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Ca2+ signals are critical for T cell function. A 
number of ion channels regulate Ca2+ influx 
from the extracellular space in T cells, either 
by conducting Ca2+ ions or by modulating 
the membrane potential that provides the 
driving force for Ca2+ influx (Cahalan and 
Chandy, 2009; Feske et al., 2012). The best 
characterized Ca2+ channel in T cells is the 
Ca2+ release-activated Ca2+ (CRAC) chan-
nel, which mediates store-operated Ca2+ 
entry (SOCE) in response to T cell recep-
tor (TCR) activation and is composed of 
ORAI and stromal interaction molecules 
(STIM) family proteins. Several other chan-
nels may also mediate Ca2+ influx directly in 
T cells including members of the transient 
receptor potential (TRP) family, P2X recep-
tors, and voltage-gated Ca2+ (Ca

v
) channels. 

Compared to CRAC channels, however, 
their contribution to TCR-induced Ca2+ 
influx and immunity is less well defined.

Ca2+ release-activated Ca2+ channels were 
first identified in T cells (and mast cells) 
over 20 years ago (Lewis and Cahalan, 1989; 
Hoth and Penner, 1992; Zweifach and Lewis, 
1993). They mediate Ca2+ influx and have 
well defined electrophysiological proper-
ties (Parekh and Penner, 1997; Prakriya and 
Lewis, 2003). The long elusive molecular 
identity of the CRAC channel was solved 
with the discovery of ORAI1 by genome-
wide RNAi screens and positional cloning 
in patients lacking CRAC channel function 
(Feske et al., 2006; Vig et al., 2006b; Zhang 
et al., 2006). ORAI1 and its two homologs, 
ORAI2 and ORAI3, are integral mem-
brane proteins (Figure 1). Mutagenesis 
and structural analyses have showed that 
ORAI1 forms the pore of the CRAC chan-
nel through which Ca2+ ions enter the cell 
(Prakriya et al., 2006; Vig et al., 2006a; 
Yeromin et al., 2006; Hou et al., 2012; 
McNally et al., 2012). CRAC channels open 
after TCR-induced production of inositol 
1,4,5-trisphosphate (InsP3) and release of 

Ca2+ from ER stores. Reduced Ca2+ levels 
in the ER trigger the activation of STIM 1 
and 2 located in the ER membrane. After 
translocation to ER-plasma membrane 
junctions, STIM proteins bind to ORAI1 
and open the CRAC channel pore, result-
ing in sustained Ca2+ influx. The molecular 
regulation of CRAC channel function has 
been described in detail elsewhere (Shaw 
et al., 2012).

The essential role of CRAC channels for 
T cell function and adaptive immunity is 
best illustrated by patients with loss-of-
function or null mutations in ORAI1 or 
STIM1 genes, whose T cells lack CRAC 
channel function and SOCE (Partiseti et al., 
1994; Le Deist et al., 1995; Feske et al., 1996; 
McCarl et al., 2009; Picard et al., 2009; Feske, 
2011; Fuchs et al., 2012). CRAC channel-
deficient T cells proliferate poorly in vitro 
and have a profound defect in the produc-
tion of cytokines such as IFNγ, TNFα, IL-2, 
and IL-17. Similar defects are found in CD4+ 
and CD8+ T cells from Stim1−/−, Orai1−/−, and 
Orai1R91W knock-in mice (Gwack et al., 
2008; Beyersdorf et al., 2009; McCarl et al., 
2010). SOCE-deficient T cells were found 
to be more resistant to apoptotic cell death 
and showed migration defects in vitro and 
in vivo (Ma et al., 2010; Kim et al., 2011; 
Greenberg et al., 2013) (and Stefan Feske 
unpublished data). Interestingly, SOCE is 
dispensable for the development and selec-
tion of conventional TCRαβ+ CD4+ and 
CD8+ T cells in SOCE-deficient patients 
and mice. However, their T cell function is 
severely compromised in vivo, apparent in 
absent delayed type hypersensitivity (DTH) 
responses to recall antigens in patients and 
mice (Le Deist et al., 1995; Feske et al., 1996; 
McCarl et al., 2010) and impaired skin allo-
graft rejection in Orai1R93W knock-in mice 
(McCarl et al., 2010). Most importantly, 
impaired T cell function in ORAI1 and 
STIM1-deficient patients results in recur-

rent and chronic infections with a wide 
spectrum of viral, bacterial and fungal 
pathogens (Partiseti et al., 1994; Le Deist 
et al., 1995; Feske et al., 1996; McCarl et al., 
2009; Picard et al., 2009; Byun et al., 2010; 
Feske, 2010; Fuchs et al., 2012).

Besides immunity to infection, CRAC 
channels in T cells regulate immunologi-
cal tolerance and inflammation. CD4+ T 
cells from mice lacking ORAI1 or STIM1 
function showed strongly impaired expres-
sion of proinflammatory cytokines such as 
IFN-γ and IL-17 (Ma et al., 2010; McCarl 
et al., 2010). Importantly, these mice were 
resistant to T cell-mediated intestinal and 
CNS inflammation in animal models of 
colitis and multiple sclerosis. Complete 
absence of CRAC channel function in mice 
with T cell-specific deletion of Stim1 and 
Stim2 genes, in addition, results in impaired 
development and function of Foxp3+ regu-
latory T (Treg) cells (Oh-Hora et al., 2008). 
As a result, STIM1/2-deficient mice over 
time develop severe myelo-lymphoprolif-
erative disease with lymphadenopathy, sple-
nomegaly, and pulmonary inflammation 
(Oh-Hora et al., 2008). Intriguingly, these 
mice show an exocrine gland autoimmune 
disease resembling Sjogren’s syndrome in 
humans (Cheng et al., 2012). Reduced num-
bers of Treg cells are also found in ORAI1- 
and STIM1-deficient patients (Picard 
et al., 2009) (and unpublished data), most 
of which suffer from autoimmune throm-
bocytopenia and hemolytic anemia due to 
autoantibodies against erythrocytes and 
platelets (Feske, 2011). The complete lack of 
SOCE in STIM1/2-deficient mice not only 
impaired the development of Treg cells but 
also that of natural killer T (NKT) cells and 
TCRαβ+ CD8αα+ intraepithelial lympho-
cytes (IEL) in the gut (Oh-Hora et al., 2013). 
These findings indicate that low to moder-
ate SOCE is sufficient for the postselection 
maturation of agonist-selected T cells (Treg 
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were reported to be expressed but their 
contribution to Ca2+ influx has remained 
controversial (Hogan et al., 2010). Recent 
studies showed that genetic deletion of 
Ca

V
1.4 in mouse T cells and knockdown of 

Cav1.2 and Cav1.3 in human T cells attenu-
ates TCR-induced Ca2+ influx (Cabral et al., 
2010; Omilusik et al., 2011). Similarly, muta-
tion of the regulatory β3 and β4 subunits 
of Ca

V
1 channels in mice results in reduced 

Ca2+ influx and impaired IL-4, IFNγ, and 
TNFα production in CD4+ and CD8+ T 
cells following TCR stimulation (Badou 
et al., 2006; Jha et al., 2009). CD8+ T cells 
lacking functional β3 regulatory subunits or 
Cav1.4 channels were more susceptible to 
apoptosis (Jha et al., 2009; Omilusik et al., 
2011). Cav1.4-deficient mice also showed 
reduced cytotoxic function of CD8+ T cells 
in vitro and impaired CD8+ T cell responses 
to infection with Listeria monocytogenes 
in vivo (Omilusik et al., 2011). Despite 
these intriguing findings, the pathways by 
which TCR signaling activates Ca

V
1 chan-

nels are unknown. In contrast to excitable 
cells, depolarization of T cells fails to open 
Ca

V
1 channels and mediate Ca2+ influx. It 

has been speculated that Ca
V
1 channels 

in T cells are activated by an alternative, 

TRP channel, TRPM2 is a non-selective, 
Ca2+ permeable cation channel and in 
human T cells, TRPM2 can be activated by 
a variety of intracellular agonists including 
adenosine diphosphate ribose (ADPR), 
cyclic ADPR (cADPR), and Nicotinic acid 
adenine dinucleotide phosphate (NAADP) 
(Beck et al., 2006). TCR stimulation was 
reported to result in increased intracel-
lular cADPR levels and Ca2+ release from 
the ER through ryanodine receptors (RyR) 
(Guse et al., 1999), thereby initiating SOCE; 
alternatively, elevated cADPR levels could 
directly activate TRPM2 channels. However, 
the physiological function of TRPM2 chan-
nels in T cells is unknown. It is intriguing 
to speculate that TRPM2 may be involved 
in inflammatory T cell responses similar to 
their role in CXCL2 chemokine expression 
and NADPH oxidase function in monocytes 
(Yamamoto et al., 2008) and phagocytes (Di 
et al., 2011).

Voltage-gated Ca2+ (Ca
v
) channels are 

highly Ca2+ selective channels that play an 
important role in Ca2+ influx and the func-
tion of electrically excitable cells such as 
neurons following cell depolarization (Tsien 
et al., 1987). In T cells, several members of 
the L-type family of Ca

V 
channels (Ca

V
1) 

cells, NKT cells, IEL), whereas strong SOCE 
is required for the proinflammatory func-
tion of Th1 and Th17 cells.

Transient receptor potential channels 
belong to a large family of ion channels, 
which conduct monovalent and divalent 
cations including Ca2+ (Nilius and Owsianik, 
2011). Before the discovery of ORAI1 as 
the CRAC channel, several TRPC channels 
were proposed to mediate Ca2+ influx in T 
cells. However, a significant role of TRPC 
channels in Ca2+ influx and T cell mediated 
immune function has not been established. 
By contrast, TRPM7 is essential for T cell 
development as mice with T cell-specific 
deletion of Trpm7 had a severe block in T 
cell development at the CD4−CD8− double 
negative stage (Jin et al., 2008). This is the 
most profound effect of any ion channel on 
lymphocyte development demonstrated so 
far. TRPM7 is Mg2+ permeable and widely 
considered to regulate cellular Mg2+ homeo-
stasis. However, T cells from Trpm7−/− mice 
had normal Mg2+ influx and total Mg2+ lev-
els, raising the question whether impaired T 
cell development is caused by dysregulated 
Mg2+ homeostasis or rather by impaired 
influx of other cations including Ca2+ which 
TRPM7 is able to conduct as well. Another 

Figure 1 | Ca2+ influx pathways in T cells. Stimulation of T cells through the 
TCR complex results in Ca2+ influx, which is involved in the regulation of many 
T cell functions. CRAC channels mediate store-operated Ca2+ entry (SOCE) 
following activation of PLCγ1 and production of InsP3. InsP3 binds to and opens 
Ca2+ permeable InsP3 receptors (InsP3R) in the ER, resulting in the release of 
Ca2+ from ER stores (Lewis, 2001; Feske, 2007). Ca2+ release from the ER 
causes the activation of STIM 1 and 2, which oligomerize and translocate to 
ER-plasma membrane junctions. STIM1 and STIM2 bind to ORAI1, the 
pore-forming subunit of the CRAC channel, thereby mediating its opening and 
sustained Ca2+ influx. The subunit composition of the CRAC channel awaits 
further studies; both tetrameric and hexameric assemblies of ORAI1 subunits 
were proposed (Ji et al., 2008; Mignen et al., 2008; Penna et al., 2008; 
Maruyama et al., 2009; Hou et al., 2012). TRPM2 is a Ca2+ permeable cation 

channel that can be activated by cADPR and NAADP in human T cells (Beck 
et al., 2006). Increased cADPR levels after TCR stimulation (Guse et al., 1999) 
activate SOCE by releasing Ca2+ from the ER through RyR channels and 
potentially activate TRPM2 channels directly. TRPM7 is a non-selective cation 
channel implicated in Mg2+ homeostasis in T cells; whether its ability to 
conduct Ca2+ contributes to T cell function and how it is activated by TCR 
stimulation is not understood. The L-type Cav channels Cav1.2, Cav1.3, and 
Cav1.4, which mediate depolarization-dependent Ca2+ influx in excitable cells 
including neurons may contribute to Ca2+ influx in T cells but their activation 
mechanism is unknown and their current properties are not well defined. P2X 
receptors are non-selective Ca2+ channels activated by extracellular ATP. 
Several homologs, P2X1, P2X4, and P2X7, were reported to mediate Ca2+ 
influx in T cells in vitro.
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studies need to evaluate if P2X7 receptors 
modulate T cell function through Ca2+ 
influx or other mechanisms. P2X1 and 
P2X4 conduct Ca2+ more selectively and 
open at lower (micromolar) ATP concen-
trations (Junger, 2011). However, P2X1 
and P2X4-deficient mice have no reported 
immunological phenotype (Mulryan et al., 
2000; Yamamoto et al., 2006) and their role 
in T cell immunity in vivo remains poorly 
understood.

Ca2+ signals have long been recognized 
as essential for T cell function and several 
channels may contribute to Ca2+ influx in T 
cells. Whereas the role of CRAC channels 
to T cell function and adaptive immunity 
is well documented by findings in ORAI1 
and STIM1-deficient patients and mice, 
the contributions of TRP, Ca

V
1, and P2X 

receptor channels remain to be more clearly 
defined. These channels could contribute 
to Ca2+ influx in specific T cell subsets, at 
distinct stages of T cell development or fol-
lowing stimuli other than TCR engagement. 
A better understanding of the contributions 
of different Ca2+ influx pathways in T cells 
will be essential to define potential drug tar-
gets for the modulation of T cell function 
in a variety of diseases caused by aberrant 
T cell function.
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