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Parvalbumin- and vasoactive intestinal
polypeptide-expressing neocortical interneurons
impose differential inhibition on Martinotti cells
F. Walker1, M. Möck1, M. Feyerabend1, J. Guy1, R.J. Wagener1,w, D. Schubert2, J.F. Staiger1,* & M. Witte1,*

Disinhibition of cortical excitatory cell gate information flow through and between cortical

columns. The major contribution of Martinotti cells (MC) is providing dendritic inhibition to

excitatory neurons and therefore they are a main component of disinhibitory connections.

Here we show by means of optogenetics that MC in layers II/III of the mouse primary

somatosensory cortex are inhibited by both parvalbumin (PV)- and vasoactive intestinal

polypeptide (VIP)-expressing cells. Paired recordings revealed stronger synaptic input

onto MC from PV cells than from VIP cells. Moreover, PV cell input showed frequency-

independent depression, whereas VIP cell input facilitated at high frequencies. These

differences in the properties of the two unitary connections enable disinhibition with distinct

temporal features.
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C
ortical inhibitory interneurons (IN) are grouped into
three major subpopulations defined by the expression
of molecular markers, namely parvalbumin (PV),

somatostatin (SST) and the ionotropic serotonin receptor
(5HT3aR)1,2. The main, but not exclusive, cell types within
these subpopulations, largely defined by morphological features,
are: PV-expressing basket cells, SST-expressing Martinotti cells
(MC) and cells co-expressing 5HT3aR and vasoactive intestinal
polypeptide (VIP)1,3,4. The functions of these IN are manifold. In
general, they keep excitation in check, perform gain modulation
and induce synchronization and oscillations, whereas more
specifically they open or close temporal or spatial windows for
input control or output generation5. Their functional impact is
not restricted to their interaction with excitatory neurons, but
direct interactions between IN seem to be essential for sensory
information processing as well6–9.

In the rodent primary somatosensory (barrel) cortex (S1),
GABAergic MC in layer (L) II/III10 mediate disynaptic inhibition
between neighbouring pyramidal cells (PCs) and thereby have a
major impact on the flow of information within and across
cortical columns2,11–13. MC in turn are inhibited by other IN,
leading to disinhibition of PCs6–8,14. Several recent in vivo studies
have shown that such disinhibition via MC (or other types of IN)
contributes to sensory-guided behaviour and learning7,14,15.
Morphological and physiological differences of presynaptic IN
subtypes16,17 may result in distinct versions of disinhibition in the
spatial and/or temporal domain. If so, the regulation of cortical
processing by disinhibition might be much more flexible than
simply being an on/off switch. Therefore, we aimed to define the
molecular identity of IN targeting LII/LIII MC by optogenetics,
localize these cells by using glutamate uncaging and study the
unitary properties and short-term plasticity of their synaptic
transmission by paired recordings. We found that MC in mouse
primary somatosensory cortex commonly receive inhibitory
inputs from local PV- and VIP-expressing interneurons.
Further, these inputs differ substantially in unitary properties
and short-term plasticity.

Results
Characterization of GIN neurons. To investigate inhibitory
inputs to MC, we used two triple transgenic mouse lines, namely
PV-cre::tdTomato::GIN and VIP-cre::tdTomato::GIN (Fig. 1a).
The cre-knock in lines have recently been reported to be highly
specific and sensitive mouse models18,19. Within the GIN line,
green fluorescence protein (GFP)-expressing cells in cortical
LII/LIII and LV were described as being almost exclusively
MC20–22. In agreement with previous literature, we showed that,
also in triple transgenic mice, these cells often display a
multipolar or bitufted somato-dendritic configuration and, as
their most prominent feature, dense axonal clustering in LI
(Fig. 1b). Furthermore, MC show an adapting firing pattern
during strong current injections (Fig. 1c). Our experimental data
set contained 100 biocytin-labelled GIN cells, of which 82 could
be morphologically recovered. Of these recovered neurons,
79 possessed extensive axonal arborizations in LI. In three
cases, the ascending axon was cut off before reaching LI. Eight
well-preserved GIN cells were fully reconstructed (Supplementary
Figs 1 and 2). The dendrites were primarily located in LII/LIII
(Supplementary Fig. 1b). Axonal density, however, peaked in
LI as well as in LII/LIII (Supplementary Fig. 1b). Therefore,
we will use the term MC in the following text to refer to
GFP-expressing cells.

MC are inhibited by local PV- and VIP-expressing cells.
As mentioned above, PV and VIP cells form the main IN

subpopulations besides MC, which are not considered to interact
with each other1,6. Accordingly, they are likely candidates for
providing inhibitory inputs to MC. To test this hypothesis, we
expressed channelrhodopsin 2 (ChR2) in PV and VIP cells
throughout the entire cortical depth of S1 by viral transfection. In
order to control for the specificity of the input population, we
recorded from ChR2-transduced PV and VIP IN (PV: 11 cells,
5 mice; VIP: 8 cells, 4 mice). They show their subgroup-specific
firing patterns and morphology (Supplementary Fig. 3a–c,e–g).
Additionally, we controlled for adequate ChR2 expression
levels. Indeed, optogenetic stimulation of these cells caused
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Figure 1 | LII/LIII GIN cells show typical characteristics of Martinotti

cells. (a) Fluorescent staining of triple transgenic mice (left: PV-

cre::tdTomato::GIN, right: VIP-cre::tdTomato::GIN) used for the present

experiments. In all, 50-mm-thick frontal sections from the barrel cortex are

shown. PV or VIP cells, respectively, are labelled red and GIN cells green.

Layers are indicated as I–IV. Scale bar, 100 mm. (b) Neurolucida

reconstructions of LII/LIII biocytin-filled GIN cells. Somatodendritic

compartments are shown in orange and axonal arborizations in green.

Note the dense axonal branching in LI, which is characteristic for MC.

Layers are indicated as I–VI. Scale bar, 100mm. (c) Whole-cell current-

clamp recordings of GIN cells shown in b. Depolarizing current injections

caused an adapting firing pattern in these cells, as it is typical for MC.
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depolarizations sufficient to fire action potentials (APs)
(Supplementary Fig. 3d,h–k).

Light-induced activation of ChR2 in either PV or VIP IN
reliably evoked inhibitory postsynaptic currents (IPSCs) in every
MC tested (PV: 23 cells, 12 mice, age P38–P60; VIP: 27 cells, 14
mice, age P35–P53) (Fig. 2a–c). This indicates that each MC
receives input from PV and VIP cells. The minimal laser energy
required to elicit IPSCs was comparable for PV and VIP inputs
(PV: 76.7±15.0 mW; VIP: 124.0±27.1 mW; mean±s.e.m.)
(Fig. 2d). PV cells evoked multicomponent IPSC with apparently
larger amplitudes (PV: 456.55±43.22 pA; VIP: 275.70±46.59 pA;
mean±s.e.m.) (Fig. 2a,b,e).

By means of optogenetic stimulation, we could define
presynaptic IN populations; however, their precise laminar
location remained unclear. Thus we localized sources of
monosynaptic inhibitory input to LII/LIII MC by focal photolysis
of caged glutamate (Supplementary Fig. 4). The highest propor-
tion (B45%) of inhibitory fields was found in LII/LIII of the
home column (n¼ 10, 10 mice).

PV and VIP cell inhibition differs in synaptic properties. These
findings indicated the presence of two discrete inhibitory inputs
onto MC, namely, from PV and VIP cells, which are restricted to
LII/LIII. Hence, we performed simultaneous recordings of puta-
tive presynaptic PV or VIP cells and postsynaptic MCs in this
compartment. In accordance with previous results, we indeed
found connected pairs of both types (age: PV MC: P21–P36; VIP
MC: P21–P32; Fig. 3a). All PV and VIP cells matched their
group-specific firing patterns and morphological characteristics,
with PV cells being fast spiking multipolar cells and VIP cells
being bipolar/bitufted cells (or partly modified variations thereof)
of the adapting or irregular spiking type (Fig. 3b,c; Supplementary
Fig. 2). We further analysed the elementary synaptic properties of
connected pairs on a unitary level (Fig. 4; Supplementary
Table 1a). The connection probability was higher for PV cells
(B58%, 12/21) than for VIP cells (B35%, 11/31) (Fig. 4b). Based
on the observation that each MC receives input from both of the
two other types, as shown by optogenetic stimulation above, the
differences in connection probability might be due to a higher
degree of divergence of PV cell axonal projections onto MC, as
proposed for PC targets as well23. Single presynaptic spikes
reliably (PV to MC: B90%; VIP to MC: B80%) elicited unitary
IPSCs in MC regardless of the type of presynaptic IN (Figs 3a and
4b). However, the average IPSC evoked by PV cells (n¼ 12, 12
mice) showed significantly larger amplitude (PV to MC:
49.74±12.97 pA; VIP to MC: 12.13±3.57 pA; mean±s.e.m.),
shorter latency (PV to MC: 0.60±0.07 ms; VIP to MC:
1.39±0.12 ms; mean±s.e.m.), shorter 10–90% rise time (PV to
MC: 1.62±0.17 ms; VIP to MC: 4.59±0.64 ms; mean±s.e.m.)
and higher normalized slope (PV to MC: 0.30±0.05 fraction of
amplitude ms� 1; VIP to MC: 0.12±0.02 fraction of
amplitude ms� 1; mean±s.e.m.) in comparison to VIP cell-
evoked IPSCs (n¼ 11, 9 mice) (Fig. 4c,d). Finally, in most of the
cases we also probed for reciprocal connections. In six of the nine
cases, PV cells were reciprocally connected with MC, whereas
reciprocal connections between VIP cells and MC occurred only
in one of the eight trials (Supplementary Fig. 5). We did not
quantify these responses owing to differences in the intracellular
solutions (see Methods section).

Information processing is subject to short-term dynamic
changes in synaptic transmission24–27. Therefore, we triggered
trains of presynaptic spikes at different frequencies (1, 8, 40 Hz)
to investigate short-term plasticity for both types of pairs (Fig. 4e;
for original data, see Supplementary Table 2a). The PV-to-MC
connection showed significant depression in IPSC amplitude at
all frequencies (1 Hz: n¼ 11; 8 Hz: n¼ 10; 40 Hz: n¼ 10) (Fig. 4f;
Supplementary Table 3a). Although the amount of depression
differed from frequency to frequency, it was apparent and
substantial (19.20±4.07%–42.75±4.11%; mean±s.e.m.) already
in the second response in every case (Fig. 4f; Supplementary
Table 3a). By contrast, repetitive firing in VIP cells neither caused
synaptic depression nor obvious facilitation of inhibitory inputs
to MC at lower frequencies (1 Hz: n¼ 11; 8 Hz: n¼ 11; 40 Hz:
n¼ 10). However, the amplitudes of IPSCs evoked by VIP cells
consistently facilitated at 40 Hz beginning from the third response
onwards (Fig. 4f; Supplementary Table 3a).

PV-to-MC connections also exist in V1. The VIP-to-MC
connection seems to be present in S1, as shown here and by Lee
et al.8, and in the primary visual cortex (V1)14,28. However, it has
been discussed recently whether or not the PV-to-MC connection
does exist in V1 as well6,29,30. Accordingly, we performed paired
recordings of PV cells and MC in LII/LIII of V1 (age: P27–P49;
Supplementary Fig. 6a and Supplementary Table 1b). PV cells
target MC with a connection probability of B35% (6/17)
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Figure 2 | PV and VIP cells reliably target MC in LII/LIII of S1.

(a,b) Left: schematic of recording configuration for photostimulation of

ChR2-expressing PV or VIP cells while recording from LII/LIII MC. Right:

Examples of photostimulation-induced inhibitory postsynaptic currents

(IPSC). Arrowheads indicate photostimulation (473 nm laser, 1 ms) of

PV interneurons (a) or VIP interneurons (b) at three different intensities

(subthreshold, threshold and 10� threshold). (c) Proportion of MC

responding to photostimulation of PV and VIP cells. In both experimental

designs, the success rate was 100%. This indicates that each MC receives

inhibitory input from PV and VIP cells. (d) Threshold laser energy to elicit

IPSC in MC by photostimulation of PV and VIP cells. Note the same range

(mean±s.e.m) for both groups. (e) Mean±s.e.m. of IPSC amplitudes

(at 10� threshold level) in MC for each group (PV: n¼ 16, age P38–P60,

VIP: n¼ 18, age P35–53). Optical stimulation of the PV cell population tends

to result in larger multicomponent IPSC amplitudes.
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(Supplementary Fig. 6b). Similar to S1, PV cells reliably (B97%)
caused IPSCs in postsynaptic MC (Supplementary Fig. 6b). On
average (mean±s.e.m.), the IPSCs had an amplitude of
50.68±13.70 pA, a latency of 0.68±0.08 ms, a 10–90% rise
time of 1.77±0.20 ms and a normalized slope of 0.24±0.03
fraction of amplitude ms� 1 (n¼ 6 and 4 mice; Supplementary
Fig. 6c). Concerning short-term plasticity, we observed synaptic
depression already at 1-Hz stimulations (Supplementary Fig. 6d,e;
for original data, see Supplementary Table 2b). This effect
increased at higher frequencies of 8 and 40 Hz (Supplementary
Fig. 6d,e; Supplementary Table 3b). Our data are thus in line with
recent publications demonstrating that PV-to-MC connections
are a frequent motif in V129,30. As MC are only a subpopulation
of SST-expressing IN20, this might explain previous discrepant
results on PV-to-SST connections6.

Discussion
The present study demonstrates that both VIP and PV cells target
MC in LII/LIII of S1 and differ strongly in unitary synaptic
properties as well as short-term plasticity. Although the
VIP-to-MC connection has already been shown to exist in
LII/LIII of different sensory cortical areas7,8,14,29,30, the
PV-to-MC connection has largely been explored in LII/LIII of
V129,30. Here we show by combining optogenetics, glutamate
uncaging, paired recordings and full morphological
reconstruction that in S1 these two circuit motifs (VIP to MC
and PV to MC) are fundamentally different.

An important finding is that these two inhibitory inputs onto
MC differ substantially in IPSC amplitude, latency and kinetics.
One mechanism possibly giving rise to such differences is
divergent subcellular targeting. Owing to electrotonic spread,
inputs located more distantly will be attenuated and slowed31. In
addition, spread along the dendrite might account for the increase
in latency. As VIP inputs in our sample are smaller in amplitude,
slower in rise and relatively delayed, one might assume that VIP
inputs onto MC are substantially more distal as compared with
PV inputs. Indeed, such a separation of inhibitory inputs has been
described for cortical PC32–35. Although dendrite-targeting
inhibition is in a position to selectively control excitatory
inputs, perisomatic inhibition exerts a global control of spike
output. To our knowledge, however, there is no direct
ultrastructural evidence for this targeting pattern on MC or any
other kind of cortical IN as of yet. Alternatively, differences in the
subunit composition of GABAA-receptors in MC could also
account for the differences in unitary properties mentioned
above36. Interestingly, these two alternatives are not mutually
exclusive but might occur in parallel37.

Besides differences in size and kinetics, these two unitary
connections also differ in short-term plasticity. Frequency-
independent depression of PV cell input onto MC in LII/LIII in
S1, as shown in the present report, is in line with previous
observations that PV cell input shows short-term depression
regardless of the type of postsynaptic cell in sensory cortical
areas38. By contrast, reports on short-term plasticity of unitary
VIP cell inputs in these areas are lacking. Although the frequency
range tested here is in line with many related studies, it must be
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Figure 3 | Electrophysiology and morphology of LII/LIII PV–MC and

VIP–MC pairs. (a) Examples of connected pairs of presynaptic PV or VIP

cells and postsynaptic MC in LII/LIII. The average of 10 individual IPSCs

(grey traces, evoked by repetitive stimulation) is shown in colour (PV to

MC: red, age P23; VIP to MC: blue, age P27). Presynaptic spikes reliably

evoke IPSCs in both cases. (b) Whole-cell recordings of a presynaptic PV

(left) and a VIP cell (right). During depolarizing current injections, the PV

cell shows a fast spiking pattern, whereas the VIP cell shows an adapting

firing pattern. (c) Staining of acute brain slices containing morphologically

recovered and synaptically connected pairs as well as the corresponding

Neurolucida reconstructions (left: PV to MC, right: VIP to MC). The

connected cells are shown in white (pseudo-coloured). Asterisks mark MC

somata, arrowheads somata of presynaptic cells. GIN cells are labelled

green and the corresponding presynaptic population (PV or VIP) is labelled

red (tdTomato-fluorescence). For clarity, connected cells are shown

separately as grey-scale images in the middle. The reconstructed pairs are

shown at the bottom. Soma and dendrites of GIN cells are labelled black

and the corresponding axon grey. The recorded PV cell exhibits a multipolar

dendritic morphology (light red) and a locally dense axon (red), as

described for basket cells. The VIP cell shows an atypical tripolar dendritic

configuration (light blue) and an axon (blue) descending towards the white

matter. Complete reconstructions are displayed in Supplementary Fig. 4.

Scale bars, 100mm.
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Figure 4 | Unitary connections of PV and VIP cells onto MC differ in their elementary synaptic properties and short-term plasticity. (a) Grand average

of unitary IPSCs (red: PV to MC, n¼ 12, age P21–P36; blue: VIP to MC, n¼ 11, age P21–P32) in MC in response to single spikes, repeatedly evoked in

presynaptic IN. Averages of individual pairs are shown in grey. (b) Connection (left) and success rate of synaptic transmission (right) of the two

different kinds of unitary connections. Note that the connection probability of PV cells (B58%, 12/21) is substantially larger than the one of VIP cells

(B35%, 11/31). In connected pairs, synaptic transmission is highly reliable. (c) Overlay of grand averages (from a) aligned with respect to presynaptic spike

peaks. IPSCs evoked by PV and VIP cells differ substantially in size and kinetics. For clarity, the boxed initial phase of both responses is shown at higher

resolution as an inset. (d) Quantification of unitary IPSCs. Amplitude, latency, 10–90% rise time and normalized slope as fraction of amplitude per ms were

analysed based on averages of each individual connected pair (PV to MC: red; VIP to MC: blue). Mean±s.e.m. was then calculated for each group

separately. Asterisks indicate significant differences (Po0.05) for all those parameters. (e) Individual examples of averaged IPSCs in MC in response to

trains of five spikes (1, 8 and 40 Hz) in a presynaptic IN (PV to MC: red trace; VIP to MC: blue trace). Individual traces are shown in grey. Quantification is

shown in f. (f) Quantitative analysis of short-term plasticity at different frequencies (1 Hz: PV to MC, n¼ 11; VIP to MC, n¼ 11; 8 Hz: PV to MC, n¼ 10; VIP

to MC, n¼ 11; 40 Hz: PV to MC, n¼ 10; VIP to MC, n¼ 10). Amplitude ratio (nth response/first response) of consecutive IPSCs plotted versus successive

IPSCs. At the population level, PV to MC responses show synaptic depression under all stimulus conditions, whereas VIP to MC responses show no

significant changes in amplitude at low frequencies but facilitate at 40 Hz. Values represent mean±s.e.m.
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pointed out that both types of presynaptic neurons can fire at
higher instantaneous frequencies. To our knowledge, the only
study using presynaptic spike trains with very short interspike
intervals reported substantial synaptic depression in fast spiking
as well as non-fast spiking interneurons in adult rats over a wide
range of interspike intervals except for 10–20 ms39. Short-term
plasticity of PV inputs on MC might be described as phasic in
comparison to the more tonic properties of VIP inputs.
Nevertheless, even depressed PV inputs still exert a stronger
influence at the soma than the corresponding VIP inputs.
Considering that VIP cells might target distal dendrites, their true
impact on dendritic input control would be much stronger and
facilitation at high frequencies could be a dominant factor in
controlling activity in the postsynaptic cell. By this means, VIP
and PV cells may provide different spatial and temporal windows
of opportunities38.

In the present study, we have shown that each MC in LII/LIII
of the barrel cortex receives two different inhibitory inputs with
divergent properties. Two separate input channels may, on the
one hand, allow different sources of excitatory drive to control PC
inhibition by MC but it may as well allow one single excitatory
input to utilize different kinds of MC inhibition. Both types of
MC-inhibiting IN share much of their excitatory input, namely,
local LII/LIII PC and excitatory cells in LIV of the same
column40–42. Recently, however, long-range connections from
primary motor cortex have been described to preferentially target
VIP cells in S1 (ref. 8). Accordingly, VIP cell-mediated inhibition
of MC may integrate somatosensory and motor information,
whereas PV cells are purely driven by somatosensory inputs.
Besides glutamatergic input, VIP and PV cells also receive
modulatory afferents. State-dependent cholinergic modulation
may thereby selectively enhance and/or suppress activity in IN
inhibiting MC43,44.

In summary, disinhibition of LII/LIII PC via MC is mediated
by two distinct IN populations. As these inputs differ in strength,
kinetics, short-term plasticity and possibly subcellular targeting,
PV cells may induce a transient release from MC inhibition,
whereas VIP cells may result in tonic disinhibition. Future studies
will clarify whether tonic and phasic inhibition can be recruited
by the same or different sources of inputs.

Methods
Animals. All experiments were performed in accordance with the German Law on
the Protection of Animals. All animals used for breeding were obtained from
Jackson Laboratory (Bar Harbor, USA) and kept under standard housing condi-
tions. PV-cre (Pvalbtm1(cre)Arbr/J) or VIP-cre mice (VIPtm1(cre)Zjh) were crossbred
with homozygous Ai9 mice (B6.Cg-Gt(ROSA)26Sortm9(CAG-tdTomato)Hze/J)
to obtain PV-cre/VIP-cre::tdTomato mice. These mice were further crossed
with homozygous GIN mice (FVB-Tg(GadGFP)45704Swn) to create the triple
transgenic mouse lines PV-cre::tdTomato::GIN and VIP-cre::tdTomato::GIN.
Using these lines, PV-expressing (PV cell), VIP-expressing (VIP cell) and GIN cells
in LII/LIII could be identified by their specific fluorescent label (PV/VIP cells:
tdTomato fluorescence, GIN cells: GFP fluorescence). For optogenetic
experiments, PV-cre (Pvalbtm1(cre)Arbr/J) or VIP-cre mice (VIPtm1(cre)Zjh) were
crossbred with homozygous GIN mice (FVB-Tg(GadGFP)45704Swn) to create
PV-cre::GIN and VIP-cre::GIN mouse lines.

Slice preparation and chemicals. To obtain acute brain slices, juvenile mice of
either sex (postnatal days 21–49) were deeply anaesthetized with isoflurane and
decapitated. The brain was removed, the hemispheres separated and kept in cold
(4 �C), oxygenated (Carbogen: 95% O2/5% CO2) preparation solution used for
cutting (in mmol: 75 sucrose, 87 NaCl, 2.5 KCL, 0.5 CaCl2, 7.0 MgCl2, 26 NaHCO3,
1.25 NaH2PO4 and 10 glucose; pH: 7.4). Thalamo-cortical slices of 300 mm
thickness from the mouse barrel cortex were prepared according to Porter et al.45

Coronal slices of 300 mm thickness were prepared from the primary visual cortex.
Slices were incubated in oxygenated artificial cerebrospinal fluid (ACSF) (in mmol:
125 NaCl, 2.5 KCL, 2 CaCl2, 1 MgCl2, 26 NaHCO3, 1.25 NaH2PO4 and 25 glucose;
pH: 7.4) at 32 �C for 30 min and later kept at room temperature until further
processing.

Electrophysiology and data acquisition. Slices were transferred to a submerged
recording chamber (ACSF flow rate of 2 ml min� 1 at 32 �C) in an upright
microscope (Axio Examiner, Zeiss, Germany). For photostimulation, a 405 nm
(DL-405, Rapp OptoElectronic, Wedel, Germany) or a 473 nm laser light (DL-473,
Rapp OptoElectronic) was coupled via a 200 mm liquid fibre to the epifluorescence
path of the microscope and guided into the � 40 objective. Whole-cell recordings
from MC in LII/LIII of the barrel cortex and from PV or VIP cells were performed
in current clamp as well as voltage clamp. Borosilicate patch pipettes (5–8 MO)
contained a cesium-based intracellular solution (in mmol: 135 CsMeSO4, 5 CsCl,
2 MgCl2, 0.5 EGTA, 10 HEPES, 4 Mg-ATP, 0.3 Na-GTP, 10 Na-phosphocreatine
phosphate; pH: 7.4) for GIN cell recordings during optogenetics, uncaging
experiments and paired recordings. We used a potassium-based solution (in mmol:
135 K-gluconate, 5 KCl, 0.5 EGTA, 10 HEPES, 4 Mg-ATP, 0.3 Na-GTP,
10 Na-phosphocreatine phosphate; pH: 7.4) for PV or VIP cells in all experiments
and GIN cells during experiments performed in current clamp. In case of paired
recordings, we recorded from nearby (distance: 25–200 mm) PV and VIP cells.
Intracellular solutions contained 0.3–0.5% biocytin for subsequent morphological
visualization. Depolarizing current pulses above rheobase were used to characterize
firing patterns of PV, VIP and GIN cells during initial current clamp recordings.
To investigate IPSC, in all subsequent experiments, GIN cells were kept close to
AMPA-receptor equilibrium potential in voltage clamp (EAMPA: B0 mV). This was
carried out to increase the driving force for chloride, hence the amplitude of
inhibitory postsynaptic currents, and to minimize contamination by excitatory
postsynaptic currents. Data were acquired using a SEC-05 L amplifier (npi
electronics, Tamm, Germany) in discontinuous mode with a switching frequency
of 50 kHz. The signals were filtered at 3 kHz and digitized at 10–25 kHz using a
CED Power 1401 interface (CED Limited, Cambridge, England). Data were
collected, stored and analysed with Signal 5 (CED Limited, Cambridge, England).

Focal photolysis of caged glutamate. As soon as stable whole-cell voltage clamp
recordings of LII/LIII GIN cells (age P24–P34, either sex) were achieved
(Vhold¼ 0 mV), focal photolysis of caged glutamate with a 405 nm laser light
was carried out to activate presynaptic IN. The laser beam was focused on a
50� 50 mm2 area on the plane of the brain slice. Caged glutamate (CNB-caged-L-
glutamate, Molecular Probes, Carlsbad, USA) was added to the ACSF perfusion
with a final concentration of 330 mM. To reduce detection errors of IPSCs, laser
stimulus (6 ms duration) was repeated three times per field at an interval of 3 s. In
principle, glutamate release could activate all types of neurons, which could lead to
disynaptically evoked inhibitory inputs. We set up a series of calibration experi-
ments to determine an energy level at which the laser, with its beam centred on the
soma, generated spikes. Therefore, we performed sequential whole-cell patch clamp
recordings, with potassium-based intracellular solution, of cortical neurons
(PV, VIP, SST, GIN and excitatory cells) and induced spiking by glutamate
uncaging. A laser energy level of B120mJ triggered spikes in B86% of all types of
inhibitory cells but in only B25% of excitatory cells located throughout all cortical
layers (Supplementary Fig. 3e).

In subsequent mapping experiments, IPSCs were only accepted as stimulus
evoked if their amplitude exceeded the mean baselineþ 3 s.d. of the baseline, they
were detected in at least two out of three stimulus repetitions and they appeared
within a 10 ms time window after stimulus offset. The laser was moved over an area
covering three adjacent barrel-related columns (the middle one containing the
recorded GIN cell) and the entire cortical depth, either from pia to white matter or
vice versa. Scanning was carried out systematically along rows with alternating
directions (50mm per step, 10 s intervals) controlled by the Morgentau M1 software
(Morgentau Solutions GmbH, Munich, Germany). Thus up to 364 different fields
were stimulated without any intermittent gaps. In every slice containing a recorded
GIN cell, layer and column borders were estimated from DAPI (4,6-diamidino-2-
phenylindole) stainings and aligned with the scanned cortical area. Once individual
fields were assignable to specific columns and layers, maps were created
representing the average IPSC amplitude in fields containing sources of inhibitory
input (inhibitory fields). These maps were then converted into binary ones by
assigning a grey-scale value of 255 to each inhibitory field and the value 0 to the
remaining fields (Supplementary Fig. 3f). In addition, the number of inhibitory
fields was counted per layer and column. Individual binary maps were then aligned
in relation to the barrel-like structure in LIV of the home column and converted
into an average map depicting the confidence level for the position of inhibitory
fields by means of a customized Matlab script (The MathWorks GmbH, Ismaning,
Germany).

Viral injection and optogenetics. To test whether PV and/or VIP cells target
LII/LIII MC in the barrel cortex, we used adeno-associated viral vectors (AAV)
for cre-dependent ChR2 expression in Cre-expressing interneurons. The AAV
(pAAV-EF1a-double floxed-hChR2(H134R)-mCherry-WPRE-HGHpA) were
custom manufactured by the ‘Viral Vectors Platform’ of the DFG research unit
and cluster of excellence CNMPB Goettingen and packaged in AAV-6 capsids.
PV-cre::GIN or VIP-cre::GIN mice (postnatal days 18–27, either sex) were
anaesthetized with 1–2% isoflurane (analgesia: Lidocaine s.c., metamizole p.o.) and
positioned in a stereotactic frame. A small craniotomy (1–2 mm in diameter) was
made with a dental drill (Osada Success 40, Osada, Tokyo, Japan) to expose the
cortical surface. AAV were injected into the barrel cortex (anterior–posterior range:
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Bregma minus 1–2 mm, medial–lateral range: 2.5–3.5 mm) via a glass micropipette
(25 mm inner diameter) connected to a Toohey Spritzer Pressure System IIe
(Toohey Company, Fairfield, NJ, USA). The micropipette was positioned at 2–4
different locations, guided by surface blood vessel patterns and at 3 different depths
(800, 500, 250 mm below the pial surface). Small amounts of virus in sterile
phosphate-buffered saline (PBS; up to 150 nl) were injected by pressure application
(3 psi, 250 ms pulse duration). The micropipette was withdrawn 10–15 min after
pressure application. Finally, the animals were sutured and injected with carprofen
(2.5 mg per 10 g body weight, Rymadyl, Pfizer, New York City, NY, USA).
For postoperative care, animals were provided with wet food and metamizol
(1.33 mg ml� 1, Novaminsulfon-ratiopharm, Ratiopharm, Ulm, Germany)
dissolved in drinking water. In accordance with animal care guidelines, metamizol
was also applied a day before surgery.

Two-to-three weeks after viral transduction, acute brain slices were prepared
and whole-cell patch clamp recordings of LII/LIII MC were performed as described
above. Photostimulation (diameter: B100 mm) of ChR2-expressing cells was
performed with a 473 nm laser light source (see above). The photostimulation
(duration: 1 ms) was executed three times for three illumination intensities
(subthreshold, threshold and 10� threshold for IPSC occurrence in MC; range:
3–1,000 mW) at a minimum inter-stimulus interval of 5 s.

Paired recordings. During paired recordings, presynaptic neurons (PV or
VIP cells) remained at resting membrane potential (Vrest) in current clamp.
Postsynaptic GIN cells were kept at Vhold¼ 0 mV in voltage clamp. Consecutive
brief current injections (5 ms per pulse, 20–650 pA, 10–20 sweeps, 10 s sweep
interval) to presynaptic inhibitory neurons caused single spikes or a train of five
spikes with frequencies of 1, 8 and 40 Hz (short-term plasticity experiments), which
led to IPSCs in GIN cells.

All measurements were carried out on averages of individual sweeps. Prior to
averaging, all individual IPSCs of a connected pair were aligned with respect to the
spike peak of the presynaptic action potential. This was carried out to prevent
disturbance of the average IPSC waveform owing to spike jitter. For responses from
single spike stimulations, we analysed the following parameters: latency (time from
presynaptic spike peak to IPSC onset), 10–90% rise time (time between 10% and
90% of IPSC peak amplitude), amplitude (difference from baseline to peak) and
normalized slope of the ascending phase (average slope, determined by means of a
least-square best fit, divided by the maximum amplitude) of the IPSC.

Short-term plasticity was tested by applying trains of presynaptic spikes. Here
we only measured the peak amplitudes of the average IPSCs and calculated the
response ratio for each IPSC relative to the amplitude of the first response
(nth response/first response). Consecutive IPSCs overlapped only during 40 Hz
stimulations. To measure the amplitude of single responses in this case, the decay
phase of the preceding IPSC was exponentially fitted. This fit was extrapolated to
baseline level. Response amplitude was then calculated as the difference between
the peak of the response and the fit value at that point in time.

Staining. To visualize biocytin-filled neurons as well as GFP-, mCherry- and
tdTomato-expressing cells, slices were processed as follows. Slices were rinsed with
PBS and incubated with primary antibodies (rabbit anti-RFP, 1:500, Rockland,
Limerick, PA, USA; goat anti-GFP, 1:2,000, Abcam, Cambridge, UK) in blocking
solution (0.25% bovine serum albumin, 10% normal donkey serum and 0.5%
Triton X-100, pH 7.6, in PBS) for 48–72 h at 4 �C.Then they were rinsed in PBS
(5� ), followed by 4 h of secondary antibody incubation at room temperature,
rinsed in PBS (6� ) and stained by DAPI (1:1,000, Molecular Probes, Carlsbad,
CA, USA). Secondary antibodies used were donkey anti-goat AF488 (1:500,
Invitrogen, Carlsbad, CA, USA), donkey anti-rabbit AF546 (1:500) and
streptavidin-conjugated AF633 (1:500). Slices were mounted in AquaPolyMount
and fluorescent images were taken using a Leica SP2 confocal microscope
(� 40 immersion objective; voxel size: 0.18� 0.18� 0.80 mm3), controlled by the
Vision4d software (Arivis AG, Unterschlei�heim, Germany) in order to acquire
and stitch multiple, predefined tiles.

Reconstruction of biocytin-filled neurons. Fluorescently labelled neurons
with consistently intense staining of neurites and no obvious truncation of main
processes were reconstructed by acquiring large XYZ-stacks with a confocal
microscope (Leica SP2; equipped with Arivis software) and subsequently loading
these stacks into Neurolucida Workstation (MBF Bioscience, Colchester, VT,
USA). Dendritic processes were distinguished from axonal structures by their
diameter, fine structure and branching pattern.

To superimpose multiple reconstructions and show the distribution of neuronal
processes as a population average, reconstructed neurons were registered into one
file using defined layer borders (according to Prönneke et al.18) as a reference,
somata aligned at the same vertical level and all fibers plotted as one binary image.
This was filtered using a Gaussian filter with a comparable radial sigma (25 at
300 dpi) for all structures and a colour look-up-table ranging from cold (blue and
green for white to light grey) to warm colours (yellow and red for dark grey to
black) was applied to the resulting grey-scale image. This was then merged with the
original black and white image and resulted in heat maps visualizing areas of the
highest density of dendritic and axonal trees.

Statistics. For statistical comparisons, Mann–Whitney rank-sum tests were used.
Results were given as P values. Po0.05 was interpreted as significantly different.
Mean±s.e.m. are given for all other values, if not stated otherwise.

Digital illustrations. Confocal image stacks were exported as maximum intensity
projections and stored as TIFF files. Image brightness and contrast images were
adjusted using the Photoshop software (Adobe, Dublin, Ireland).

Data availability. The data that support the findings of this study are available
from the corresponding author on request. Neurolucida reconstructions will be
made available through Neuromorpho.org.
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