proportion of that duration for which their data are
available (i.e., continuity, on the vertical axis). We use the color
of square cells to indicate the number of participants who fall
in particular compliance-continuity boundaries: the brighter-
colored vertical bar between 20 and 25 days corresponds well
with our planned study length, which is 3 weeks. Shown by the
blue horizontal lines, 283 (18.4%) participants had smartphone
GPS data available for >80% of the hours they participated in
study, 826 (53.7%) participants >60%, and 1,304 (84.7%) partici-
pants >40%.

Fig. 4C contains the same information as 4B but plotted for
Fitbit data. As opposed to aggregating the number of participants
like we did for 4B, because of the lower number of participants
who chose to wear a Fitbit (36), we simply represented each Fitbit
participant as an opaque grey dot, forming a darker cluster when
more participants fall in a close region of compliance-continuity
value combination. Compared to smartphone data, Fitbit data
displayed significantly higher continuity: of the 36 participants,

30 submitted data for >80% of their in-study time. This may sug-
gest that Fitbit as a wearable device requires less human atten-
tion and interference, as opposed to smartphones, which are
constantly being handled and require more frequent charging,
and thus are more prone to produce uninterrupted data streams.

Of the 15 BEVO Beacons we distributed, we found that only 9
recorded and uploaded data reliably and they were all from the
Spring 2019 deployment. Owing to such a small number of par-
ticipants who returned substantial environmental sensing data,
in Fig. 4D we simply plotted entire time series of data availabil-
ity of each IEQ measure captured by BEVO Beacons (indicated by
different colored dots, jittered) for each of the 9 participants. Vis-
ibly, 3 of the 9 BEVO Beacons submitted data perfectly whereas
the remaining 6 primarily had trouble submitting PM data (red
strip on the bottom). Upon inspection we found that commu-
nication errors between the sensors and the RPi accounted for
a large amount of data loss. Fluctuations in power delivery be-
tween the RPi and the environmental sensors caused some envi-
ronmental sensors to go offline for periods and resulted in data
loss during the study.

One highly notable difference is in the number of partici-
pants who signed up for smartphone sensing compared to wear-
able and home environment sensing (>1,000 vs <100). We be-
lieve that both hardware availability and the incentive structure
contributed to this discrepancy. First, the smartphone compo-
nent of the study required the participants’ own primary phone,
which was widely available; whereas the Fitbit and BEVO Bea-
con components required extra hardware that we needed to pur-
chase, build, and provide for the participants, thus limiting the
number of participants we could enroll. Second, the incentive
for students to complete smartphone sensing and EMAs was to
receive credits on an assignment that counted toward their final
grade (with the alternative to opt out of using smartphone and
only logging manually instead), which proved to be an effective
strategy to improve participant adherence [25]; whereas partic-
ipation in the other parts of the study was rewarded by extra
experimental credits, which may not have been as attractive to
the students.

Reuse potential

A primary advantage of our collected data is the large number
of college students recruited as participants. With comprehen-
sive momentary self-reports covering mood, type of place, social
context, and activities of daily living, one can gain a representa-
tive picture of the daily experience of college students at a ma-
jor university in North America. Interrelations between different
aspects of mood as well as between mood and place, social con-
text, and the concurrent activities of daily living may be of value
to researchers interested in college students’ well-being. More-
over, the large amounts of smartphone GPS data can serve as
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Figure 3: Data collected from the smartphone, Fitbit, and BEVO Beacon of an example participant during a given day (30 March 2019). Plotted data modalities are EMA
(questions and answers shown against phone image background on top), GPS (clustered significant places and an example movement trajectory shown in maps on
top and as vertical bands), accelerometry (black dots), screen activity (short grey bands), heart rate (BPM), calories spent in the past hour (Calories), steps taken in the

past hour (StepTotal), home relative humidity (RH), home temperature in degrees Fahrenheit (TF), home particulate matter in μg/m3 (PM), and home TVOC (TVOC).
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Figure 4: Completeness of 4 types of data collected from participants in the Fall and Spring deployments combined: (A) daily EMA (1,482 participants submitted data);
(B) smartphone sensing, GPS data shown as example (1,539 participants); (C) Fitbit (36 participants); and (D) BEVO Beacon (9 participants).

evidence for the temporal-geographic distributions of students’
campus usage, which may be of interest to crowd-sensing re-
searchers.

Besides examining individual data types, we believe that
our data offer many opportunities for analyses focusing on
cross-modality correlations. This can be done between 2 sep-
arate streams of sensing data or between sensing data and
self-reported variables from momentary and pre-study surveys.
A potential purpose of the between-sensors comparison is to
ascertain their respective sensing capabilities of similar con-
structs, e.g., between a smartphone’s accelerometer and a Fit-
bit’s step count and heart rate measurements. Additionally,
jointly utilizing ≥2 sensing data streams creates opportunities
for novel analytical methods that help understand and predict

human well-being outcomes more effectively [26]. In the case
of sensor-survey comparison, a fundamental research question
is whether and to what extent do variances in the sensing data
correlate with variances in the self-reported data, which typi-
cally reflect the ground truth about a participant’s health and
behavioral states. There have been numerous digital phenotyp-
ing studies on using various mobile sensing data streams to
detect mental health abnormalities and fluctuations. Our data
may serve as a testbed for researchers wishing to validate differ-
ent feature-engineering and data-mining techniques in terms of
their contributions to predictive performance.

A shared characteristic of the different data types in our col-
lection is having multiple measurements from the same partic-
ipant, which may have a broader relevance to statistical anal-
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ysis in human-subject studies. Typically, when researchers col-
lect experimental data from participants, multiple data points
for each data type are collected from each participant, result-
ing in a situation where one has N observations from M partici-
pants and N > M. This is not a trivial issue because observations
that belong to 1 participant tend to be more correlated with each
other than with those from other participants, which makes the
direct application of regression models onto the entirety of the
N observations statistically unsound [27]. If the inter-individual
variation in a particular variable is of interest and the number
of participants M with data available is satisfactorily high, 1 ap-
propriate approach is to aggregate the variable by the individ-
ual, such that each individual is mapped to only 1 value (e.g.,
mean value) of that variable. Interpretations made from models
created on such aggregated data would be regarding the cross-
participant patterns rather than within-participant ones. If one
has a limited amount of data available that does not justify ag-
gregation, an appropriate solution is to use mixed-effect models
to account for individual differences between participants. An
individual random effect could be added to both the intercept
or a variable coefficient of a (generalized) linear model, and the
eventual selection will need to depend on model selection met-
rics or tests such as Akaike information criterion, Bayesian infor-
mation criterion, or a likelihood ratio test to determine whether
the added effect (thus increasing variance explained) is worth
the increased model complexity.

Conclusion

We conducted the UT1000 Project, a multi-modal data collec-
tion study using a variety of technologies and methods to mon-
itor and understand aspects of the health, behavior, and living
environments (see Fig. 3) of a college student cohort of >1,500
participants for 3 weeks. Some participants voluntarily moni-
tored themselves for several more weeks after the official 3-week
study period ended. The project is novel due to not only the
large scale of participation but also the emphasis on incorporat-
ing the monitoring of personal living environment with health
and behavior sensing to achieve a multi-faceted dashboard of
human-centric information. With many types and sources of
data at hand, we proposed a conceptual framework systemati-
cally organizing human-centric data modalities and their corre-
sponding technologies and methods with respect to their tem-
poral coverage and spatial freedom, which is further helpful
for guiding data collection and research question formulation.
Temporal coverage and spatial freedom overlap with ecologi-
cal validity and are constrained by the unobtrusiveness of the
method. Hurdles to unobtrusiveness include the size, weight,
and power need of a device, requirement for human attention
and maintenance, and many potential others. A general direc-
tion of evolution for human-centric design and technology is to
become more portable, convenient, and user-friendly thus af-
fording higher and higher unobtrusiveness and ecological valid-
ity for its capacity of understanding and assisting humans, until
it is truly “woven into the fabric of everyday life” [28].

We were able to collect from a large participant cohort satis-
factorily complete multi-modal data in terms of both data conti-
nuity and participant compliance (see Fig. 4). Collection of multi-
modal high-density datasets from humans in the field, like that
presented in this study, has unique challenges. At enrollment,
it is important to reassure potential participants that the data
being collected are secure and their privacy will be respected
and maintained. In the undergraduate sample used here, this

did not seem to be a big concern for the students. Roughly 3–
4% of students cited data privacy as a reason they did not want
to participate. A second issue encountered was the compatibil-
ity of the smartphone application Beiwe with various software
versions of iOS and Android and models of Apple and Android-
compatible phones. Most devices worked well, but a noticeable
percentage did not. It was not always obvious what determined
whether the software would work with a particular device and
the study did not have the resources, nor focus for a systematic
evaluation of these issues. An additional challenge was data fi-
delity. When collecting continuous data from multiple devices
(smartphones, Fitbits, Beacons), data transfer to a database was
subjected to issues of connectivity, bandwidth, and participant
adherence (keeping the device charged, connecting to WiFi reg-
ularly, and s forth). Finally, data wrangling and clean-up is par-
ticularly challenging. The data being collected are on multiple
time scales; with missing data scattered throughout, methods
of data imputation and alignment create major decision points.

Several limitations exist in our study, which we would like to
address in future work. First, we would like to monitor partici-
pants for a longer period than 3 weeks so that we can observe
more reliable patterns of behavioral variation and build more ac-
curate personalized predictive models. Second, there is a sharp
imbalance between the availability of smartphone and EMA data
and the availability of Fitbit and BEVO Beacon data due to our
incentive structure and hardware availability. We are preparing
for a future deployment of the UT1000 Project that directly ad-
dresses these limitations by recruiting (potentially fewer) par-
ticipants who will commit to longer study periods as well as in-
creasing the number of Fitbits and BEVO Beacons distributed.
Another type of data that we did not collect in the UT1000 Project
is individual social media data including both the content cre-
ated and the interaction patterns, which have been utilized to
predict personal mental health outcomes in recent studies [29].
In our conceptual framework of human-centric data modality,
social media data would fit in the medium range on both the
temporal coverage and the spatial freedom axes, similar to the
position of EMAs. We anticipate the collection, integration, and
mining of diverse modalities of human-centric data from differ-
ent technologies and methods and of various degrees of tempo-
ral coverage and spatial freedom to be key to the development
of a new generation of digital solutions for personal well-being
enhancement.

Data Availability

The datasets supporting the results of this article are available
in the “UT1000 Data for MADS Paper” repository at https://data
verse.tdl.org/dataverse/ut1000 mads. In the repository, different
data types are compiled in separate datasets as follows:
EMA [23];
Accelerometer [21];
GPS [20];
Screen unlock events [22];
Fitbit/BEVO Beacon [24]; along with a participant key file pro-
vided showing our participants’ gender, age, and year of partic-
ipation (2018 or 2019) [30].

Additional Files

Additional File 1: HEH Survey Questions
Additional File 2: EMA Questions
Additional File 3: Beiwe Sensing Parameters

https://dataverse.tdl.org/dataverse/ut1000_mads
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Additional File 4: A detailed 3D sketch of the BEVO Beacon and
a full list of electronic components enclosed

Abbreviations

API: application programming interface; BEVO: Building EnVi-
ronment and Occupancy; EMA: ecological momentary assess-
ment; GPS: Global Positioning System; HEH: home environment
and health; HVAC: heating, ventilation, and air conditioning;
IEQ: indoor environmental quality; PM: particulate matter; REM:
rapid eye movement; RH: relative humidity; RPi: Raspberry Pi;
SSL: Secure Sockets Layer; TF: temperature in Fahrenheit; TVOC:
total volatile organic compounds; USB: Universal Serial Bus.
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