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Abstract: Over the last two decades a number of heatwaves have brought the need for 

heatwave early warning systems (HEWS) to the attention of many European governments. 

The HEWS in Europe are operating under the assumption that there is a high correlation 

between observed and forecasted temperatures. We investigated the sensitivity of different 

temperature mortality relationships when using forecast temperatures. We modelled 

mortality in Stockholm using observed temperatures and made predictions using forecast 

temperatures from the European Centre for Medium-range Weather Forecasts to assess the 

sensitivity. We found that the forecast will alter the expected future risk differently for 

different temperature mortality relationships. The more complex models seemed more 

sensitive to inaccurate forecasts. Despite the difference between models, there was a high 

agreement between models when identifying risk-days. We find that considerations of the 

accuracy in temperature forecasts should be part of the design of a HEWS. Currently 

operating HEWS do evaluate their predictive performance; this information should also be 

part of the evaluation of the epidemiological models that are the foundation in the HEWS. 
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The most accurate description of the relationship between high temperature and mortality 

might not be the most suitable or practical when incorporated into a HEWS. 
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1. Introduction 

Over the last two decades, a number of heat extremes resulted in devastating health outcomes 

around the globe. The 1995 heatwave in Chicago resulted in health consequences far beyond previous 

experiences, with at least 700 excess deaths from July 14 through July 17 [1]. In Europe, the heatwave 

of 2003 dramatically demonstrated to the public that heatwaves could pose a significant public health 

threat. In France alone, more than 14,000 people died [2]. In Moscow in 2010, a heatwave combined 

with widespread forest fires resulted in more than 11,000 excess deaths [3].  

Recent events underscore the need for heatwave early warning systems (HEWS), bringing the need 

for such systems to the attention of many European governments. Public health institutes and weather 

services around Europe have mainly been responsible for the design of these warning systems. The 

approach for designing warning systems differs across countries, including different exposure 

variables and thresholds predicting the temperature at which mortality increases markedly, and 

different interventions from country to country [4].  

There is not a consensus on which exposure variable is the best predictor of heat-related mortality 

and morbidity. Few studies have investigated which temperature variable performs best in modelling 

heat-related illness [5–7]. One study concluded that the choice of temperature exposure variable can be 

based on practical concerns [7]. A similar study found that the best index for thermal comfort was not 

necessarily the best predictor of heat related mortality [8].  

Different thresholds across countries would be expected based on past experience with high ambient 

temperatures, the extent to which infrastructure is designed to protect occupants from higher 

temperatures, and other factors. In fact for some countries, thresholds differ between different national 

regions due to different climates.  

The temperature thresholds used in a HEWS are generally based on epidemiological studies that 

investigated historical temperature observations and mortality. These thresholds are then operationalized 

in the system under the apparent assumption there is a high correlation between forecast and observed 

exposure variables, but for HEWS it is the forecasts of extreme temperatures that is critical. 

The aim of this study is to investigate the use of forecasted temperatures in addition to observations 

when evaluating the underlying epidemiological models within a heatwave early warning system.  

We first investigated the accuracy of temperature forecasts by comparing them with observations. We 

next evaluated the sensitivity of different statistical models and exposures of the temperature mortality 

relationship when using forecasted vs. observed temperatures. Finally, we investigated how these 

sensitivities limit how far in advance of an impending heatwave an accurate forecast could be issued. 
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2. Experimental Section  

2.1. Data  

Mortality and weather data were collected for the time-period 1998–2007. We used daily data on 

non-accidental mortality for Stockholm County, collected from the Cause of Death Register at the 

Swedish Board of Health and Welfare. The Swedish Meteorological and Hydrological Institute 

(SMHI) provided temperature data measured at Observatorielunden, an urban weather station in 

central Stockholm. SMHI also provided daily forecasts of 2-meter temperature from the European 

Centre for Medium-range Weather forecasts, ECMWF, for the summer months, April to September 

1998–2007, including forecasts one, two and three days in advance. The temperature forecasts were 

direct model output extracted from the 00 UTC daily operational, deterministic ECMWF forecast for 

the location of the Observatorielunden station in Stockholm. Daily maximum temperatures were 

estimated as the maximum temperature in the forecast based on three or six-hourly data depending on 

time period and forecast length. It should be noted that the forecast data represent spatial averages over 

the computational grid used in the ECMWF forecast model which was ca. 50 × 50 km2 in the period 

1998–2005 and 25 × 25 km2 in 2006–2007. Higher resolution forecast models have been in use in 

Sweden for part of the time period studied. The ECMWF data was chosen because of consistency for 

the time period studied. Also for the longer forecast lead times (beyond 2 days) ECMWF was the best 

source of information for the studied time period. 

2.2. Study Design 

We compared temperature forecasts with the observed temperatures to identify any patterns and 

consistent differences. The observed temperatures and the forecast data were compared by modelling 

the observed temperature with the forecast temperatures as explanatory variables. If any systematic 

bias was present, an adjusted forecast temperature might increase model accuracy. 

In the second stage, we studied four statistical approaches to model temperature mortality 

relationships. The base model was constructed as: Mortality~Poisson(µt): = +	 + +  

where wdt it the day of the week, S(trendt) is a smooth function for the time trend over the entire period 

and a function of temperature depending on the underlying statistical model. 

We used different approaches commonly used in similar studies to model the relationship between 

temperature and total mortality in the population [9–12]. Four models were chosen with different 

levels of complexity: distributed lag non-linear models (DLNM) [13]; a generalized additive model 

(GAM) [14] with a smooth spline function; a piecewise linear (PWL) relationship; and models 

incorporating temperature as a threshold effect (THR). As the aim of this study was to investigate the 

sensitivity of a underlying model when used with weather forecasts instead of observations, we used 

experience from existing studies on temperature related mortality in the Stockholm area rather than 

make a thorough investigation of our own. We used a lag 0–2 mean of daily maximum temperature in 
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the models; this is the lag used in the Swedish HEWS being testing and is based on experiences from 

warning systems in other European countries where 3-day average temperatures are commonly used [4].  

Finally, we investigated whether models using temperature forecasts would identify days 

considered risk-days and whether there are any differences among the four modelling approaches. The 

cut-off for what was considered a risk day was decided to be a level of risk increase. We used the 

estimated risk at 26 °C in the PWL model. The temperature was taken from the lower level in the 

Swedish HEWS. The PWL model was chosen because it is the least complex model with a continuous 

exposure space. We also compared the estimated risk increases produced by the observed and forecast 

temperatures to identify any patterns suggesting a bias that could be corrected when using forecast 

temperatures to issue a warning. This also helps identify how far in advance an accurate warning could 

be issued. The models were evaluated using sensitivity and positive predictions value (PPV). 

Sensitivity is a measure of how well the model identifies the actual risk days. PPV describes how large 

a proportion of the risk days classified by the model were actual risk days. This means that a high PPV 

would result in few false positive forecasts. Both measures range from 0 to 1 where 1 is perfect 

classification. Specificity, which describes the ability to identify non-risk days, is not shown because 

almost 95% of the days were non-risk days, leading to very high specificity scores for all models.  

3. Results and Discussion 

3.1. Forecasts 

The forecast temperatures showed a clear bias, especially in the warm end of the distribution with 

the forecasts generally estimating lower temperatures than were observed. A linear function can be 

used to adjust forecast temperatures to reduce this bias over the period 1998–2007 (Table 1). 

Table 1. Estimated coefficients when observed temperatures are used to model forecast temperatures. 

Forecast Length Intercept Slope 

1-day forecast 2.283 0.829 

2-day forecast 2.388 0.825 

3-day forecast 2.753 0.795 

The increasing intercept and decreasing slope for longer time frames indicate that the forecast bias 

is not only present for all time frames, but also will increase with longer forecasts. These results made 

us investigate how the models perform using adjusted and un-adjusted forecast temperatures.  

We calculate the adjusted temperatures using the linear models from Table 1. But even after 

correction, the forecast temperatures were still generally lower in the high end of the distribution 

(Figure 1). 
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Figure 1. Observed vs. 1-day forecast temperatures, Stockholm, 1998–2007. Red line 

shows the linear estimate for an unbiased fit and the blue the estimated linear relationship 

between the variables. 

3.2. Risk Models 

In all four models, we modelled the long-term trend as a penalized thin plate regression spline with 

maximum 12 degrees of freedom (d.f.) for each year. Of the possible 120 d.f., the penalized spline 

used between 69.7 and 72.33 effective d.f. for the different models. This smooth function accounts for 

annual patterns and the long-term time trend. 

The thresholds used in the THR model are the same as in the underlying model in the Swedish 

HEWS. This modelling approach incorporated temperature as a three level ordinal factor variable. The 

temperature limits used were 20, 27 and 30 °C. A 26 and 30 °C threshold being tested in the Swedish 

HEWS, where the lower limit was set lower since warnings are issued when the threshold is expected 
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to be exceeded for an area of 1000 km2. At these temperatures the threshold model found statistically 

significant increases in the daily number of deaths of 3.1, 10 and 20.5%. These estimated increases 

correspond to the temperature ranges 20–27 °C, 27–30 °C and above 30 °C. The reason to only include 

the two higher threshold values in the Swedish HEWS is explained by the low risk increase estimated 

for the lowest threshold. Overall, this model explains 17.6% of the variation in daily mortality. 

The PWL model to describe the association uses the 90th percentile of the 0–2 lag maximum 

temperature, 21.7 °C, as the break point. The model estimates a risk increase of 1.4% per degree 

increase above the 90th percentile and explains 17.6% of the variation. This corresponds to risk 

increases of 7.5 and 11.9% at 27 and 30 °C, respectively. To be able to compare estimates to the 

threshold model we calculated the mean of risk estimates for the temperature ranges 27–30 °C and 

above 30 °C. These were estimated to 9.4% and 12.7%. 

When modelling the temperature effect in the GAM model, we used a penalized smooth spline  

with 8 d.f.. There was a significant risk increase estimated to be 7.0 and 10.4% at the 27 °C and  

30 °C thresholds, respectively. The mean of the estimated risk increase for the observations in the  

27–30 °C interval is 8.8% and 11.1% above 30 °C. This model explains 17.7% of the variation in 

temperature-mortality relationships. 

The DLNM model incorporated temperature as a function using 5 d.f. for temperature and 3 d.f. for 

the lag. The time lag was set to 20 days. This model produced the lowest risk estimates in the lower 

interval, with a mean risk increase of 4.3%. In the above 30 °C interval, the DLNM produced a mean 

risk increase of 13%. It should be noted that the DLMN model results were based on lag 0–2 to be 

comparable to the other models. The model explains 18.1% of the variation. 

The large difference in the estimated risk increase in the above 30 °C interval made it necessary to 

conduct a sensitivity analysis to investigate the effects of temperatures above 30 °C. We added an 

indicator variable for days with 0–2 lag max temperatures above 30 °C in the PWL and the GAM 

models. In these models, these indicator variables are estimated to be 8.9 and 11.1%, respectively (p-

values of 0.179 and 0.093). Additionally we investigated whether any of the observations in the 

highest interval was very influential for the estimates using a leave one out routine. We estimated the 

risk increase in the highest temperature interval using the THR model with one of the observations 

removed. This was repeated for all observations in the highest temperature interval. If any observations 

was too influential in this interval the risk estimate produced when this observation was removed 

would be significantly lower than the rest. All estimates were significant and the effect estimate ranged 

from 17.4% to 24.2% depending on which observation was removed. 

To assess the predictive ability of the models we looked at whether the models were able to identify 

risk days. The risk increase used as a cut off value was estimated to be 6% which corresponds to the 

estimated risk increase at 26°C for the PWL model. We estimated the elevated risk due to temperatures 

for all days with each of the models. All days identified as a risk day, with risk estimates above 6%, by 

any of the models were compiled in a separate dataset. We investigated which models identified these 

days as risk days to find the level of agreement between models (Figure 2).  
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Figure 2. Comparison of which models identify heatwave days as risk days. Each grey 

area represents a period where risk days were identified. The markers describe which 

models classified each day as a risk day. The date on the x-axis describes the first day of 

each period with elevated mortality risk. 

Figure 2 shows that across the models, there were 98 days identified as a risk day. Among these, 

there were 70 days where three or more models agreed it was a risk day. As expected, the PWL model 

identified the most risk days as it was used to define what constitutes a risk day. The GAM model 

shows very high agreement with the PWL model. The DLNM model classifies the fewest days as  

risk days. 

For each model we calculated estimated risk for observed as well as forecast temperatures, using 

both adjusted and unadjusted forecasts. The estimates were compared between observed and forecasts 

for each model separately. The sensitivity and positive prediction values (PPV) are presented in  

Tables 2 and 3. 

Table 2. Sensitivity scores for the four models using forecast and adjusted forecast 

temperatures, and different issuing time frames. 

Model Type 
Forecast Adjusted Forecast 

1-day 2-day 3-day 1-day 2-day 3-day 

DLNM 0.62 0.05 NA 0.67 0.10 NA 

GAM 0.78 0.53 0.16 0.86 0.72 0.41 

PWL 0.79 0.56 0.19 0.88 0.72 0.47 

THR 0.70 0.30 0.09 0.84 0.57 0.23 
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Table 3. Positive prediction values for the four models using forecast and adjust forecasted 

temperatures, and different issuing time frames. 

Model Type 
Forecast Adjusted Forecast 

1-day 2-day 3-day 1-day 2-day 3-day 

DLNM 1.00 1.00 NA 0.88 0.50 NA 

GAM 1.00 0.98 0.94 0.99 0.94 0.93 

PWL 1.00 1.00 1.00 0.98 0.97 0.93 

THR 0.96 0.95 1.00 0.97 0.91 0.89 

The DLNM was the model most sensitive to forecast temperatures. All models improve when used 

with the adjusted forecast temperatures, especially for longer time frames. But even though the 

performance increases, the accuracy is very low when looking at three-day temperature forecasts for 

all models. The PWL model does however seem the most robust when used with forecasts.  

When looking at the actual risk estimates using forecasts and not the dichotomous variable risk or 

non-risk day, the differences between the models are clearer. The models were evaluated by the mean 

square error (MSE) and the weight (Figure 3).  

 
(a) 

Figure 3. Cont. 
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(b) 

 
(c) 

Figure 3. Cont. 
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(d) 

Figure 3. Risk estimates for the four models using fitted values from observed 

temperatures and the forecast temperatures on days with temperature above 26 °C.  

On the x-axis is the estimated risk increases in percent produced by observed temperatures 

and on the y-axis the estimated risk increase produced by different forecast times for each 

day in the study period for the: (a) DLNM model; (b) GAM model; (c) PWL model;  

(d) THR model. 

The weight is a variable between −1 and 1 that measures how large a portion of the estimates from 

one model is higher than the other. For any given day, if the estimates using observed temperature are 

higher than the estimates using forecast temperatures for that day, it is assigned a 1 and -1 otherwise. 

The weight is a mean value of this indicator for all days in the period. A value of 1 would mean that 

the all estimates using observed temperature were higher than the ones using forecast temperatures and 

−1 the opposite. A value of 0 would indicate a balance between the two models but nothing about the 

accuracy.  

The DLNM model underestimated the risks when the forecast length increased beyond 2 days. The 

GAM and PWL models show slightly better ability when used with adjusted forecast temperatures. 

The DLNM model has no clear pattern of prediction bias, while there appears to be a pattern forecast 

bias (under predictions) for the GAM and PWL models. 

The risk estimates in the THR model are hard to compare with the models with a continuous 

outcome. The sensitivity and PPV however show that it has a high ability to classify risk days at least 

over shorter time frames. 
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4. Discussion  

This study shows a discrepancy between estimated risk increases based on direct forecast model 

output and actual observed temperatures in Stockholm. This discrepancy appears to increase as the 

forecast time lengthens. This raises the question of whether operating HEWS are adjusting for this 

forecast bias, and, if so, how. This phenomenon is not only present in Stockholm; another study found 

similar results [15]. A review of the European HEWS found that several systems have lead times of  

3 days or more. In the light of our results and those from other studies, assuming a similar forecast bias 

exists, then these systems may not be able to issue accurate warnings that far in advance. The practice 

of providing daily revisions of the forecasts is clearly important. The Swedish and some other HEWS 

issue warnings for the lower levels based on forecasts alone and combine observed and forecast 

temperatures to issue more accurate warnings for the higher levels. It should be noted that the forecast 

data used in this study are a proxy for actual forecasts of daily maximum temperatures issued by a 

weather service. In practice new model forecasts are available more than once a day and different bias 

corrections are applied. However, such data were not easily available from SMHI for the study period.  

It has recently been proposed to use improved gridded weather data rather than data from a single 

weather station for studies of heat-mortality relations [16]. Such data should be explored and if 

interpolated temperature data prove to give more valid associations, they should be included in future 

evaluations of models for HEWS. 

The different models yield slightly different results but all find an increase in mortality with high 

temperatures. The models mostly identify the same days as risk days, with the exception of the more 

conservative DLNM model. The fact that 70 out of 98 days were classified as risk days by at least 

three of the models shows a high level of agreement. However, a model that would miss 28 days of 

higher than average mortality indicates improvements in heatwave early warning systems could save 

more lives. 

There are discrepancies in risk estimates from the different models. The DLNM is the most 

conservative, and the THR model estimates the highest risks. The GAM and the PWL models yield 

similar results. The models using the 0–2 lag of daily maximum temperature produce similar risk 

increase estimates for the range 27–30 °C (8.8, 9.4 and 10%). In the interval above 30 °C, the 

difference is much larger between models (11.9, 11.1 and 20.5%). The low number of observations 

above 30 °C could be an explanation. In the threshold model, the estimated increase in mortality is 

based on observations for each interval separately. Few observations in an interval would make it 

sensitive to influential observations. However, our sensitivity analysis indicates that no such influential 

observations would alter the effects to such extent as shown in the model comparison. The risk 

estimates from the other models calculate the effects on mortality based on observations from a wider 

temperature interval, making it conservative in the tails of the exposure distribution. While this is 

normally a positive attribute, in this case, such conservativeness means missing days when lives could 

be saved. 

Despite the p-values of the sensitivity analysis suggesting the 30 °C additional indicator is not 

significant, the main effects of temperature were slightly lower in terms of risk increase per degree 

when this indicator was added. If the indicator variable was treated as a significant contributor, the 

combined effect with the main temperature effect would generate risk estimates similar to the 
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threshold model for temperatures above 30 °C. Although the indicator variable is not significant, the 

quite low p-values suggest there may be effects in the extremes of the distribution that the PWL and 

GAM models can’t explain. Our suspicions that there was one very influential observation in the 

highest temperature interval was proved false as all estimated returned significant in the leave one out 

routine and the estimates was not lower in any case. 

The difference between models when using forecast temperatures can be traced back to the nature 

of the exposure variable and the dose-response relationship. In the case of the DLNM model, the fact 

that it is based on temperatures on a daily level rather than a 0–2 lag mean temperature makes it more 

sensitive to inaccurate forecasts. This would be true for all models incorporating the temperature 

effects on specific lags. The differences between the models using the same exposure variable depend 

on the steepness of the dose-response curve. A steeper curve in the GAM or PWL model would make 

it more sensitive as a small change in exposure would result in a large change in risk.  

When examining the forecast risks, the DLNM model error shows no clear bias. The GAM and 

PWL models however show a clear bias for all time scales that makes it possible to adjust the intercept 

of the curve to get a significantly better MSE. This reinforces that these models are preferable when 

compared to models using risk estimates based on temperatures on individual days, which are more 

sensitive to inaccurate forecasts. However, an adjustment of the intercept could increase the probability 

of false positives. In the context of a warnings system, one must weigh the accuracy from a statistical 

point of view with the purpose of the forecast. Too many false positives undermine the warning system 

and too many false negatives may have substantial health consequences. Finding the right balance 

between sensitivity and PPV requires consideration of science and the needs and perspectives of the 

individuals to whom the warning is directed.  

The accuracy of warnings using the forecast data declines when using longer forecasts. This is to be 

expected. All models have problems forecasting extremes, but this study shows that some exposure 

variables are more robust than others. Models using only the maximum temperature as exposure, a 

variable that is fairly easy to forecast compared to variables such as relative humidity, may be less 

sensitive to forecasts and have higher skill. Models using more complex exposure measures might be 

less reliable when used to forecast risks in such situations.  

Although complex models can be useful in establishing exposure-response relationships, they may 

not be suitable when operating a HEWS. This results together with the conclusions that the exposure 

variable can be chosen based on practical concerns [7], indicate the use of less complex exposure 

variables and models to decide the levels within a heatwave early warning system benefit not only 

from being easier to understand by the public but might also have a higher predictive performance. 

5. Conclusions 

Considerations of the accuracy in temperature forecasts should be part of the design of a HEWS. 

Currently operating systems can to some extent evaluate their predictive performance; this information 

should also be part of the evaluation of the epidemiological models that are the foundation in the 

HEWS. The most accurate description of the relationship between high ambient temperature and 

mortality might not be the most suitable or practical when incorporated into a HEWS. A robust 
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statistical model and temperature exposure variable are important to have accurate forecasts of the 

expected increase in mortality during a heatwave.  
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