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The Lipid Annotation Service (LAS) is a representational state transfer (REST) application programming interface
(API) service designed to aid researchers performing lipid annotation. It assigns certainty levels (very unlikely,
unlikely, likely, and very likely) to the putative annotations received as input and explains the rationale of
such assignments. Its rules, obtained from the Centre for Metabolomics and Bioanalysis (CEMBIO) and from a lit-
erature review, enable LAS to extract evidence to support or refute the annotations automatically by checking the
inter-rule relationships.

LAS is the first metabolite annotation tool capable of explaining in natural language (English) the evidence that
supports or refutes the annotations. This facilitates the understanding of the results by the user and, thus, in-
creases the user's confidence in the results. Concerning its performance, in an evaluation of blood plasma samples
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REST API service whose compounds had previously been identified using well-established standards, LAS yielded an F-measure
higher than 80%.

© 2019 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural

Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/

by-nc-nd/4.0/).

1. Introduction the coverage of the metabolome is only limited by the sample prepara-

Untargeted metabolomics aims to identify as many of the metabo-
lites present in a sample as possible. The most popular approach is the
detection of the changes between two or more experimental groups
over the complete metabolic profile without any prior hypothesis. The
metabolites associated with these changes are potential biomarkers
[5]. Untargeted metabolomics is ideal for novel discoveries because
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Chemical Identifier; LAS, Lipid Identification System; LPC, Lysoglycerophosphocholine;
LPE, Lysoglycerophosphoethanolamine; LPG, Lysoglycerophosphoglycerol; LPS,
Lysoglycerophosphoserine; MB, MassBank; MZ, MZedDB; MG, Monoradylglycerols; PA,
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tion and the analytical techniques employed. Nevertheless, the huge
amount of data generated makes metabolite identification a cumber-
some and time-consuming task.

In untargeted metabolomics, the main bottleneck is still compound
annotation and identification [22]. Liquid chromatography coupled to
mass spectrometry (LC-MS) is a powerful analytical approach [6]. How-
ever, the annotation of metabolites is limited because of the variety of
methodologies. Ideally, the putative annotations are confirmed using
hyphenated setups (LC-MS/MS) by comparing the experimental spectra
with the those of commercially available standards (identification con-
fidence level 1 (if available)) or with the spectra available in
metabolomic databases (identification confidence level 2) [4]. However,
the standards are limited, and, in some cases, the amount of sample or
the time available makes MS/MS analysis unfeasible [12]. In these
cases, researchers must extract as much information from other analy-
ses, such as MS analysis, retention times (RTs), in-source fragmentation
patterns, and isotopic patterns, as possible.

Several software tools have been developed to annotate fea-
tures using MS" information [9,21,24,25], but the number of MS'
metabolite annotation tools remains limited. At the same time,
the number of experimentally measured and in silico generated
compounds in the databases has quickly increased. This increase
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makes MS! metabolite annotation tools even more important be-
cause the number of candidates for a unique m/z has increased cor-
respondingly. Some of the most popular databases devoted to
metabolomics that are being actively maintained include the Cyc
collection [8], KEGG [17], HMDB [31], LipidMaps [29], MassBank
[15], the Metabolomics Workbench [28], Metlin [26], MINE [16],
and mzCloud [21].

Parallel to this growth in metabolomic databases and software
tools for metabolite annotation and identification, a number of
tools for lipid identification have been launched. There are cur-
rently several software tools that enable the accurate identification
of lipids, but all require the use of tandem mass spectrometry.
LipidSearch Software (Thermo Scientific, San Jose, CA), LipidPro
[1], Liquid [19] MSDial [30], and LipidMatch [18] are some exam-
ples of tools devoted to the identification of lipids using tandem
mass spectra. The information about the fragmentation of lipids
is key to their identification. However, the first step of annotation
is commonly performed using just MS! data and, sometimes, un-
equivocal identification is not necessary in untargeted metabolo-
mics. Furthermore, even when unequivocal identification is
necessary, a previous filter based on MS! data to find which fea-
tures represent likely lipids reduces the time necessary for the
MS" step of metabolite identification and helps to avoid incorrect
assignments. LipidXplorer is another tool for annotation devoted
to shotgun lipidomics using data-dependent MS/MS, so informa-
tion from chromatography cannot be used to annotate the features
[14]. VaLID (Visualization and Phospholipid Identification) is a
search engine for metabolite annotation with LC/MS data [3]. Its
purpose is to identify lipids by m/z information searching of all
theoretically possible phospholipids. It addresses the need of pro-
viding a database for all possible phospholipids because some are
not present in the general databases. However, VaLID does not as-
sist the researcher in annotating features for which there is no
prior knowledge of the compound type.

Tools to aid lipid annotation are of great value as a first step in lipid
identification because in untargeted metabolomic studies researchers
have no prior knowledge about the obtained features. The Lipid Annota-
tion Service (LAS) is a representational state transfer (REST) application
programming interface (API) service designed to aid researchers during
lipid annotation based on MS! data. It provides certainty levels for the
putative annotations using three types of rules: (1) the ionisation likeli-
hood depending on the type of compound and the modifier used,
(2) the relationships between different features corresponding to the
same compound, and (3) the RT relationships between lipids within
the same class (the hydrophobicity of the lipids pertaining to the
same class can be used to support or refute annotations).

Before LAS, the Ceu Mass Mediator Expert System (CMM-ES) [11]
provided similar functionality, but it lacked the capability of providing
explanations of the evidence supporting or refuting the annotations in
natural language. These natural language explanations not only contrib-
ute to increasing the users' confidence in the results of the tool because
the user can understand the evidence supporting or refuting the anno-
tations but also act as a pedagogical tool for novice researchers who
might not know the details of how the evidence was generated.
Implementing LAS functionality directly in CMM-ES would have been
hampered by technical hurdles because the inference engine used by
CMM-ES does not provide explanations about the inferences made.
Therefore, it was necessary to reimplement from scratch the complete
expert system using technologies that offer this functionality.

The core of LAS is a Prolog knowledge base published through a REST
API service running in a Docker container. Both the LAS source code and
the Docker container are available and have been documented in detail'
to provide a ready-to-use platform for the metabolomics community.

1 https://marianofl1971@bitbucket.org/marianofl1971/mediatorkbservice.git.

2. Methods

Statistical techniques play an important role in metabolite annota-
tion, for example, when looking for correlations between the different
signals arising from the same feature for grouping [2]. However, once
these statistical techniques have been applied, a significant amount of
manual work remains for the researcher [11]. Therefore, a rule-based
system representing the knowledge that researchers use in this manual
process was built as the core of LAS.

The phases of LAS development were analysis, design, implementa-
tion and testing, and performance evaluation. During the analysis phase,
the problem was studied independently of the technology used to im-
plement it. During the design, the architecture of the system was elabo-
rated, technical decisions concerning programming languages and
virtualisation were made, and tests were designed. During the imple-
mentation and testing, the system code and the tests were written in
parallel. Thus, both have been debugged at the same time, and large de-
viations in the code with respect to its intended working have been
prevented. The analysis (Section 2.2) and the design and implementa-
tion (Section 2.3) are presented below.

2.1. Functionality Borrowed from CMM-ES

The following knowledge and data have been borrowed from CMM-
ES during the development of LAS:

= Knowledge to annotate lipids: the knowledge represented in the rules
was already acquired from CEMBIO experts along the development
of CMM-ES.

« Compounds data: the data on compunds were already available.

Nevertheless, as will be shown in the following sections, LAS has
been implemented from scratch, and the way in which it represents
both knowledge and data are completely different from that of
CMM-ES. This has been the basis for LAS to contain new features like ex-
planation of results, modular architecture, availability as a stand-alone
service, or dockerization.

2.2. Analysis

LAS takes as its input a set of putative annotations. For example,
each row of Table 1 is a putative annotation. Each putative annota-
tion consists of an identifier (e.g. 3), an empirical compound (m/z
and RT observation) (e.g. 400.3432@18.842525), an adduct (e.g. M
+ H), and a theoretical compound (e.g. L-palmitoylcarnitine with for-
mula C23H45N04 and lipid class fatty acyl carnitines [FA0707]). The
lipid classification is performed using LipidMaps classification [10].
This classification has four levels: category, main class, subclass,
and class level 4, and each compound can only belong to a single
level. LAS applies the rules based on the compound subclass. The
first number of the empirical compound represents its m/z, and the
second number is its RT. The interpretation of the first putative an-
notation in Table 1 is that ‘empirical compound 400.3432@
18.842525 may be theoretical compound L-palmitoylcarnitine with
adduct M+H".

LAS uses three sets of rules to assign certainty levels to the putative
annotations. These sets of rules will be presented in Sections 2.2.1,
2.2.2,and 2.2.3. The possible certainty levels (CLs) are very unlikely, un-
likely, not applicable (N/A), likely, and very likely. The certainty order is

very unlikely<unlikely<not applicable(N/A)<likely<very likely.

For example, Table 2 shows, for the putative annotations of Table 1,
the CLs assigned according to the three set of rules (ionisation rules, ad-
duct intensity rules, and retention time rules). Thus, the meaning of the
first row in Table 2 is “the CL of putative annotation 3 is “N/A" according
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Table 1
Example of input putative annotations for LAS.
Putative annotation number m/z RT Adduct Theoretical compound Formula Lipid class
3 400.3432 18.8425 M+ H L-palmitoylcarnitine Cy3H4sNO4 FA0707
78 422.32336 18.8425 M + 2H PG(P-20:0/22:2(13Z,16Z)) CygHg104P GP0403
80 422.32336 18.8425 M + Na L-palmitoylcarnitine Cy3H45NO4 FA0707
95 316.24945 8.1449 M+ H 0-decanoyl-R-carnitine Cy7H33NO4 GLO301
211 281.24765 28.2695 M+ H 14,17-Octadecadienoic acid CygH320, FA0103
293 496.3427 19.4689 M+ H PC(0-14:0/2:0) Cy4H50NO7P GP0102
312 518.3226 19.4689 M + Na PC(0-14:0/2:0) Cy4H50NO7P GP0102

to the ionisation rules, ‘very likely’ according to the adduct intensity
rules, and ‘very likely’ according to the retention time rules”.

LAS provides, for each CL assignment, an explanation in English.

Along with the following subsections, the set of rules that generate
multiple explained CL assignments for lipids will be presented. Each
section includes the rationale and the definition of its rules and the lin-
guistic patterns used to generate the explanations. The current version
of LAS generates explanations in English. To generate explanations in
other languages, more linguistic patterns should be added.

2.2.1. Ionisation Rules

2.2.1.1. Rationale and Definition of Ionisation Rules. The majority of mole-
cules are ionised by simple protonation ([M + H]") in positive
ionisation mode or deprotonation ([M-H] ) in negative mode. Some
compounds, because of their structure, cannot form such ions and can
be ionised only by the formation of other adducts [20]. For example,
phosphoinositols (Pls) cannot be ionised by protonation, [M + H]*;
therefore, they are not detectable in positive mode, unless they form so-
dium [M + Na]* or potassium [M + K]* adducts. Phosphocholines
(PCs) are never ionised by deprotonation ([M-H] ™). Consequently, to
ionise PCs, a formate or an acetate adduct is needed. Although the ma-
jority of molecules are ionisable in both polarity modes, some of them
only form positive ions and others only form negative ions.

The tendency to form an adduct depends on the lipid class,
ionisation mode and mobile phase modifier used [12]. For example,
PCs in negative mode primarily form [M + HCOO]™ or [M
+ CH5COO0] ™ depending on the modifier used (HCOOH or CH3COOH);
they may also form [M + Cl]~ with lower intensity; but they never
form [M-H]~ or [M-H-H,0]~ [20]. These rules are applied to such
lipid classes as: fatty acid (FA), PC, lysoglycerophosphocholine (LPC),
glycerophosphoethanolamine (PE), lysoglycerophosphoethanolamine
(LPE), glycerophosphoinositol (PI), glycerophosphoglycerol (PG),
lysoglycerophosphoglycerol (LPG), glycerophosphoserine (PS),
lysoglycerophosphoserine (LPS), glycerophosphate (PA),
monoradylglycerols (MG), diradylglycerols (DG), triradylglycerols
(TG), ceramide (CER), phosphosphingolipid (SM) and cholesterol
ester (ST) according to the LipidMaps classification.

Rules are used to represent the knowledge described in the former
paragraphs. A rule is made up of an antecedent (a condition to be
checked) and a consequence (an action to carry out). In the specific
case of LAS, the consequence is a CL assignment.

Table 2
Example of annotations to be returned by LAS for Table 1 (N/A: Not applicable).

Putative annotation number Ionisation rules Adduct intensity rules RT rules

3 N/A Very likely Very likely
78 Very unlikely ~ N/A N/A
80 N/A Very likely Very likely
95 N/A N/A Very likely
211 Very likely N/A Very likely
293 Very likely Very likely N/A
312 Very likely Very likely N/A

Definition 1. An ionisation rule is that whose antecedent has the fol-
lowing parts:

* Modifier: NH3, HCOO, CH3COO, HCOONH3;, CH;COONH3, or indistinct.

« lonisation: positive or negative.

* Levels in the lipid hierarchy: a sequence of classes of lipids ordered
from the most general to the most particular.

* Adduct: the assumed adduct in the putative annotation.

Two examples of ionisation rules are presented below.

Example 1. If the ionisation is negative, the levels in the lipid hierarchy
are GP and GP0O1 and the adduct is M + 2H; thus, the putative annota-
tion is very unlikely.

The modifier is not mentioned because it is indistinct. The CL assign-
ment ‘putative annotation 78 is very unlikely’ in Table 2 has been de-
duced by applying this rule.

Example 2. If the ionisation is positive, the levels in the lipid hierarchy
are FA and FAO1 and the adduct is M + H; thus, the putative annotation
is very likely.

The modifier is not mentioned either because it is indistinct. The pu-
tative annotation of 211 as very likely in Table 2 has been deduced by ap-
plying this rule.

The complete list of the 109 ionisation rules is available in trans-
former/resources/lipids_ionization_ type_rules.ods in the repository.

2.2.1.2. How lonisation Rules Are Explained. The explanation of the execu-
tion of an ionisation rule must contain information about the empirical
compound, the adduct, the theoretical compound, if the ionisation is
positive or negative, and the levels in the lipid hierarchy, as well as
the CL of the rule. An impersonal sentence is used in the explanation:
‘it is likely that empirical compound (...) is theoretical compound (...)’
or ‘it is highly unlikely that empirical compound (...) is theoretical com-
pound (...)".

A definition obtained considering what has been said in the previous
paragraph is presented below.

Definition 2. The linguistic pattern followed by the explanation of each
ionisation rule is as follows:

Itis CertaintyLevel that empirical compound m/z@RT (in an exper-
iment with jonisationlnEnglish ionisation and ModifierinEnglish) is
theoretical compound ThName with adduct Adduct, which be-
longs to the hierarchy CategoryU, MainClassU, SubClassU.

Here,

» CertaintyLevel is CL except not applicable,

* m/z@RT is the empirical compound of the putative annotation,

* ionisationlnEnglish can be positive or negative,

* ModifierlnEnglish is a modifier,

» ThName is the name of the theoretical compound of the putative an-
notation,
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* Adduct is the adduct of the putative annotation, and
* CategoryU, MainClassU, and SubClassU is a sequence in the lipid hierar-
chy to which the theoretical compound belongs.

Example 3. An explanation according to the pattern defined in
Example 2 is presented below:

Putative annotation 211 is very likely according to ionisation rules.
* Rule type: lonisation.

e Core information: It is very likely that empirical compound
281.24765@28.2695 (in an experiment with positive ionisation
and no modifier) is theoretical compound 14,17-octadecadienoic
acid with adduct M + H, which belongs to the hierarchy
FA, FAO1.

2.2.2. Adduct Intensity Rules

A list of possible, impossible, and preferred ions for distinct com-
pound types can be established, as well as relationships between the ex-
pected intensities of the different ions. For example, PCs can be ionised
in positive mode by protonation ([M + H]"), but they can also be
ionised with sodium ([M + Na] ") and potassium ([M + K] ). However,
the main signal is [M + H]" and all others have a lower intensity. Hence,
a putative annotation for [PC 4+ Na]* can be right only if the signal cor-
responding to [PC + H]* is also present, otherwise it is an incorrect
assignment.

For the current version of LAS, only the intensity pattern of adducts
M + H>M + Na>M + K have been considered. More intensity pat-
terns will be added in the future. Adduct intensity rules are defined as
follows.

Definition 3. An adduct intensity rule checks whether there are pairs of
compounds putatively identified as the same theoretical compound,
and with adducts satisfying some of the following conditions.

1. The adduct of the first compound is M + H and the adduct of the sec-
ond is M + Na, or vice versa.

2. The adduct of the first compound is M + H and the adduct of the sec-
ond is M + K, or vice versa.

3. The adduct of the first compound is M + Na and the adduct of the
second one is M + K, or vice versa.

The CL of the consequent will be very likely in every case.

Example 4. For instance, ‘putative annotation 3 is very likely according
to the adduct intensity rules’ is inferred using relationship 1 (M + H, M
+ Na) with putative annotation 80.

The results of the adduct intensity rules are used in some cases to in-
crease the CL of the ionisation rules. Thus, if an ionisation rule concludes
that putative annotation p is likely, but an adduct intensity rule con-
cludes that p is very likely, then the CL of the ionisation rule applied to
p is increased to very likely, and the adduct intensity rule is considered
as additional evidence. For example, an ionisation rule infers the CL as-
signment ‘putative annotation 312 is likely’. However, as shown in
Table 2, it is transformed into ‘putative annotation 312 is very likely ac-
cording to the ionisation rules’ because ‘putative annotation 312 is very
likely according to the adduct intensity rules’.

2.2.2.1. How Adduct Intensity Rules Are Explained. The explanation of an
adduct intensity rule has to include the empirical compound and the ad-
duct and the theoretical compound of each putative annotation in-
volved in the relationship between adducts.

Definition 4. The linguistic pattern followed by the explanation of each
adduct intensity rule is as follows:

It is very likely that empirical compound m/z7@RT7 is theoretical
compound ThName with adduct Adduct 7 because empirical com-
pound m/z2@RT2 with adduct Adduct2 may also be theoretical
compound ThName.

where

* m/z1s@RT]1 is the empirical compound of the first putative annotation.

« ThName is the name of the theoretical compound of both putative an-
notations.

 Adduct1 is the adduct of the first putative annotation.

* m/z2s@RT2 is the empirical compound of the second putative annota-
tion.

 Adduct2 is the adduct of the second putative annotation.

Example 4 is explained below.

Putative annotation 3 is very likely according to adduct intensity
rules.

* Rule type: Adduct intensity.

e Core information: 1t is very likely that empirical compound
400.3432@18.8425 is theoretical compound L-
palmitoylcarnitine with adduct M + H because, for example, em-
pirical compound 422.32336@18.8425 with adduct M + Na
may be theoretical compound L-palmitoylcarnitine as well.

If an adduct intensity rule causes an increase in the CL of an
ionisation rule, the explanation of such ionisation rule will include
a reference to the explanation the corresponding adduct
intensity rule.

2.2.3. Retention Time Rules

The RT reflects the time that a particular molecule spends in the
column because it is retained by the stationary phase. This time
depends on the mechanisms of retention, column geometry and
temperature, instrument dwell volume, mobile phase, modifier,
and gradient. In the case of reverse-phase (RP) chromatography,
the most common type of chromatography, polar analyte mole-
cules interact little with the non-polar bed, and, thus, they elute
very early. On the other hand, non-polar molecules will be
retained for longer, thus eluting later. Although the flexibility of
LC and the possibility to modify many experimental parameters
(mobile phase, gradient, modifiers, flow, temperature, and type
of column, as well as its length and diameter) make this technique
very powerful, they also make obtaining reproducible RTs impossi-
ble. This is probably why there is only one proposal for metabolite
annotation where dynamic RT prediction based on the chromato-
graphic linear solvent strength for RP-LC data is used to support
steroid identification Randazzo et al. [23]. The behaviour of mole-
cules inside a chromatographic column under set chemical condi-
tions is well defined, especially for compounds belonging to the
same class Godzien et al. [12]. In consequence, although the abso-
lute RT is very difficult to predict (even though it is not impossible
Cao et al. [7]; Hagiwara et al. [13]; Stanstrup et al. [27]), the pre-
diction of the relative order of elution is feasible for certain com-
pounds belonging to the same chemical class that are analysed
under the same analytical conditions. This can be a valuable aid
in the analytical process, and the RTs for some types of compounds
can be compared. This is especially interesting for lipids belonging
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to the same class because their backbones are the same, and this
RT prediction is based on two relationships: the length of the car-
bon chain and the degree of unsaturation (number of double
bonds) Godzien et al. [12]. As the chain length increases, the hy-
drophobicity of a lipid molecule also increases, so the lipid will
be retained longer in a RP column. On the other hand, double
bonds increase the polarity of lipids, thus reducing the RT.
Consequently, the notional RT rule can be defined as follows.

Definition 5. Let p; be a putative annotation that establishes that a par-
ticular empirical compound, m/z; @ RT;, is theoretical compound p,
having c¢; carbons and d, double bonds. Let p, be a putative annotation
that establishes that a particular empirical compound, m/z, @ RT, is
theoretical compound p, having ¢, carbons and d, double bonds. Let
us suppose that both p; and p, are lipid type p. Then, there is evidence
supporting p; because of RT if and only if some of the following condi-
tions are satisfied.

1. c;<cy;and d; = dy and rty <rty

2. c;=candd; <d,and rt; > rt,

The first condition means that, if the number of double bonds is
the same for two lipids of the same class, that with a longer chain
will have a higher RT. The second condition means that, if the
length of the chains is the same for two lipids of the same class,
the one with the least number of double bonds will have a
higher RT.

Definition 6. Let p, be a putative annotation that establishes that a par-
ticular empirical compound, m/z; @ RTy, is theoretical compound p,
having c; carbons and d; double bonds. Let p, be a putative annotation
that establishes that a particular empirical compound, m/z, @ RT,, is
theoretical compound p, having c, carbons and d, double bonds. Let
us suppose that both p; and p, belong to lipid type p. Then, there is ev-
idence against p; because of RT if and only if some of the following con-
ditions are satisfied.

1. c<cyanddy = dy and rt; > 1t

2. ci=candd;<dyandrt; <1ty

Definition 7. Let p; be a putative annotation; the following RT rules can
be applied.

1. If there is only evidence supporting p;, then putative annotation p, is
very likely.

2. If there is only evidence against pq, then putative annotation p; is
unlikely.

3. If there is both evidence supporting and against py, then putative an-
notation p is likely.

Example 5. Putative annotation 95 is O-decanoyl-R-carnitine, a CAR
lipid with 10 carbons and no double bond. Its RT is 8.1449. Moreover,
putative annotation 3 is L-palmitoylcarnitine, another CAR lipid with
16 carbons and no double bond. Its RT is 18.8425. Therefore, condition
1 of Definition 5 is satisfied and, consequently, there is evidence
supporting both putative annotations.

2.2.3.1. How Retention Time Rules Are Explained. As shown in the fol-
lowing definition, the explanation of a retention time rule includes
the empirical compound and the theoretical compound with the
number of carbons atoms and double bonds. If there is evidence
supporting or refuting the putative annotation, it will be explained
as well, showing the information about the corresponding putative
annotations.

Definition 8. The linguistic pattern followed in the explanation of each
RT rule is presented below; moreover, explanations of the supporting or
refuting evidence are provided.

It is CertaintyLevel that empirical compound m/z@RT is theoreti-
cal compound ThName with adduct Adduct. The theoretical com-
pound is a LipidType lipid with NCarbons carbons and NDBE
double bonds.

Here,

* m/z@RT is an empirical compound,

» ThName is the name of a theoretical compound,
* Adduct is an adduct,

* LipidType is a type of lipid,

* NCarbons is a number, and

* NDBE is another number.

If there are no double bonds or there is only one, the linguistic pat-
tern for this part of the sentence must be no double bond or one double
bond, respectively.

Example 6. Example 5 is explained below.

Putative annotation 95 is very likely according to the retention
time rules.

* Rule type: Retention time.

* Core information: It is very likely that empirical compound
316.24945@8.1449 is theoretical compound O-decanoyl-R-
carnitine with adduct M + H. The theoretical compound is a
CAR lipid with 10 carbons and no double bond.

* Evidence supporting:

1. It is very likely that compound 400.3432@18.8425 is theo-
retical compound L-palmitoylcarnitine with adduct M + H, an-
other CAR lipid with 16 carbons and no double bond.

2. Itis very likely that compound 422.32336@18.8425 is the-
oretical compound L-palmitoylcarnitine with adduct M + Na, an-
other CAR lipid with 16 carbons and no double bond.

2.3. Design and Implementation

The logic of the system is supported by a knowledge base (KB) in
SWI-Prolog? (see Fig. 1). Its most basic component is the CL module,
which allows the representation of knowledge through a multi-valued
logic according to the values specified at the beginning of Section 2.2.
Using this multi-valued logic, the meta-ontology implements frame ori-
ented primitives: instance of, subclass of, etc. The Compound Ontology
represents the CMM database of compounds based on the lower layers.
The module of ionisation rules are generated from a spreadsheet that
contains the rules. The main module of the KB loads the ionisation rules
and implements the rest of the rules. This module builds a trace for ex-
planations, which is natural language independent. That is, the formali-
zation of the trace has been thought so that generators for different
natural languages (English, Spanish, Polish, etc.) can be developed. Fi-
nally, the generator of explanations in English obtains the explanations
from the trace built by the main module.

2 . swi-prolog.org.
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Generator of

explanations in English

Knowledge base
that annotates lipids and
builds a trace for explanations

Chemical Compound Ontology

Meta-ontology

Certainty levels

Docker container

Fig. 1. Software architecture.

The REST API (also written in Prolog) eases the shareability of LAS as
a Web resource and its integration in different systems. The whole sys-
tem has been dockerised so that it can be installed on any machine re-
gardless of the configuration, such as library version and environment
variables. All the software is publicly available and documented in detail
(see Footnote 1).

3. Results and Discussion

This section presents the evaluation of LAS considering its precision,
recall, F-measure, the role of each group of rules (ionisation, adduct re-
lationship, and RT), and the performance in terms of execution time, as
well as the quality of the explanations obtained.

The performance of LAS in terms of precision, recall, and F-measure
was determined using a gold standard provided by a CEMBIO expert.
The gold standard was made up of 30 experimental mass signals
(plasma samples,?) previously identified by MS/MS or using commer-
cially available standards (Sigma-Aldrich and Fluka Analytical). Plasma
samples were prepared by simple deproteinisation with a cold metha-
nol/ethanol (1/1) mixture. Standards were prepared in methanol with
concentrations between 2 and 10 ppm. To obtain these data, analysis
of the samples was carried out using a high-performance LC (HPLC) sys-
tem (1200 series, Agilent Technologies) connected to an Agilent quad-
rupole time-of-flight QTOF (6520) MS detector. Data were collected in
positive and negative electrospray ionisation (ESI) ion modes in sepa-
rate runs on a QTOF MS operated in the m/z range of 50 to 1000 with
an acquisition rate of 1 scan/s. The capillary voltage was set to 3000 V
for positive and 4000 V for negative ionisation mode; the nebuliser
gas flow rate was 10.5 L/min. Accurate mass measurements were ob-
tained by means of an automated calibrant delivery system using a
dual-nebuliser ESI source that continuously introduces a calibrating so-
lution. All 30 experimental masses correspond to lipids.

We searched for putative annotations for the 30 experimental
masses using the Ceu Mas Mediator tool, which returned a total of 891
putative annotations. These annotations were provided as input to
LAS. The set of annotations generated by the LAS service, together
with their corresponding evidence, was compared with the gold stan-
dard provided by CEMBIO.

3 https://bitbucket.org/marianofll 971 /mediatorkbservice/src/master/

evaluation/all_datasets_CMM.xls.

CMM-ES

Not developed

LAS
REST API

Generator of

Not developed explanations in English

Rule base
that annotates lipids

Knowledge base
that annotates lipids and
builds a trace for explanations

MySQL database of compounds Chemical Compound Ontology

Not developed Meta-ontology
Not developed Certainty levels

- developed

Fig. 2. LAS versus CMM-ES.

3.1. Previous Definitions

Definition 9. Let p, and p, be two putative annotations. It is said that p,
is supported by more evidence than p, if and only if the following con-
ditions hold.

1. There is some set of rules (ionisation rules, adduct intensity rules, or
RT rules) that supports p; as likely or as very likely.

2. There is at least a set of rules that supports p; with more evidence
than po.

3. There is no set of rules that supports p, with more evidence than p;.

Example 7. In Table 2, putative annotation 80 is supported by more ev-
idence than 78 because 80 is very likely for both adduct relationship and
retention time rules; meanwhile, 78 is N/A for both. Moreover, 78 is
very unlikely according to the ionisation rules.

Let us note that there may be non-comparable putative annotations.
For example, if the ionisation rules assign more evidence to p; but the
RT rules assign more evidence to p,.

Definition 10. Let p,, ..., p,, putative annotations refer to the same em-
pirical compound. p; is the putative annotation with the strongest evi-
dence if and only if there is no putative annotation (pa, ..., pn)
supported by more evidence than p;.

Example 8. In the set of putative annotations made by 78 and 80, both
referring to empirical compound 422.32336@18.8425, 80 is the putative
annotation supported by the strongest evidence.

Definition 11. Two theoretical compounds are considered to be the
same if and only if some of the following conditions are true.

1. Both have the same name.

2. Their names are synonyms according to Pubchem.*

3. They belong to the same type of lipid with the same number of car-
bons and the same number of double bonds.

Example 9. The compounds MG(18:1(11Z)/0:0/0:0) and MG(0:0/18:1
(92)/0:0) are considered the same because they satisfy condition 3.

4 https://pubchem.ncbi.nlm.nih.gov/search/.
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(") Mandatory fields

Experimental Masses (°): Retention Times: Composite Spectra:

All Experimental Masses: All Retention Times: All Composite Spectra:

afl input ma

Tolerance (*):

Chemical Alphabet (*):

CHNOPS + ClI
Deuterium:

Modifiers (*):

1 All {Including In Silico Compounds)
oD
1 LipidMaps
Metlin
| Kegg
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mass based on selected adducts B MK

B MiNH4

Fig. 3. Presentation of the results of the LAS service.
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3.2. Calculation of the Performance in Terms of Precision, Recall, and F-
Measure

Given the definitions in the previous section, the numbers of true
positives (TP) and false positives (FP) are calculated as follows.

1. The KB is queried with the set of putative annotations generated by
querying CMM. For each annotation the multiple certainty level as-
signment with the strongest evidence is taken.

2. Then, each annotation of the gold standard is compared to the puta-
tive annotation with the strongest evidence proposed by LAS. The
following cases are possible.

(a) All the putative annotations with the strongest evidence refer to
theoretical compounds considered to be same and match the
gold standard. In such a case, the set of putative annotations
with the strongest evidence are counted as TPs.

(b) Some putative annotations with the strongest evidence refer to
theoretical compounds considered to be the same and match
the real identification criteria, whereas others do not. In that
case, the set of putative annotations with the strongest evidence
are counted as both TPs and FPs.

(c) There are some putative annotations with the strongest evidence,
but there is no putative annotation with the strongest evidence
matching the gold standard. In such a case, we count an FP.

The precision, recall, and F-measure have been calculated,” yielding
0.76, 0.93, and 0.84, respectively. In the next section, we will analyse in
detail the contribution that each of the three groups of rules has played
to achieve these results.

3.3. Contribution of Each Group of Rules

For the 30 compounds that made up the gold standard, the following
rules of each type were executed.

For 23 compounds, ionisation rules were executed; this was the only
type of rule executed for 2 compounds.

Some adduct intensity rules were executed for 10 compounds. Adduct
intensity rules were always executed in conjunction with other rules.
However, there is one case (400.3432@18.8425 with m/z 422.32336
and adduct M + Na) where the application of this type of rule was de-
cisive in achieving the correct annotation.

Some RT rules were executed for 25 identifications. RT rules were the
only type of rule executed for three compounds.

Based on these results, it can be concluded that the RT rules were the
most often executed and, thus, contributed most to the results, followed
by the ionisation rules and the adduct intensity rules.

3.4. Execution Time Performance

Given that both the adduct intensity rules and RT rules check condi-
tions with all pairs of putative annotations, the time required for LAS is
quadratic with respect to the number of the putative annotations.
Concerning real execution times, using an HP Envy 15 with an Intel i7,
16 GBRAM, and a 1 TB hard disk to host the service, LAS provided an an-
swer in approximately 3 s for an input of 1300 putative annotations.

3.5. Integration Into the Ceu Mass Mediator On-line Tool

Before the implementation of LAS, the CMM tool also had an
expert system based on knowledge that used rules similar to
those presented in this paper. However, there are significant dif-

ferences between the functionality previously provided by this

5 evaluation/t vs o.ods in the repository (see Footnote 1).

expert system and LAS (see Fig. 2). CMM cannot provide an expla-
nation of the evidence supporting or refuting the annotations. LAS
explanations, which are provided in natural language, will increase
the users' confidence in the results of the tool because they can
understand the evidence supporting or refuting the annotations.
Furthermore, the LAS results could be used as a pedagogical tool
for novice researchers who might not know how the evidence
was generated. Providing this functionality required the
reimplementation of the expert system from scratch because the
technology used in CMM does not have an explanatory capability.

Furthermore, LAS formalises the CLs through a meta-ontology
and an ontology of chemical compounds with the purpose of
obtaining a modular, extensible, and theoretically sound system.
In fact, both the meta-ontology and the ontology could be reused
in other systems. CMM-ES was designed in an ad hoc manner
and, thus, cannot be easily reused. Finally, LAS is accessible via a
REST service. In contrast, CMM-ES is embedded in a larger Java sys-
tem, and it cannot be used in an independent way. Nevertheless, LAS
has been integrated as a CMM service in the on-line tool accessible
through the web page http://ceumass.eps.uspceu.es/prolog
batch advanced search.xhtml (see Figs. 3 and 4). The service
takes advantage of all the previous features that CMM offers for the
identification of compounds and the automatic detection of adducts
based on composite spectra, as well as the possibility of restricting
the search to specific databases or specific compound types, the
usage of a chemical alphabet, and the selection of different adducts,
thus reducing the number of putative annotations for each feature.
LAS has been used internally in CEMBIO since late 2018. This has
allowed us to debug and provide feedback about the tool before its
public launch.

4. Conclusions and Future Work

In this paper, we have presented LAS, a publicly available ser-
vice that aids in the identification of lipids. The core of the system
is a KB in Prolog that executes rules acquired from a group of ex-
perts belonging to CEMBIO. These rules can be divided into three
large groups: ionisation rules, adduct intensity rules, and RT
rules. A unique feature of the system is that it provides explana-
tions in natural language (English) for the evidence supporting or
refuting the annotations. In the evaluation carried out on a set of
30 compounds that had been identified with the use of standards
or MS/MS, the LAS expert system obtained an F-measure of 0.84.
LAS has been made available as a REST API service, which facili-
tates sharing and integration in different systems. The service has
been dockerised to make it platform independent.

Regarding future work, the KB can be improved by taking into ac-
count intensities and relationships between more types of adducts in
the adduct intensity rules. Concerning the explanations, they can be ex-
tended to other natural languages (Spanish, Polish, etc.) by adding lin-
guistic patterns. Finally, content negotiation could be a useful
functionality so that the results of the service can be presented in differ-
ent formats (e.g. HTML).
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