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Introduction
Rotaviruses are enteric viruses belonging to the Sedoreoviridae 
family.1 Their genome consists of eleven segments made up of ten 
double-stranded mono-cistronic RNA molecules and one poly-
cistronic RNA molecule that encode for structural and non-struc-
tural proteins.2 The International Committee on Taxonomy of 
Viruses (ICTV) has grouped rotaviruses into 10 species: Rotavirus 
A, B, C, D, E, F, G, H, I, and J. Among these, rotavirus A and C 
have been identified as causative agents of diarrheal diseases in 
humans (mostly affecting children below 5 years) and animals. 
Rotavirus A is the most extensively studied while much is not 
known of rotavirus C infections in humans even in the present.3 
The two outer capsid proteins of rotavirus A, namely, VP4 (which 
is cleaved into VP6 and VP8 by trypsin) and VP7 are usually used 
in the molecular detection of the virus. Other proteins such as 
NSP2, NSP3, VP1, and VP3 are also used for detection. Molecular 
characterization of the outer capsid proteins of rotavirus A has led 
to the identification of several G and P genotypes. Currently, there 
are 42 G genotypes and 58 P genotypes identified by the Rotavirus 
Classification Working Group (RCWG).4

According to the World Health Organization (WHO), 
rotaviruses stand as the predominant cause of severe diarrheal 

illness in infants and children worldwide, leading to over 2 mil-
lion hospitalizations annually, and resulting in an estimated 
527 000 fatalities in 2004.5 While rotaviruses primarily cause 
severe gastroenteritis in children, which can lead to fatalities, 
adults can also experience milder forms of the illness. However, 
these adult cases typically do not result in death, largely due to 
the partial immunity acquired during childhood. The introduc-
tion of four (4) oral rotavirus vaccines, namely, Rotarix, 
RotaTeq, RotaSiil and Rotavac, within the past two decades, 
has drastically reduced the burden of rotavirus infections and 
mortality globally.6-8 In 2013, the WHO reported that 215 000 
deaths representing 37% of global deaths among children aged 
<5 years were due to rotavirus infections.9 This represents a 
significant reduction in the global death toll among children 
due to rotavirus and can be attributed to the effectiveness of 
rotavirus vaccines. A systematic review further provided evi-
dence of the effectiveness of rotavirus vaccines by reporting a 
59% reduction in rotavirus hospitalizations and a 36% decrease 
in rotavirus mortality among children below 5 years from data 
analyzed from 49 countries.6 By the end of 2019, a total of 100 
countries across the world had included at least one (1) of the 
four (4) rotavirus vaccines in their vaccination programs with 
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Rotarix and RotaTeq being the most widely used.10,11 Despite 
this achievement, outbreaks of rotavirus infections have been 
reported in the post-vaccine era in Germany, the United States, 
Singapore, and Kiribati.12-15 These reports highlight the persis-
tent threat rotavirus poses to public health, even with the avail-
ability of rotavirus vaccines.

Transmission of the virus is primarily via the fecal-oral 
route which makes water environments very important reser-
voirs for both human and zoonotic strains of rotaviruses. 
Several studies have detected rotavirus in both natural and 
artificial water sources that are used for various purposes 
including domestic, agricultural, and industrial uses, high-
lighting the need for a wider look at global prevalences of the 
virus in different water environments.16-18 Moreover, co-infec-
tion with different strains of rotavirus A enhances their ability 
to undergo genetic reassortment owing to their highly seg-
mented genome leading to the emergence of new strains that 
are not covered by existing vaccines, some of which have been 
detected in water environments. 19To the best of our knowl-
edge, there has been no systematic review on the global preva-
lence of rotavirus in water environments, though a recent 
systematic review to determine the epidemiology of rotavirus 
in humans, animals, and the environment in Africa provided 
some limited information on environmental water sources.20 
This has necessitated the need for this comprehensive system-
atic review and meta-analysis of the global prevalence of rota-
virus in water environments to help provide policy-related 
information needed to control and prevent transmission of the 
virus via the water route.

Methodology
Search Strategy and Data Sources

This systematic review and meta-analysis study adhered to the 
Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) guidelines of 2020.21 A comprehensive 
search was conducted for the study in the following databases: 
PubMed, SCOPUS, and Web of Science. The search was con-
ducted using Boolean searches, which employ logical operators 
such as AND, OR, and NOT to combine or exclude keywords 
or phrases. The specific Boolean phrases used in the search are 
as follows:

1.	 PubMed: (“Rotavirus”[Mesh]) AND (“Rotavirus/
classification”[Mesh] OR “Rotavirus/isolation and 
purification”[Mesh] OR “Rotavirus/pathogenicity”[Mesh] 
OR “Rotavirus/physiology”[Mesh]) AND (“X”[Mesh]) 
NOT REVIEW [Publication type]

2.	 SCOPUS: (“Rotavirus”) AND (“X”) not AND review 
[publication AND type]

3.	 Web of Science: (“Rotavirus”) AND (“X”) NOT (“Review” 
[Publication type])

“X” in the phrases above represents a Boolean phrase for a 
defined water environment. Supplemental Table 1. shows the 

water environments selected for the study and their corre-
sponding Boolean phrases used for the searches.

Study Selection

Research articles published from January 2000 to February 
2024 were scrutinized according to our set inclusion and exclu-
sion criteria. Two investigators independently conducted data 
screening and together resolved any discrepancies. In instances 
where conflicting decisions arose on the inclusion or exclusion 
of a paper, both investigators came to a consensus. The param-
eters for the inclusion criteria were:

(1) Quantitative primary study;

(2) Studies in English; and

(3) �Studies that contained prevalence data of rotavirus in a 
defined water environment.

On the other hand, the parameters for the exclusion criteria 
were:

(1) Qualitative studies;

(2) �Systematic reviews, meta-analyses, case series, and case 
reports;

(3) �Quantitative primary studies with less than or equal to 
(⩽)10 samples;

(4) Studies with no rotavirus detected; and

(5) Studies with no prevalence data on rotavirus.

A total of 1244 studies were obtained from the databases. 
Following the removal of duplicates, 770 studies remained for 
screening, while 650 studies were excluded based on inappro-
priate titles or abstracts. Among the remaining 120 studies, 75 
were included based on the predefined inclusion and exclusion 
criteria (Figure 1).2,18,22-94

Data Extraction

Data extracted from the studies included in this systematic 
review were; the name of the first author, country, study dura-
tion, water environments used for rotavirus detection, concen-
tration method, detection method, rotavirus group detected, 
and rotavirus genotypes identified (Supplemental Table 3). For 
the meta-analysis, the number of positive samples and the total 
number of samples were extracted for defined water environ-
ments that met the total sample inclusion criterion of more 
than ten (10) samples.

Quality Assessment

External and internal validity assessment tools for prevalence 
studies modified from Hoy et al.95 were used to determine the 
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quality of the included studies. The external validity tools 
included the target population representation, reasonability of 
study samples use, adaptation of random selection and sample 
size calculation. The internal validity tools were the definition 
of the water environment, detection assay used, data collection 
modes, length of study and reporting of prevalence calculation 
parameters. By subjecting each of the included studies to these 
tools, study quality (risk of bias) was determined as either low 
risk (score = 7-9), moderate risk (score = 4-6) or high risk 
(score = 0-3; Supplemental Table 2).

Data Analysis

Prevalence data on rotavirus extracted from the 75 included 
studies were analyzed using RStudio version 4.3.3. The meta 
package was utilized for deriving pooled prevalence through 
the DerSimonian-Laird method. To ensure uniformity in vari-
ances among studies and facilitate pooled prevalence calcula-
tion, the Freeman-Tukey double arcsine transformation was 
employed. For individual studies, 95% confidence intervals 
were determined using the Clopper-Pearson method. 
Heterogeneity was assessed using the I2 statistic, where values 
of 25%, 50% and ≥75% were indicative of low, moderate and 
high heterogeneity, respectively. The Jackson method was 
applied to establish 95% confidence intervals for the I2 statis-
tics. Publication bias was examined using funnel plots and 
Egger’s test. Subgroup analysis was conducted based on the 

water environment, continent, World Bank country income 
level, and country. A p-value of <.05 was considered statisti-
cally significant.

Results
Description of Study Characteristics

The 75 studies included in this systematic review were con-
ducted from 1994 to 2022, with publication dates ranging 
from 2000 to 2024. They were conducted in 32 countries dis-
tributed across 5 continents including Africa (8 countries; 15 
studies), Asia (8 countries; 20 studies), Europe (10 countries; 
15 studies), North America (2 countries; 5 studies), and South 
America (4 countries; 19 studies). A total of 108 prevalence 
data of defined water environments were extracted from the 
75 studies. The water environments were categorised as drink-
ing water (7 studies; 9 prevalence data), untreated sewage (27 
studies; 28 prevalence data), treated sewage (14 studies; 14 
prevalence data), surface water (23 studies; 27 prevalence 
data), and groundwater (6 studies; 7 prevalence data); water 
environments that could not be included in any of the afore-
mentioned categories were designated as others (20 studies; 23 
prevalence data). The prevalence data was subgrouped into 
continents with Asia (32 prevalence data) having the most 
data, followed by South America (27 prevalence data), Africa 
(21 prevalence data), Europe (21 prevalence data) and North 
America (7 prevalence data). Out of the 75 studies, 46 of them 

Figure 1.  A PRISMA flow diagram detailing the screening done in this study.
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explicitly detected rotavirus group A, (one) 1 study detected 
rotavirus group C and 1 (one) study detected both rotavirus 
groups A and C. The common G and P genotypes reported in 
the studies were G1 (7.7%-75%), G2 (7.2%-33.3%), G3 
(2.9%-50%), G4 (6.1%-25%), P[4] (5.9%-67.5%), P[6] (0.6%-
67%), and P[8] (10.8%-100%). Three (3) studies detected 
rotavirus vaccine genotypes in water environments: two (2) 
studies detected both Rotarix and Rota Teq genotypes and 
one (1) study detected only RotaTeq genotypes (Supplementary 
Table 3). The most commonly used rotavirus concentration 
method reported in the studies was the adsorption-elution 
method (20 studies), followed by filtration (19 studies), poly-
ethylene glycol precipitation (17 studies) and centrifugation (8 
studies). The most commonly used rotavirus detection method 
was One-step real-time quantitative polymerase chain reac-
tion (RT-qPCR) (63 studies), followed by the enzyme-linked 
immunosorbent assay (ELISA) (3 studies).

Prevalence of Rotavirus in Water Environments

The global prevalence of rotavirus in water environments 
ranged from 9.46% to 68.27% in the different water environ-
ments with a pooled prevalence of 40.86% (95% confidence 
interval (CI) [34.04; 47.85]. In descending order, the preva-
lence was 68.27% (95% CI [58.43; 77.39]) in untreated sewage, 

53.07% (95% CI [37.18; 68.66]) in treated sewage, 33.40% 
(95% CI [24.10; 43.35]) in surface water, 26.76% (95% CI 
[18.68; 35.62]) in others, 25.64% (95% CI [6.67; 50.72]) in 
groundwater, and 9.46% (95% CI [3.71; 17.18%]) in drinking 
water (Figure 2). Generally, prevalence of rotavirus in the vari-
ous water environments was higher during the pre-vaccination 
era compared to the post-vaccination era (Table 1).

Heterogeneity and Publication Bias
The funnel plot (Supplemental Figure 1) illustrated a publica-
tion bias which was confirmed by Egger’s regression test 
(p = .016) in the different water environments. Estimated prev-
alences had significant heterogeneity across the different water 
environments (H > 1 and I2 ⩾ 75%). The overall prevalence 
also showed significant heterogeneity (H = 5.88 [5.60; 6.18] 
and I = 97.1% [96.8%; 97.4%]).

Subgroup Analyses

There was a statistically significant difference (p = 0) in the 
overall prevalence of rotavirus among the five continents that 
were represented in this study (Supplemental Figure 2). The 
highest prevalence was in Europe (55.90%; 21 prevalence data), 
followed by Africa (51.75%; 21 prevalence data) and North 
America (41.80%; 7 prevalence data). Based on the World 

Figure 2.  Global prevalence of Rotavirus in water environments.
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Bank country income level (Supplemental Figure 3), the high-
est prevalence was recorded in low-income economies (65.00%; 
1 prevalence data), followed by lower-middle-income econo-
mies (48.72%; 25 prevalence data) and high-income economies 
(48.27%; 40 prevalence data). For countries (Supplemental 
Figure 4), the highest prevalence was in the Netherlands 
(91.67%, 1 prevalence data) followed by Tunisia (88.52%; 4 
prevalence data) and Sweden (88.46%; 1 prevalence data).

Discussion
The world has made commendable efforts in reducing the 
immense threat rotavirus poses to human health, especially, to 
children below the age of 5years. Despite these efforts, a sig-
nificant threat to public health persists with the occurrence of 
sporadic waterborne outbreaks of rotavirus in many countries. 
The rapid transmission of the virus through water sources that 
are utilized for various purposes including domestic, industrial, 
and agricultural purposes highlights the importance of water in 
the effective control and prevention of transmission of rotavi-
rus.75,96 To the best of our knowledge, no comprehensive review 
and meta-analysis on the global prevalence of rotavirus in 
water environments have been conducted. Hence, this system-
atic review and meta-analysis sought to bridge that gap by pro-
viding a clear overview of the global prevalence of rotavirus in 
water environments, reporting globally circulating rotavirus 
genotypes, and ultimately providing empirical evidence to 
guide future research, vaccine production, and efforts to effec-
tively control and prevent the transmission of rotavirus in 
communities.

The prevalence of rotavirus in water environments in this 
study was 40.86% which is alarming taking into consideration 
the significant threat rotavirus infection poses to the lives of 
children globally. In assessing the prevalences among the vari-
ous water categories used in this study, untreated sewage had 
the highest prevalence of 68.27%. This high prevalence is 
unsurprising as untreated sewage serves as a reservoir for 
enteric viruses including rotavirus and also mirrors the circu-
lating pathogens in a community as both carriers and infected 
persons can equally pass out enteric viruses through feces.34 
However, this prevalence also indicates a significant shortfall 
in global efforts to effectively control and prevent the trans-
mission of rotavirus.

Interestingly, the prevalence of rotavirus in treated sewage 
was 53.07%, which is not significantly different from that 
found in untreated sewage. This finding could be explained by 
reports of the ineffectiveness of biological and tertiary raw 
sewage treatment processes such as chlorination, ultraviolet 
disinfection, activated sludge, and ultrafiltration in destroying 
rotaviruses, specifically, those of rotavirus A.97-99

The prevalences of rotavirus in surface water and ground-
water were 33.40% and 25.64% respectively. The relatively high 
prevalence in surface water could stem from the high preva-
lence of rotavirus in treated sewage which is discharged into 
surface waters and also contamination from animal feces. Then 
again, these results indicate a significant leakage of rotavirus 
into groundwater owing to their significantly high presence in 
surface waters. Other potential sources of contamination for 
groundwater and surface water include the machinery and 

Figure 3.  Global repartition of rotavirus prevalence in various water environments.
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tools used in groundwater well drilling, as well as the move-
ment of rotavirus through soil pores into surface water.25 The 
ability of viruses to move rapidly through soil was demon-
strated by Paul and colleagues.100 Although these factors 
remain consistent across urban and rural areas, it is expected 
that the prevalence of rotavirus in groundwater and surface 
water will be higher in rural areas, where these sources are more 
commonly used for water supply.

Drinking water had a 9.46% prevalence of rotavirus which 
is considerably high and calls for immediate attention. The 
relatively low immunity in children below the age of 5years 
increases their risk of getting infected from drinking water. A 
study that investigated a rotavirus outbreak in the Philippines 
in 2016 linked the outbreak incidence to a drinking water 
source.101 This outbreak resulted in 22 deaths out of 2936 sus-
pected cases, with children below 5 years of age being the most 
affected (65%; 1093 cases). It comes as no surprise that in 2018, 
the United Nations (UN) reported that the world was consid-
erably distant from reaching the targets outlined in SDG 6 
which is related to clean water and sanitation.102 Furthermore, 
in a report from 2022, it was revealed that 2.2 billion people 
worldwide still did not have access to safely managed drinking 
water.103 The SDGs Report 2023 highlights the urgency of 
speeding up progress sixfold to attain the target of SDG 6.104 
Implementing safer treatment and disposal of human excreta, 
restricting access to water bodies by farm animals, and develop-
ing more robust water treatment methods that can effectively 
eliminate rotavirus are measures that can help reduce the levels 
and transmission of rotavirus through drinking water.

The high prevalence of rotavirus in irrigation waters 
increases the risk of contamination of fruits and vegetables 
through irrigation and processing activities. This remains a 
great challenge to breaking the transmission route as there have 
been reports of contamination of fruits and vegetables which 
are usually eaten raw or undercooked.105,106 There have also 
been reports of some farmers using water from raw sewage 
tanks for irrigation of their crops due to the unavailability of 
appropriate water sources to be used for such purposes.107 This 
practice directly leads to contamination of farm produce which 
can be a major vehicle of rotavirus transmission.

Continental subgroup analysis revealed very interesting pat-
terns. Five continents; Asia, Africa, Europe, North America, 
and South America were represented in this study Figure 3. 
Notably, the prevalence of rotavirus in Europe (55.90%) was 
higher than in Africa (51.75%) and Asia (32.48%). Similarly, in 
the Americas, the rotavirus prevalence was higher in North 
America (41.80%) than in South America (28.51%). These 
findings could be explained by the presence of high vaccine 
hesitancy in Europe and North America, especially in the 
United States, which is largely influenced by negative percep-
tions in the general population.108,109 Parents often question 
the necessity of certain vaccines for their babies, which some-
times leads them to refuse the administration of these vaccines 
by health professionals.109 This occurrence is less frequently 

experienced in Africa, Asia, and South America despite the 
relatively low literacy rates.110,111 The high vaccine hesitancy in 
high-income countries puts their children below the age of 
5years at a higher risk of rotavirus infection as opposed to 
same-aged children in lesser economically developed countries. 
Country-specific health policies and rotavirus vaccination pro-
grams could also be implicated. For instance, Italy’s national 
policy and recommendations regarding the rotavirus vaccine 
consider it non-essential. Whiles in France, 41% of French 
respondents believed that vaccines were unsafe compared to 
12% from other countries.108 Nonetheless, the rotavirus preva-
lence in Africa is significantly high and may be explained by 
reports of low rotavirus vaccine efficacy in African children.112 
Contrary to the findings in Africa from this systematic review, 
the prevalence of rotavirus in water environments in a system-
atic review and meta-analysis of the epidemiology of rotavirus 
in humans, animals, and the environment in Africa was lower 
at 31.4% (18 studies; 24 prevalence data; 95% CI: 17.7%–
46.9%).20 The disparity in the prevalence of rotavirus in the 2 
studies could be explained by the different parameters adopted 
in study selections. Additionally, the observed high prevalences 
across the 5 continents contradict the notion that rotaviruses 
thrive in cooler temperatures and disintegrate in warmer tem-
peratures above 20°C, as these continents have wide variations 
in temperature.113-115 This indicates a potential evolutionary 
adaptation of rotavirus to the ongoing changes in global cli-
mate, ensuring its survival and transmission in diverse environ-
mental conditions. It is also worth noting that other factors 
such as human behaviors, quality of hygiene, and sanitation 
arrangements in different geographical locations could account 
for our findings.116

The economic strengths of countries directly affect all sec-
tors of their economies including health. Stratifying rotavirus 
prevalence according to the World Bank country level of 
income revealed that high-income economies (France, United 
States, Spain, Italy, Slovenia, Japan, Germany, Hungary, 
Norway, Saudi Arabia, Netherlands, Uruguay, Poland, Sweden, 
Canada) had a higher prevalence of 48.27% compared to 
29.50% of upper-middle-income economies (Brazil, South 
Africa, China, Argentina, Botswana). The prevalence in lower-
middle-income countries (Pakistan, Iran, Egypt, Bangladesh, 
Tunisia, Philippines, Kenya, Ghana, Nepal, Benin) was 48.72% 
which was slightly higher than the high-income economies 
(48.27%). These findings suggest that upper-middle-income 
economies are adopting and implementing recommendations 
from the WHO for rotavirus control and prevention of trans-
mission more effectively compared to high-income economies 
which are no different from lower-middle-income economies 
in terms of efforts. The prevalences in low-income economies 
(Uganda) and Venezuela (unclassified in the recent categoriza-
tion by the World Bank) were 65.00% and 5.49% respectively. 
These findings could be highly influenced by the presence of 
only one prevalence data in each category and hence cannot be 
largely relied upon. We therefore recommend that more studies 
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on rotavirus detection in water environments be conducted in 
low-income countries to provide ample information on rotavi-
rus in their surroundings.

The country-based analysis of the prevalence revealed stag-
geringly high prevalences in the Netherlands (91.67%), Sweden 
(88.46%), Tunisia (88.52%), the Philippines (85.71%), and 
Botswana (84.44%). Conversely, low prevalences were recorded 
in Canada (4.0%), Venezuela (5.49%), South Africa (7.48%), 
and Nepal (8.12%).

The majority of the studies employed RT-qPCR for rotavi-
rus detection. However, the observed high prevalence of rotavi-
rus in water environments in this study could only be a fraction 
(even though significant) of the actual global prevalence. Li 
and his colleagues detected rotavirus using both RT-qPCR 
and ICC-RT-qPCR.55 Interestingly, the detection rates of the 
ICC-RT-qPCR method were higher compared to the 
RT-qPCR method, indicating its greater efficacy. Prevalence 
rates were 69%, 47%, and 14% for primary, secondary, and ter-
tiary effluents, respectively, using the ICC-RT-qPCR method, 
compared to 44%, 22%, and 6% for the same effluents using the 
RT-qPCR method. The majority of the studies included in 
this systematic review employed RT-qPCR, indicating that the 
actual prevalence of rotavirus in water environments may be 
higher than what is reported. The ICC-RT-qPCR method 
involves infecting host cells with rotavirus concentrates from 
water samples and quantifying infectious rotavirus after 2 days. 
An additional advantage of this method over RT-qPCR is the 
reduction of PCR inhibitors, which are a major challenge in 
the RT-qPCR method. The sampling approach of water sam-
ples for the detection of rotavirus could also affect the detec-
tion rates. One study that employed both passive and active 
sampling methods found the former to give higher viral yields 
but only for small-quantity samples.60 Recently, a review by 
Hayes and Gagnon also highlighted the efficacy of passive 
sampling methods over conventional active sampling meth-
ods.117 Hence the use of passive sampling methods for future 
rotavirus detection works is recommended.

Our study revealed the global prevalence of common human 
G and P rotavirus genotypes as follows: G1 (7.7%-75%), G2 
(7.2%-33.3%), G3 (2.9%-50%), G4 (6.1%-25%), P[4] (5.9%-
67.5%), P[6] (0.6%-67%), and P[8] (10.8%-100%). With 
regards to the common G/P genotypes combinations, G1P[8], 
G2P[4], G3P[8], G4P[8], G9P[8], and G12P[8] were all 
identified. Notably, the G9P[4] strain that was reported to 
have emerged in Ghana and some Latin American countries 
after the introduction of rotavirus vaccination, has been identi-
fied in Kenya, South Africa, and Venezuela.7 The prevalences 
of untypeable G and untypeable P genotypes were 4.2-50.0% 
and 12.5-66.7% respectively, in this study. These findings are 
suggestive of the high emergence of new strains through 
genetic reassortment that cannot be identified by current 
sequencing methods. Moreover, G/P combinations consisting 
of untypeable G and untypeable P genotypes have also been 

reported in water environments. These include G12P[?], 
G1P[?], G9P[?], G?P[6], G?P[8], and G?P[4].

Interestingly, studies conducted in Egypt (1 study) and Japan 
(2 studies) detected Rotarix and RotaTeq vaccine genotypes. In 
Egypt, both vaccine strains were detected, while in Japan, one 
(1) study detected only the RotaTeq strain, and the other study 
detected both strains. Rotarix and RotaTeq vaccines are admin-
istered twice before 24 weeks and 3 times before 32 weeks, 
respectively. Given that these vaccines are among the most com-
monly used globally, their detection in water environments 
could be attributed to their widespread usage. Additionally, 
research indicates that infants are typically weaned before 
6 months (24 weeks) and 20 to 24 weeks in Egypt and Japan, 
respectively, after which their feces become part of sewage.65,118 
This increases the likelihood of these vaccine strains reaching 
environmental waters. Further, this finding threatens the effi-
cacy of the  two (2) vaccines with the possibility of the emer-
gence of vaccine-resistant strains looming.

The detection of rotavirus group C in 2 studies conducted 
in wells and sewage influent and effluent poses a threat to both 
adult and infant populations. While rotavirus group C typically 
causes mild diarrheal disease in adults, it has also been reported 
as a causative agent in diarrheal illness among infants.3

The prevalence of rotavirus in untreated sewage, treated 
sewage, surface water, and groundwater environments decreased 
during the post-vaccination era (Table 1). Conversely, that of 
drinking water and the others category increased in the post-
vaccination era. The approximately 9.5% increase in the preva-
lence of rotavirus in drinking water in the post-vaccination era 
is particularly worrying as it potentially points to an increase in 
rotavirus infections and outbreaks in the foreseeable future if 
drastic control measures are not taken.

One major limitation of this study pertains to heterogeneity. 
Specifically, 86.67% of the studies were conducted during the 
post-vaccination era, contributing to significant diversity in 
sample sizes across the 6 water environments, continents, and 
World Bank country income levels. The observation of very 
wide prediction intervals also reflects the high heterogeneity in 
the included studies. Other significant limitations were the use 
of different methods for the detection of rotavirus and varying 
conditions of sampling across continents. Additionally, the 
majority of studies (93.33%) exhibited a moderate risk of bias, 
whereas only 4% demonstrated a low risk of bias. Some of the 
potential sources of bias include differences in sampling fre-
quency, sampling methods, analytical methods, and atmos-
pheric conditions. Even though this study followed the 
PRISMA guidelines, it was not registered prior to its conduct.

Conclusion
There is a high prevalence of rotavirus in water environments, 
especially in untreated sewage, and in Europe. The high preva-
lence of rotavirus in water environments observed in this study 
calls for drastic control measures to be implemented. Moreover, 
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the detection of new rotavirus genotypes that are not covered 
by the existing rotavirus vaccines suggests that plans for the 
development of new vaccines should be accelerated and the 
establishment of a rotavirus surveillance network similar in 
magnitude to that of other virus surveillance networks needs to 
be considered. Additionally, more research is needed to find 
more efficient methods to effectively eliminate rotavirus to 
insignificant levels in water environments.
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