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Despite the success of genome-wide association studies, much of the genetic contribution to

complex traits remains unexplained. Here, we analyse high coverage whole-genome

sequencing data, to evaluate the contribution of rare genetic variants to 414 plasma pro-

teins. The frequency distribution of genetic variants is skewed towards the rare spectrum, and

damaging variants are more often rare. We estimate that less than 4.3% of the narrow-sense

heritability is expected to be explained by rare variants in our cohort. Using a gene-based

approach, we identify Cis-associations for 237 of the proteins, which is slightly more com-

pared to a GWAS (N= 213), and we identify 34 associated loci in Trans. Several associations

are driven by rare variants, which have larger effects, on average. We therefore conclude that

rare variants could be of importance for precision medicine applications, but have a more

limited contribution to the missing heritability of complex diseases.
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S ince the advent of genome-wide association studies
(GWAS), thousands of genetic variants have been identified
to be associated with common diseases and other health-

related traits. However, the genetic variants identified to-date
explain a limited part of the heritability of most common diseases
and traits. For example, in one of the largest GWAS for body
mass index (BMI) until now, 941 significant lead single nucleotide
polymorphisms (SNPs) explain only 6% of the variation in BMI1.
By combining the effects of all SNPs together, regardless of
whether they reach the genome-wide significance threshold or
not, one can capture a substantial part of the hertability of a trait2,
i.e., SNP heritability, but not all. Here, our working hypothesis is
that a part of the complex traits’ heritability can be attributed to
the effect of rare genetic variants. These rare variants are not
identified as genome-wide significant in GWAS due to lack of
statistical power, as only a handful (or less) of individuals, not
homozygous for the major allele, may be present in the cohort.

The vast majority of GWAS has been performed on SNP array
data, where rare variants are substantially underrepresented.
Whole-genome sequencing (WGS) is soon to become a golden
standard in large-scale genetic studies, allowing characterisation
of genetic variations, such as single nucleotide variants (SNVs)
and short insertions and deletions (indels), at any frequency. In
natural populations, purifying selection acts against deleterious
variants and keeps the frequency of such variants low. Rare
variants are therefore more likely to be functionally important
than common variants. One example is the melanocortin 4
receptor gene (MC4R), where one common allele is associated
with a small (~0.25 kg/m2) increase in BMI3. However, rare
deleterious mutations in MC4R represent the most common
monogenic cause of severe early onset obesity4. By performing
WGS on more than 1000 Swedish samples, we showed recently
that rare variants constitute the major part of all genetic variants
in a cohort5,6. This supports the need to also analyse the effect of
rare variants in relation to complex diseases and traits.

The low frequency of most sequence variants5 seriously limits
the power of using a GWAS strategy (single-marker tests) for
analysing WGS data6. In order to overcome these limitations, rare
variants can be collapsed and analysed jointly in a burden test7–9.
By filtering on the predicted deleteriousness of rare variants, and
including only loss of function (LoF) or deleterious variants,
various studies have shown that the burden of damaging rare
variants is associated with complex traits and diseases10–13.
Variants can also be weighted by their allele frequency, assuming
that rare variants are more pathogenic than the common ones, or
be weighted by their predicted deleteriousness14. However, while
rare variants are more likely to have a functional consequence
than common variants, most genetic variants in the genome,
including the rare ones, are neutral15. Therefore, kernel associa-
tion methods that do not assume uniform directionality and
magnitude of effects of all tested variables, are more appropriate
when the data is not limited to LoF variants. One such method,
the Sequence Kernel Association Test (SKAT)14, modulates the
effect of multiple genetic variants together in a multivariable
approach.

The majority of studies aiming to investigate the effect of rare
variants share the common approach of using a test that collapses
the effects of multiple genetic variants. It is also common that a
cutoff for minor allele frequency (MAF)12,16 is used, sometimes
limiting the analysis to only very (ultra) rare17 variants, or low-
frequency variants16. The aim of the current study was instead to
identify the contribution of rare genetic variants, on top of the
common GWAS variants. In previous studies, we have performed
GWAS on the protein abundance levels of hundreds of proteins
using genotyped and imputed SNPs. We showed that the levels of
many of these proteins have high heritability, with up to 67%18,

and are strongly influenced by genetic variants commonly located
in the Cis-regulatory regions of the gene encoding the protein
itself. The protein dataset is therefore very well suited for inves-
tigating, not only the effect of rare coding variants, but also the
effect of regulatory non-coding variants.

In the current study, we are analysing SNVs and indels,
identified by high coverage WGS, in relation to the protein
expression levels of 414 plasma proteins (Supplementary Data 1).
We have analysed the same proteins as in our previous
GWAS6,18–21, but here we are instead using WGS data in com-
bination with the gene-based SKAT method, to also include and
identify the contribution of rare variants to variation in plasma
protein levels. We show that many associations are driven by rare
variants, but a large fraction of the associations are also detected
in the GWAS.

Results
In total, 872 participants with a median age of 50 years (range:
14–94 years) passed WGS and protein quality control (QC)
(Supplementary Fig. 1) out of which 443 (50.8%) were females. In
total, 16,271,782 variants were called of which 12,956,981 biallelic
SNVs and 1,130,297 biallelic indels passed QC. By using a MAF
threshold equal to 1/√(2 x sample size)= 0.0239 as the upper
limit for considering a variant to be rare, in agreement with
previous suggestions22, nearly half (49.4%) of the variants were
considered rare. The spectrum of frequencies was highly skewed
towards lower frequencies (Fig. 1a).

Common variants explain most of the heritability. Even if an
ample fraction of identified variants were considered rare in the
cohort, each individual carries a considerably larger number of
common alleles (Fig. 1b). On average, only 2.27 % (standard
deviation [SD]= 0.63%) of the variants in each individual were
considered being rare in the cohort (dark grey in Fig. 1b). Var-
iants were annotated with Combined Annotation Dependent
Depletion (CADD)23 and Eigen24 scores, commonly used for
annotating the pathogenicity of coding and non-coding variants
respectively. There was a much larger fraction (χ2 test;
p < 2.2 × 10−16) of rare variants among the high CADD and high
Eigen values (Fig. 1c). For example, while 50% of the variants
with low CADD values (< 10) were rare, as much as 95% of the
variants with the strongest predicted deleterious effects
(CADD > 40) were rare. This agrees with rare variants being more
likely to have deleterious effects. To estimate to what extent
the rare variants contribute to the narrow-sense heritability in the
cohort, we combined (see Methods section) the estimated geno-
type variance at each SNV and the predicted deleteriousness
(CADD or Eigen value). Since each individual carries a con-
siderably larger number of common alleles (Fig. 1b), the genotype
variances across all SNVs in the cohort are mainly due to com-
mon variants (Fig. 1d). Note that these genotype variances do not
take into account that rare variants are more likely to be dele-
terious (Fig. 1c) and the fractions of explained variance by rare
variants (Fig. 1d) could therefore be regarded as the lower
boundary for how much of the narrow-sense heritability is
explained by rare variants. For example, at least 3.41% of the
narrow-sense heritability is likely to be explained by the variants
that were considered rare (MAF ≤ 0.0239) in our cohort, and
1.37% by variants with MAF ≤ 0.01. However, even if we take into
account that deleterious variants are more likely to be rare and
weight the allelic effect by the predicted deleteriousness (CADD
or Eigen), the contribution of rare variants to the narrow-sense
heritability is still limited (Fig. 1e, f) and only a minor fraction
(4.28% or 3.83%) of the heritability could be attributed to rare
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(MAF < 0.0239) variants, when CADD and Eigen values were
used as allelic weights, respectively.

As the sample size in the NSPHS is rather limited (N= 872),
we extended the heritability calculations to whole-exome
sequencing (WES) data from the UK Biobank (UKB) 200 K
dataset. We evaluated three subsets consisting of: (a) all unrelated
white-British participants (N= 148,435), (b) a random selection

of 10% of the unrelated white-British participants (N= 14,844),
and (c) a random selection of 1% of the unrelated white-British
participants (N= 1484). It was clear, that the fraction of
singletons and rare variants is much larger with the increasing
sample size, but also much larger in the UKB compared to the
NSPHS (Supplementary Fig. 2). This is due to the fact that
common variants are likely to be polymorphic also in a small
sample size, but a larger sample size and more unrelated
participants will display a larger number of rare variants.
Furthermore, a much larger fraction of the most damaging SNVs
in the UKB was rare (Supplementary Fig. 3), similarly to what was
seen in the NSPHS (Fig. 1c). While the proportion of genotype
variances attributed to different MAF-bins was similar between
the three sample sizes in the UKB (Supplementary Fig. 4a–c), the
proportion that was attributed to rare variants was considerably
larger compared to the NSPHS (Fig. 1d). The same pattern
was seen when allelic effects were weighted by the predicted
deleteriousness (CADD), and we estimated that 8.5% of the
heritability could be explained by variants with a MAF ≤ 0.01 in
the UKB WES, which is considerably higher compared to 1.76%
for the WGS data in the NSPHS (Fig. 1e). Since this estimate
appears to be independent of sample size (Supplementary
Fig. 4d–f), it is possible that the lower estimate in the NSPHS is
a result of targeting the whole genome, in contrast to
targeting only exons in the UKB data. It is well known that
common non-coding variants with small effects are overrepre-
sented among GWAS-hits, whereas exonic variants are more
often rare and have larger effects. When filtering on only coding
variants in the NSPHS, the distribution of the additive genetic
variances was indeed more similar between the NSPHS and the
UKB (Supplementary Fig. 5), and with the CADD weighting, we
estimate that 4.2% of the heritability among coding variants
(compared to 1.76 % for the whole genome) could be explained
by variants with MAF ≤ 0.01 in the NSPHS. This fraction is
considerably larger, but still about half the amount compared to
the fraction in UKB. However, the two cohorts investigated are
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Fig. 1 Distribution of MAF, CADD/Eigen values, and fraction of variances across MAF-bins for SNVs and indels. In all figures, the dark grey area
indicates the rare variants, as defined in our analyses (MAF <= 0.0239), and the light grey indicates the common variants (MAF > 0.0239). a The MAF
distribution of the variants identified in the NSPHS. The bars represent the proportion of variants with a MAF within each frequency bin. b Distribution of
per sample allele counts for different MAF-bins. The bars represent proportion of alleles per sample belonging to different MAF-bins. Averages across all
samples (N= 1021 with WGS data were used to derive statistics) are shown and the error bars represent the 95% width of the distribution in the cohort.
c The fraction of the SNVs and indels being rare vs. common, for different CADD and Eigen values. d The proportion of genotype variance that can be
attributed to variants within the MAF-bins. Each bar represents the sum of all genotype variances for variants with the MAF-bin divided by the sum of
genotype variances across all variants. e, f Proportion of additive genetic variance (narrow-sense heritability) that can be attributed to variants in different
MAF-bins when allelic effect sizes are weighted by e CADD values and f Eigen values.
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Fig. 2 MAFs and effect sizes for the lead GWAS SNVs and indels.
a Distribution of MAFs for the lead GWAS-significant (Wald-test,
p < 5.00 × 10–8) primary and conditional hits. A MAF threshold of 0.01 was
used in the GWAS and, consequently, no GWAS hits had a MAF below
0.01. b Effect sizes from the GWAS, in relation to MAF for the primary and
conditional GWAS hits. All effect estimates are reported as absolute values.
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noticeably different in that the NSPHS consists of participants
living in the most northern part of Sweden with participants
being more genetically related, whereas the UKB participants
included in our dataset represent unrelated United Kingdom
citizens from much more widespread areas.

GWAS results. As a comparison to the SKAT analyses, we per-
formed a traditional GWAS for each protein. However, to identify
as many lead GWAS variants as possible in NSPHS, to be
adjusted for in the SKAT analyses, we first used a liberal sig-
nificance threshold of 5 × 10−8. A total of 274 proteins had at
least one significant SNV or indel (217 proteins had a Cis and 107
at least one Trans) association (Supplementary Data 2). The lead
variants from the GWAS were skewed towards the lower end
of the MAF spectrum (Fig. 2a), which agrees with the MAF
distribution in the cohort, but is less pronounced (Fig. 1a).
However, the power to detect an association drops for rare var-
iants, and with three alleles or less in the NSPHS, the power is
zero6. Among the lead GWAS variants, the rare variants tend to
have larger effect sizes (Fig. 2b) than the common ones, with
average beta estimates of 1.52 and 0.62 for rare and common,
respectively (t-test p < 2.2 × 10−16). Using stricter p-value cutoffs
of 3.92 × 10−11 for Trans and 3.00 × 10−8 for Cis, which would be
more appropriate for identifying novel GWAS hits (Bonferroni
adjustment for 414 proteins analysed), resulted in 234 proteins
having at least one significant hit of which 212 had associations in
Cis, and 41 in Trans. Four of the proteins with Trans hits
had associations at more than one locus, and 19 proteins had
associations both in Cis and Trans.

SKAT analyses. In SKAT, each variant can be assigned a weight
that modifies its impact on the test statistics. Commonly, either
damaging or rare variants are upweighted assuming they are
more likely to be deleterious and the power to detect the effect of
a rare variant is typically limited by a small number of observa-
tions. In our SKAT analyses (see Methods), five different types of
SNV-sets were constructed (Supplementary Fig. 6), and seven
different SKAT models, with different weighting and/or filtering
of variants based on MAF, CADD or Eigen values, were analysed
for each SNV-set (Table 1, Fig. 3a). We considered a MAF
threshold of 1/√(2 * sample size)= 0.0239 in our cohort, between
common and rare variants as this has been well-motivated in a
previous study, and is the default value in the SKAT model22.

A total of 237 (59%), out of the 405 proteins encoded by genes
located on autosomal chromosomes, were associated
(p < 5.88 × 10−6) with at least one of the Cis-SNV-sets (Fig. 3a,
Table 1, Supplementary Data 3). Among these, 198 had a
significant association with a Cis-Reg-set (which includes all
variants in regulatory regions in, or close to, the gene), 190 with a
Cis-Flank-set (which includes all variants in the gene and all
variants within 100 kb up and downstream of the gene), and
182 with a Cis-CDS-set (including all variants within the coding
DNA sequence [CDS] of the gene and variants 40 bps up and
downstream of a CDS).

For all SNV-sets, the largest number of significant protein
associations was identified using the CommonRare method (model
6) in SKAT, and the lowest number was identified when analysing
only rare variants (model 7) closely followed by the model (model
3) where rare variants were highly upweighted (Table 1 and
Fig. 3b). It is also worth highlighting that the Cis-SKAT analyses
weighted by Eigen scores (model 2) did not appear to result in a
larger number of significant results compared to no weighting at all
(model 1), for any of the SNV-sets (Table 1).

SKAT Cis-associations and backward stepwise regression. The
overlap between the GWAS and the SKAT analyses was very
large, with 206 proteins having significant Cis-associations
detected by both methods. The GWAS identified significant Cis-
associations with seven proteins (CD4, COL1A1, CCL4, FURIN,
IL-18BP, IL-1RA, and WIF-1), for which there were no significant
results in any of the SKAT-analyses. In contrast, there were 31
proteins with significant results in the SKAT analyses that were
not identified in the GWAS (Fig. 4a and Supplementary Data 3).
For 97 proteins, the most significant p-value stemmed from a test
where rare variants were upweighted (model 3–5). The majority
(N= 81) of these proteins were associated with a common SNV
in the GWAS and when adjusting for these common GWAS
SNVs, only 21 of the 81 proteins still had a significant association.
This suggests that SKAT methods with rare variants upweighted,
to some degree, capture effects by common variants. Among all
proteins with overlapping GWAS and SKAT hits, 62 proteins
were still significantly associated in the SKAT analyses after
adjusting for common GWAS hits (Supplementary Data 3). This
indicates that these signals might be driven by rare variants,
which was further supported by the fact that 35 (44%) of these
proteins were significant also with the SKAT model with
rare variants only (model 7). However, other signals could as well

Table 1 Overview and summary statistics for the five types of SNV-sets analysed and the number of significant loci identified
with each of the seven SKAT models used.

Cis/Trans SNV-set No. of SNV-
setsa

No. of SNVsb Rarec No. significant loci for the different modelsd

1 2 3 4 5 6 7
Cis Cis-Reg 405 61 [31–116] 47.0% 158 154g 83 161 175 178 40
Cis Cis-Flanke 405 190 [118–307] 48.4% 148 148g 80 151 167 176 45
Cis Cis-CDS 405 8 [5–13] 49.1% 138 132h 87 150 158 167 43
Trans Trans-CDS 18,467 8 [5–14] 54.2% 19 26h 6 21 24 26 3
Trans Trans-Flankf 18,467 229 [161–330] 51.3% 19 20g,h 8 21 26 26 5

aFor Cis-SNV-sets, each of the 405 autosomal SNV-sets were analysed only in relation to the encoded protein, whereas in the Trans-SNV-sets, the SNV-set (one for each of the 18,467 genes across the
genome) was analysed in relation to all 414 proteins. The significance threshold was 0.05/3 Cis-sets/405 proteins/seven models= 5.88 × 10−6 for Cis, and 0.05/2 Trans-sets/414 proteins/18,467 SNV-
sets/seven models= 4.67 × 10−10 for Trans.
bMedian [interquartile range] of the number of SNVs in the SNV-sets.
cFraction of SNVs and indels in the SNV-sets that were considered rare (MAF < 0.0239).
dThe seven models are: model (1) Unweighted, model (2) CADD or Eigen weighted, model (3) MAF weighted—β(1, 25), model (4) MAF weighted—β(1, 5), model (5) MAF weighted—β(0.5, 0.5), model
(6) CommonRare, model (7) Rare only, model. See method section for more information on the models and Supplementary Fig. 7 for information on the β-distributions.
eGene ± 100 kb-regions up/downstream of each gene, filtered by Eigen >10 when analysed in Cis.
fGene ± 100 kb-regions up/downstream of each gene, filtered by CADD or Eigen >10 when analysed in Trans.
gWeighted by Eigen values.
hWeighted by CADD values.
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have been driven by multiple (common and/or rare) variants, in
addition to the ones that reached genome-wide significance in the
GWAS.

To elucidate which of the SKAT associations are potentially
driven by multiple variants, we performed backward stepwise

regression for a subset of the SKAT hits (see Methods). Here, we
included (a) all proteins with a Cis-SKAT association but without
an association with common GWAS SNVs, and (b) all proteins
with a Cis-SKAT association that were still significant after
adjusting for common GWAS SNVs. In order to reduce the
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associations a threshold p-value of 4.67 × 10–10 was adopted. b Fraction of loci identified in the different models within each SNV-sets. A total of 198, 190,
182, 33, and 27 loci were identified with the five SNV-sets, respectively (N in the legend). Each bar represents the fraction of these N loci that were
significant for the different SKAT models. The seven models are: (1) Unweighted; (2) CADD or Eigen weighted; (3) MAF weighted, β(1, 25); (4) MAF
weighted, β(1, 5); (5) MAF weighted, β(0.5, 0.5); (6) CommonRare; (7) Rare only.
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number of SNVs to be tested in each multivariable model, only
the most significant of the Reg- and CDS-SNV-sets were
analysed, and not the larger flank-sets, leaving a total of 73
proteins used in the analyses. In addition to the SNVs that were
in the SNV-sets, the GWAS-significant SNPs were also included
in the multivariable analyses, even if they were not part of the
original SNV-sets. Out of the SNVs that remained after backward
stepwise regression (Supplementary Data 4), 38% were rare. We
found an average of 5.5 SNVs per protein, and only for 6 of the 73
proteins analysed, the analyses indicated that the signal was
driven by one single variant.

SKAT Trans-associations. In total, 34 Trans-associated loci were
identified for 31 proteins in the SKAT analyses (Supplementary
Data 5), which is a slightly lower number compared to the 41
proteins and 45 loci in the GWAS (Supplementary Data 2). There
was a considerable overlap between the associated loci for SKAT
and GWAS (Fig. 4b). However, among the 26 Trans-SKAT
associations (loci) that overlapped with a common GWAS asso-
ciation, only seven remained significantly associated in the SKAT
tests after conditioning on the lead GWAS SNVs (Supplementary
Data 5). Among the proteins with significant Trans-hits, several
were associated with SNV-sets at multiple loci and/or several
neighbouring SNV-sets within the same loci. A number of the
identified loci were pleiotropic, i.e., associated with several of the
measured proteins, including, for example, the ABO locus.

Including non-coding regions to detect Trans-associations. For
Trans-SKAT associations, there was a lower number of significant
hits for the Trans-Flank-sets than for the Trans-CDS-sets
(Figs. 3a and 4b). Also, there was a much larger difference
between the performance of the seven SKAT models for the
Trans-CDS-sets (Fig. 3b), compared to the Trans-Flank-sets. This
can possibly be explained by a larger number of variants in
the SNV-sets being more likely to capture effects through linkage
disequilibrium (LD) with SNVs not included in the SNV-set. This
suggests that including SNVs outside of the coding regions in the

analyses could, in some cases, increase the power to detect
associations, partly due to regulatory regions being targeted.
However, if the true causal variants are in the CDS-regions of a
gene, the CDS-sets are much more likely to capture such effects
since the CDS-sets include a lower number of variants and,
consequently, a lower degree of freedom in the statistical test,
which increases power.

Pinpointing causal genes in Trans, illustrated by the ABO and
TNFRSF10C examples. For some proteins, tens of neighbouring
genes were located within each Trans-Flank-set, and several
partly overlapping Trans-Flank-sets (including partly the same
genes). Therefore, the potentially causal genes behind these
associations were not easy to determine. For example, there is a
strong association in the ABO region on chromosome 9 for
several of the proteins (Supplementary Data 5). The most sig-
nificant association for CDH5 is to the Trans-Flank-set sur-
rounding OBP2B (p= 6.86 × 10−48). However, that region also
includes ABO, suggesting that the signal can as well be driven by
ABO. In agreement with this, when restricting the analyses to
Trans-CDS, ABO is still highly significant (p= 1.18 × 10−45),
in contrast to OBP2B where the p-value drops dramatically
(p= 2.49 × 10−13).

Another interesting example is a region on chromosome 19,
where over 50 SNV-sets are associated with TNFRSF10C levels.
While the p-values for the Trans-Flank-sets are more similar
and reach the minimum of p= 1.64 × 10−29, one p-value for
the Trans-CDS-sets stands out (p= 1.64 × 10−78). This is the
association with the Trans-CDS-set for PLAUR (Fig. 5a). For this
association, it is likely that coding variants in PLAUR are driving
the association. Indeed, there is also a strong association to a
common variant (rs4760, MAF= 0.14, p= 6.49 × 10−90) for
TNFRSF10C identified in the GWAS, and adjusting for this
SNV resulted in all SKAT-associations disappearing. The rs4760
is a missense variant that is annotated as deleterious (SIFT) and
probably damaging (PolyPhen). Therefore, it is likely that
all signals in this region were solely driven by the common
variant rs4760.

Trans-association potentially driven by rare variants. Only six
of the proteins had any significant Trans-association when the
analyses were restricted to rare variants (model 7). For three
proteins (CCL4, NEP, and TNFRSF10C), the association over-
lapped with common GWAS SNVs, and the SKAT analyses for
these were no longer significant after adjusting for the common
SNV. This indicates that the rare-only analyses might also capture
effects of common variants through LD. For the other three
proteins (Alpha-2-MRAP, PDGF-R-alpha, and VWC2), the
associations overlapped with rare GWAS SNVs. One interesting
region is the one close to ITIH4 on chromosome 3. For VWC2,
the most significant SNV in the GWAS is a rare variant
(MAF= 0.019, p= 3.01 × 10−24) in this region. However, the
SKAT analyses for the rare-only variants in the Trans-CDS-set for
ITIH4 resulted in a slightly lower p-value (p= 2.80 × 10−27),
which indicates that additional rare variants are driving the signal
(Fig. 5b). Interestingly, there are also associations to NEP levels in
the same region (Fig. 5c) close to ITIH4. Also, for NEP the Trans-
CDS-sets for ITIH4 is the most significantly associated (minimum
p= 1.86 × 10−50), but the p-value for the rare-only analyses is not
even significant (p= 0.34). This suggests that the association for
NEP levels is most likely driven by a common variant and agrees
with the fact that none of the SKAT analyses remained significant
after adjusting for rs35004449, the most significant common
variant (MAF= 0.36) identified in the GWAS.
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Differences between SKAT weighting models. It appears that
several SKATmodels as well as SNV-sets performed quite similarly
in identifying associations. However, since the largest fraction of
the additive genetic variance (narrow-sense heritability) is expected
to be explained by common variants (Fig. 1), it is not surprising
that the models including common variants with no, or less pro-
nounced, up-weighting of rare variants resulted in the largest
number of associations. In fact, the majority of all associations was
captured by either model 1, model 2, model 4, model 5, or model 7
(unweighted, CADD/Eigen weighted, and mild up-weighting of
rare variants β(1, 5) and β(0.5, 0.5), or CommonRare, respectively).
A similar pattern was seen independently on whether only the
small SNV-sets (Reg-sets or CDS-sets), or the large Flank-sets were
analysed (Supplementary Fig. 8).

To verify that the small difference between models was not
solely driven by the small sample size, we performed similar
analyses (with CDS-sets) for 27 biomarkers in the UKB WES

(see Methods section). The UKB biomarkers were analysed using
SAIGE-GENE, where the CommonRare SKAT function is not
implemented. In total, 6795 associated CDS-sets were identified
(p < 1.5 × 10−8), that were distributed over 2355 loci (Supple-
mentary Data 6). The pattern of overlap between the associations
identified by the six models looked very similar between the
NSPHS (Fig. 6a, b) and UKB (Fig. 6c), with the majority of the
genes being significantly associated using model 1, model 2,
model 4 and model 5, and only a very small subset identified by
model 7 (only rare variants).

Discussion
We have performed a large-scale gene-based association study to
evaluate the combined effect of common and rare genetic variants
on the expression level of 414 plasma proteins that are either well-
established or exploratory biomarkers for different diseases. To
some extent, our gene-based results resemble those of a single-
marker GWAS, since most of the associations from the gene-
based analyses overlapped with GWAS signals, and vice versa.
However, for the Cis-associations, there was a large number of
proteins that only have associatons in the gene-based analyses.
This clearly highlights the potential of increasing statistical power
of a study by using gene-based tests, which can be partly attrib-
uted to the total number of tests being reduced by performing
only few tests per gene, instead of one test per genetic variant. In
addition, the gene-based analyses can capture effects of multiple
variants, where each one of them individually might not reach
genome-wide significance in a GWAS.

Gene-based analyses have become more frequent due to
increasing availability of large WGS and WES datasets. Until
now, the majority of studies have focused on only rare and/or
protein-truncating variants from WES data, and utilised burden/
variant collapsing tests10,11,25,26. Several novel genes have been
identified to harbour a burden of rare LoF variants among cases
of a disease. A number of gene-based studies using proteomics or
other types of omics data have also been performed. For example,
using WES data and a large set of metabolites, rare-variant
associations were identified for five genes previously known to be
associated with the same phenotypes27. Few gene-based studies
have been performed with WGS data to discover associations
with rare variants. For example, Gilly and colleagues16 analysed
257 circulating protein biomarkers of cardiometabolic relevance.
In agreement with our study, they found a small number of
associations to be driven by rare variants. They also highlighted
that rare variants are more difficult to replicate between
cohorts16. Rare variants are more likely to be population specific,
and a replication cohort needs to have a similar genetic back-
ground. The replication cohort also needs to have a sufficient
number of rare effective alleles. However, due to the “winner’s
curse”, any statistically significant rare-variant association is likely
to contain a larger number of rare effective alleles compared to
the population in general. Therefore, a considerably larger
replication cohort with similar genetic background is required for
replicating rare-variant associations. In our study, we did there-
fore not replicate the individual rare-variant associations, which
should be considered when interpreting results from individual
loci. However, we used the UKB WES data and validated the
main conclusions of our study.

In contrast to most previous studies, we considered SNVs and
indels of any allele frequency as well as any degree of deleter-
iousness. This enabled us to disentangle associations that are
mainly driven by common variants as well as those mainly driven
by rare variants, or by a combination of both. Additionally, we
also investigated regulatory and gene-flanking variants, which is
not possible with WES data. We focused on evaluating and
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comparing a number of different settings in the SKAT analyses,
with regards to weighting, filtering of SNVs and indels, as well as
on selecting the SNVs and indels to be included in the SNV-sets.
It was clear that different settings are optimal for different genetic
architectures. Unsurprisingly, for regions that appeared to be
driven by one single-SNV or indel, GWAS appeared to be the
most powerful method for identifying the effect, which was
indicated by a lower p-value. Overall, the SKAT analyses were
more powerful than the GWAS since they identified additional
signals that did not reach genome-wide significance in the
GWAS. Associations that were driven by common variants per-
formed better, i.e., a larger number of associations were identified
when either no weighting or mild MAF weighting was applied in
the SKAT analyses. Association signals driven by rare variants
performed better using a MAF cutoff or by strongly up-weighting
rare variants. Since we do not have prior knowledge of the relative
contribution of rare and common variants in different regions, it
is important to perform different tests to optimise the power to
identify genotype-phenotype associations. However, it is also
important to bear in mind that increasing the number of tests
requires the significance threshold to be adjusted for multiple
testing by imposing stricter p-value cutoffs. Notably, the analyses
where common and rare variants were analysed separately, and
the test statistics between these sets were combined (the Com-
monRare SKAT analyses), outperformed most of the other
methods and further method development in that direction
would be valuable. Interestingly, the CADD/Eigen weighting did
not dramatically influence the results compared to no weighting
at all. This may suggest that the values provided by CADD and
Eigen are not accurate enough for most variants to be useful in
the weighting method, or that the differentiation between harmful
and benign variants is too small to render useful as weights.

In agreement with previous studies, we found a relatively low
number of association signals for rare variants. This suggests that
common variants possibly account for most of the additive
genetic variance in a population, i.e., the narrow-sense herit-
ability. This is supported by our calculations showing that the
major fraction of the heritability can be attributed to common
variants, and that only a small fraction of the heritability is
expected to be due to rare variants. This is an important obser-
vation that needs to be considered carefully in studies aiming to
identify effects by rare variants. However, in agreement with
previous studies10, we found that the identified effects by the
individual rare variants are larger compared to common variants,
and we found an enrichment of rare variants among damaging
variants. Consequently, the rare variants are likely to play an
important role at an individual level, which has also been sug-
gested previously10. Rare variants might therefore have a larger
contribution to the implementation of precision medicine
applications for complex diseases.

We have identified a number of regions that appear to be
driven, at least partly, by multiple rare variants, and these asso-
ciations were further characterised by backward stepwise regres-
sion. Interesting examples include AMBP, NGF, CTSZ and
CEACAM5, for which the associations were not identified in the
GWAS. For both AMBP and NGF, we identified two rare variants
with MAF= 0.012 and 0.013 (AMBP) and MAF= 0.0024 and
0.0083 (NGF) as likely drivers of the associations. For CTSZ there
are two rare (MAF= 0.0005 and 0.0064) and one low frequency
(MAF= 0.045) variant that are likely drivers of the association
signal, and for CEACAM5 two rare (MAF= 0.0005 and 0.176)
and one common (MAF= 0.419). Another interesting example is
ERBB4, for which no significant GWAS SNV was identified, but
where 13 SNVs remained after backward stepwise regression. In
addition, for some of the proteins where the SKAT associations
were still significant after adjusting for GWAS SNVs, a large

number of SNVs (both common and rare) remained after the
backward regression, including ANPEP, GPC5, and IL5RA.
However, it should be noticed that in the backward stepwise
regression, no adjustment for multiple testing was performed.
These results should therefore not be considered as an estimate of
the exact number of contributing SNVs to each signal.

Among the Trans-associations, several pleiotropic loci were
identified. The ABO locus was associated with eight different
proteins (CDH5, CTRC, ICAM2, LGALS4, PECAM1, PODXL,
SELE, and TEK), but all of these were also identified in the GWAS.
The ABO gene encodes a galactosyltransferase, which is responsible
for the different antigens; A, B, and O, which determine an indi-
vidual’s blood group. ABO antigens are expressed on red blood
cells, but also on epithelial and endothelial cells28 and on von
Willebrand factor. The association between ABO and biomarker
expression as well as disease risk has been shown to be very het-
erogeneous in previous studies. For example, the A antigen has
been associated with higher levels of biomarkers related to cell
adhesion, the O antigen with lower risk of cardiovascular diseases29

and biomarkers reflecting low coagulation activity, and the B
antigen increases the risk of type 1 diabetes30. Another pleiotropic
locus is ITIH4, which was associated with both NEP and VWC2.
Many neighbouring SNV-sets are associated with NEP levels,
which agrees with previous GWAS studies21. For both proteins, the
most significant SNV-set is the CDS-set for ITIH4. However, the
NEP association appears to be driven by common variants whereas
the VWC2 association appears to be driven by rare variants, which
suggests that it is not the same underlying genetic variants that
drive the two associations. The most significant GWAS SNV for
NEP was also a common variant (rs35004449, MAF= 0.36) in
complete LD with a missense variant, rs4687657. However, for
VWC2 a rare missense variant (rs139719930, MAF= 0.018) was
the most significant. This clearly illustrates that pleiotropic effects
at a locus can be due to different genetic effects that possibly act on
different pathways. It has previously been suggested that rs4687657
might regulate both the neighbouring genes ITIH1 and ITIH431, so
it is possible that the pleiotropic effect observed indeed is due to
that the association signals are mediated through different genes.

The SKAT analyses provided a larger number of association
signals compared to the GWAS, but also clues towards candidate
genes. For example, in the GWAS, five proteins (BMP-6, NRP2,
CD38, TNFSF13, and ADAM-TS-15) were associated with com-
mon SNVs in the same region on chromosome 5. The lead-SNVs
are rs1801020 and rs2545801, which are in high LD (R2= 0.98),
and it can therefore be assumed that their associations are driven by
the same underlying genetic effects. The lead-SNVs maps to GRK6
(G protein-coupled receptor kinase 6). However, in the SKAT
analyses, NRP2 is only associated with the Trans-CDS-set for F12,
which is located downstream of GRK6. F12 encodes a coagulation
factor, which makes it the most likely candidate in the region, and
here, it is clear that the SKAT analyses perform better than GWAS
to highlight candidate genes. This demonstrates the potential to
identify candidate genes, by considering only variants in the CDSs,
especially when analysing gene-dense regions. However, for
Trans-associations that are driven by non-coding variants, the
ability to identify these associations would drop dramatically if
analyses are restricted to CDSs only. Nevertheless, most of these
regions included multiple genes, and the underlying causal gene
was therefore not easily identified.

It is also important to bear in mind some limitations in our
study. First, the antibodies used in the measurements of the
protein levels (see Methods section) bind to a short stretch of
amino acids in the target protein. Hence, there is a possibility that
missense variants are giving rise to altered antibody binding
affinity, for example, if a missense variant occurs at the binding
site of an antibody, or at a position that creates a protein structure
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alteration in a way making one antibody unable to bind.
Consequently, the target protein could not be detected and
quantified. This will appear as if the protein is present in mark-
edly lower levels. In our Cis-analyses, we did also consider CDS-
sets, even though it is more likely that it is the Reg-sets includes
variants that are associated with protein expression levels.
Nevertheless, there were as many as 13 associations that were
only identified with the CDS-sets (Fig. 4a), which could poten-
tially be caused by missense variants that affect antibody binding.
Another limitation was that we only used a gene-centric
approach. We did analyse the Flank-sets that contain SNVs and
indels located within 100 kb from any gene. These sets are likely
to contain most parts of the regulatory regions (Supplementary
Fig. 6), but it is possible that additional regulatory elements are
located further way from the genes.

In summary, we performed one of the most comprehensive
studies to-date, identifying the effect of rare and common genetic
variants using WGS data, and we compared several different
strategies for gene-based tests. We could clearly show that gene-
based tests perform better, especially in regions where multiple
rare variants contribute to the effects. However, since we do not
know the genetic architecture that contributes to phenotypic
variation when designing a study, it is not possible to select one
test that will be the best for all regions. Therefore, it is worth
highlighting that the CommonRare function in SKAT out-
performed the other methods considering the number of identi-
fied associations, and also performed reasonably well for
associations that are driven by multiple rare variants. Gene-based
tests, similarly to GWAS, identify more associations to common
than to rare variants. This is partly explained by the fact that a
much larger fraction of the phenotypic variance explained is,
indeed, due to common rather than to rare variants. Nevertheless,
the power to capture effects of rare variants is limited by the low
number of observations. Therefore, in future studies of complex
traits and diseases substantially larger sample sizes are needed in
order to identify effects by rare variants. For genotype-based
precision medicine interventions, it is of significant importance to
further investigate the impact of rare variants with large effects on
one’s individual risk of developing disease.

Methods
The Northern Sweden Population Health Study (NSPHS). The NSPHS
(N= 1069) was a health survey of the population in the Parishes of Karesuando and
Soppero, County of Norrbotten, Sweden32. WGS has previously been performed at
SciLifeLab in Stockholm, using Illumina short read technology (X-ten) to at least 30x
per individual coverage, for the whole cohort following the same pipeline as described
previously5. The NSPHS was approved by the local ethics committee at the Uppsala
University (Regionala Etikprövningsnämnden, Uppsala Dnr 2005:325).

Quality control (QC) of WGS data. In total, 1041 samples (Supplementary Fig. 1)
were sequenced and 20 individuals were removed during variant calling and QC, as
has been described previously6, leaving 1021 samples for downstream processing.
SNV QC was performed using VCFtools (ver. 0.1.13)33. Only biallelic SNVs and
indels that did not significantly deviate from Hardy–Weinberg equilibrium
(p > 3.85 × 10−09 and p > 4.42 × 10−08 for SNVs and indels, respectively) were
included. We also filtered on genotype quality (GQ > 50), and finally SNVs and indels
with >10% missing genotypes were removed. In addition, we removed variants in
low-complexity regions based on regions identified previously34. VCF-files were
converted into binary files and allele frequencies estimated using PLINK v1.90b4.9.

Protein expression levels. Protein levels for 460 putative biomarkers had pre-
viously been measured using the Olink Proseek Multiplex panels (CVD II, CVD III,
INF I, ONC II and NEU I, www.olink.com), and the protein extension assay (PEA),
as described previously21. Briefly, it is an affinity-based assay, where a pair of
oligonucleotide-labelled antibody probes bind to the targeted protein. If the two
probes are in close proximity, a PCR target sequence is formed, the resulting
sequence is detected and then quantified using standard real-time PCR. The
samples were analysed on ten different plates with 96-wells each. Of the 96-wells,
92 are samples, one is a negative control and three are positive controls, both used
to determine the lower detection limit and to normalise the measurements.

We removed proteins with measurements below the detection limit from further
analysis. In total, 903 samples were analysed, of which 892 passed the protein QC
and 872 passed both protein and WGS QC and were included in the downstream
analyses (Supplementary Fig. 1). Protein measurements were adjusted for their
position on the plate and standardised using a conservative method where the
protein levels for each protein were rank-transformed to be normally distributed
(mean= 0, and SD= 1) within each plate. In order to achieve enough power for
downstream analyses, only proteins that were above the detection level in at least
400 (46%) of the samples with WGS data were included. Also, two proteins (IL-6
and SCF) had been analysed on two different panels (ONC II and CVD II) and
here the ONC II values were removed from the analyses due to lower number of
individuals passing QC. After QC, 414 unique proteins remained (Supplementary
Data 1) and were analysed in this study.

Annotation of genetic variant deleteriousness: CADD and Eigen values.
Variants were annotated using the CADD (version 1.3, downloaded on 2018-05-
14) database to identify what effect the variants are predicted to have on the
function of the gene-product. CADD incorporates many different types of anno-
tations and is widely used. From the CADD database, we used the PHRED-scaled
CADD scores, meaning that a CADD score above 10 corresponds to the 1% most
damaging variants, a CADD score above 20 to the 0.1% most damaging and a
CADD score above 30, to the 0.01% most damaging variants23. Following this,
PHRED-scaled CADD scores can function as a good proxy for functional cate-
gories. CADD values were also estimated for indels using the online tool
(https://cadd.gs.washington.edu/score, v1.3, March 2018). Variants were also
annotated for their predicted effects using Eigen-PC scores v1.1, which is a
weighted scoring system commonly used for non-coding variants24. Similar to the
CADD scores, we used the PHRED-scaled values in all analyses. Individual Eigen-
PC scores were available for SNVs but not for indels. However, the Eigen-PC scores
are mainly based on the underlying epigenetic pattern for each region24 and nearby
SNVs have very similar Eigen-PC scores. Therefore, for SNVs and indels with no
pre-computed Eigen-PC score available, we used the score of the nearest SNV with
pre-computed Eigen-PC score, if such SNVs existed within 100 bp. Finally, we
annotated all variants with Ensembl Variant Effect Predictor (VEP, ver. v99.2) with
the Loss-Of-Function Transcript Effect Estimator (LOFTEE) plugin35, that sorts
high-confidence loss of function (LoF) variants from the low-confidence ones. In
total, we found 947 high-confidence LoF variants distributed over 827 genes; of
which only 84 genes had more than one LoF variant. The low number of LoF
variants per gene limits the possibility to perform burden analysis and these
annotations were therefore not used in downstream analyses.

Heritability estimates. We focused only on the narrow-sense heritability:
h2= VA/VP, where VA is the additive genetic variance, and VP is the phenotypic
variance. We further assumed an additive genetic model, which is state-of-the-art
in GWAS, with the genotypes coded as dosage values: 0, 1 or 2 copies of the minor
allele. The genotype variance at each SNV is simply the variance in the dosage
value, var(dosage), across all samples in the cohort. We modelled the variances
across genotypes as additive, i.e., all pairwise covariances were set to zero. This is
true if we assume that all SNPs with effect on the phenotype are independent. It is a
crucial assumption that is commonly used in biological models.

If we assume that all variants have the same phenotypic effect (beta= 1), the
sum of the variances across all genotypes, could serve as a measure of the additive
genetic variance. This means that: VA= Σ 12 *VAi= Σ VAi, where
VAi= var(dosage) is the variance in dosage of the i-th SNV. However, if we use
allelic weights, that correspond to the phenotypic effect of each SNV, the weighted
variance at each SNV is instead: var(dosage *weight)=weight2 * var(dosage),
which means that the variance exhibits quadratic growth in relation to the effect
size. In our calculations, we used the CADD or Eigen values as proxies for the
phenotypic effects by the variants. Thus, the additive genetic variance becomes:
VA= Σ CADDi

2 *VAi, where VAi= var(dosage) denotes the unweighted variance
for the i-th SNV, and CADDi is the CADD value for the i-th SNV.

To estimate to the fraction of the variance, across all SNVs in the genome, that
is due to rare variants, we estimated VAi/VA, which is the proportion of additive
genetic variance that is due to the i-th SNV. Since there is a linear relation between
VA and h2 (h2= VA/VP), VAi/VA is also the proportion of the heritability that is due
to the i-th SNV. The proportion of additive genetic variances across all SNVs in
each MAF-bin is therefore a measure of the fraction of the narrow-sense
heritability that is explained by the variants in each MAF-bin.

Annotation of genetic variants to coding, regulatory or gene-flanking regions:
CDS-sets, Reg-sets, and Flank-sets. SNVs and indels were first annotated based
on whether they belonged to the coding sequence (CDS) of all transcripts in
GENCODE (ver. 26). In total, 18,467 genes had at least one SNV or indel that
overlapped with any CDSs of its transcripts. For each of these genes, we con-
structed one SNV-set (referred to as CDS-set), containing all the SNVs and indels
that mapped to any of its CDS, or 40 bp up/downstream of a CDS, to include
variants important for splicing (Supplementary Fig. 6). Non-coding variants were
annotated in relation to potential regulatory regions of the 405 autosomal genes
encoding measured proteins. For regulatory regions, transcription starting sites
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(TSS) and untranslated regions (UTRs) for all possible isoforms of a gene were
identified using the GENCODE annotations (ver. 26). A promoter annotation,
defined as the region 2 kb upstream of each TSS, was also included. In addition, we
selected regulatory regions that overlapped with CTCF binding sites, open chro-
matin, transcription factor binding sites, promoters, promoter flanking regions and
enhancers using Ensembl regulatory annotations (release 92)36. A total number of
9674 partly overlapping regulatory regions were identified for 405 autosomal genes
encoding the proteins (for example, a promoter annotation as the 2 kb region
upstream of a TSS often overlaps partly with the promoter annotation from
Ensembl). For each of these genes, all SNVs and indels that mapped to any of its
potential regulatory regions, except the 3´UTR, were combined into one regulatory
SNV-set (Supplementary Fig. 6) per gene (referred to as Reg-set). SNVs and indels
that were annotated to both a CDS-set and a Reg-set were excluded from the Reg-
set. The Reg- and CDS-sets above included SNVs and indels that overlapped with
the regulatory regions close to a gene, or with the CDSs. However, it is possible that
there are regulatory effects that might fall outside these ranges. In order to capture
such effects, we also created SNV-sets consisting of all SNVs and indels within
100 kb up/downstream (Supplementary Fig. 6) of each gene (referred to as Flank-
set). Here, the start and stop positions (to determine if a variant is within 100 kb
up/downstream of the gene) were selected as the min/max coordinate for any of the
regulatory regions, or any CDS for respective gene.

Cis- and Trans- analyses. The underlying hypothesis, supported by our previous
studies6, is that the expression of a protein is mainly driven by Cis-regulatory genetic
variants. In our primary analyses, we therefore analysed both the Reg- and Flank-sets
for each of the 405 autosomal genes encoding any of the proteins in (Cis-Reg- and
Cis-Flank-sets). In order to reduce the number of variants tested in theCis-Flank-sets,
we included only SNVs and indels with Eigen score > 10. Here, Eigen scores were
selected instead of CADD scores, since regulatory variants are more likely to have
effect on the expression of a gene in Cis. It is also possible that coding variants in a
gene, either directly influence the expression level of the encoded protein, or affect the
affinity of the antibodies used to measure the protein levels. We could therefore also
expect that coding variants in the genes encoding the proteins that had been mea-
sured could influence the protein measurements directly (in Cis). As sensitivity-
analysis, we therefore also tested for associations in Cis between the 405 proteins
encoded by autosomal genes and the respective CDS-set (Cis-CDS-set).

Besides Cis-regulatory variants, the expression of a protein can be influenced by
Trans-regulatory effects. Trans-regulatory effects can be mediated through other
proteins (or functional RNAs), such as transcription factors, encoded by genes on
different chromosomes or located on the same chromosome as the gene encoding the
protein itself. Trans-regulatory effects can be either due to a coding variant that
influence the function of the Trans-regulatory protein (or functional RNA), or a
regulatory variant that influence the abundance level of the Trans-regulatory protein
(or functional RNA). For the analyses of Trans-associations, we therefore analysed
the CDS-sets for each of the 18,467 genes in the genome (Trans-CDS-sets). However,
Flank-sets were also analysed in Trans (Trans-Flank-set) for the same 18,467 genes.
In order to reduce the number of variants in these Trans-Flank-sets the SNVs and
indels were included only if CADD > 10 or Eigen > 10, which should capture the 1%
most damaging variants with regards to either expression or protein function.

Trans-associations were defined as signals that did not overlap with the region
surrounding the gene encoding each protein. To exclude all effects of Cis-SNVs
(due to LD), we required Trans-regulatory SNV-sets to be located on a different
chromosome as the gene encoding the proteins. Signals located more than 10 Mbp
away from the gene on the same chromosome, unless there was a strong Cis-
association that appeared to extend over more than 10 Mbp, were also considered
being Trans-associations.

Statistical analyses. SKAT analyses in NSPHS were performed using SKAT (ver.
2.0.1) in R (ver. 3.5.0). All models were adjusted for sex and age. We included a
restricted number of covariates in the models, which is common in GWAS. In
previous studies we have shown that several precision variables have strong effects
on the levels of some of the proteins investigated20. However, it is unlikely that any
such variables have an effect on the genetic variants and are therefore not con-
sidered being potential confounders in our study. All tests were also adjusted for
relatedness by including a pairwise kinship matrix, except for the CommonRare
function for which the methodology is not implemented in SKAT. When using the
CommonRare function, we instead adjusted for the first 14 genetic principal
components. The kinship matrix was constructed using 300,000 autosomal SNPs
with MAF > 0.05 selected to represent tagSNPs6, and principal components were
calculated by first converting the kinship matrix into a distance matrix. The
Trans-CDS and Trans-Flank-sets were analysed in relation to all plasma proteins,
which resulted in a total of 18,467 genes times 414 proteins analysed. The Cis-CDS,
Cis-Reg, and Cis-Flank-sets were only analysed for autosomal chromosomes and
only in relation to the proteins they encoded for, which resulted in 405 gene-
protein pairs analysed (Table 1).

All SNV-sets were analysed using the same seven models (Table 1). Our
primary SKAT analyses included all variants that had passed QC, independent of
MAF, and variants were either unweighted (model 1), weighted by their CADD/
Eigen scores (model 2) or by MAF (model 3–5) with three different β-distributions:
β(1, 25) where rare variants are dramatically upweighted37 compared to common

ones that are assigned almost zero weights, β(1, 5) and β(0.5, 0.5) where rare
variants are slightly upweighted (Supplementary Fig. 7). We then used the SKAT
CommonRare function (model 6), that first analyses common and rare variants
separately and then combines the test statistics, using a MAF threshold equal to
1/√(2 * sample size) as cutoff for a variant being considered rare22. The sample size
differed somewhat for the proteins (Supplementary Data 1), but for the ones that
had passed QC in all 872 participants this corresponds to MAF= 0.0239. In the
CommonRare analyses, we used the default weights, β(1, 25) for rare and β(0.5, 0.5)
for common, where rare variants are weighted against each other with a much
higher weight for very rare variants but where the common variants have a much
smaller difference in weights between different allele frequencies (Supplementary
Fig. 7). Finally, we used a model (model 7) where only the rare variants were
considered, using the CommonRare function with test.type argument set to
“Rare.Only”. We estimated the family-wise error rate for different analyses by
resampling (1000 permutations) to lay between 0.0491 and 0.0504 for the
CommonRare analyses and somewhat lower (0.0444–0.0465) for the other SKAT
analyses. For the Cis-analyses, a Bonferroni-corrected p-value of 5.88 × 10−06

(0.05/405 proteins/3 Cis-SNV-sets/7 SKAT models) was used as threshold for
significance (Table 1). For the Trans-analyses, the p-value threshold for significance
was 4.67 × 10−10 (0.05/414 proteins/2 types of Trans-SNV-sets/18,467 genes/7
SKAT models).

In order to compare the results from our SNV-sets to single-marker association
results, and to be able to condition on SNVs identified in a single-marker test, we
also performed a separate GWAS for each protein. As in the SKAT analyses, only
autosomal chromosomes were analysed. We used the same QC as for SNVs in the
primary analyses and the analyses were performed using GEMMA (v. 0.98.1)37

with the same covariates (age and sex) and adjustment for relatedness as in the
SKAT analyses. In order to capture as many GWAS signals as possible for the
conditional analyses, a liberal p-value of 5 × 10−8 (which is the standard threshold
in a GWAS with genotyped/imputed variants) was used as the threshold for
significance. For proteins with any single-SNV with a p-value below that threshold,
conditional analyses were performed in order to identify additional independent
single-SNV signals. This procedure was repeated until no additional significant
SNV was identified. In the comparisons, with regards to the number of proteins
with a significant association between SKAT and the GWAS, a more stringent
threshold for multiple testing was considered also in the GWAS. In our previous
study, we have estimated the appropriate p-value threshold for significance to be
0.05/3,078,707 independent SNVs= 1.62 × 10−8 for the WGS data and one
phenotype6, and the corresponding p-value for analysing 414 proteins would
therefore be: 1.62 × 10−8/414= 3.92 × 10−11 to reach a multiple-testing
adjustment, which is as strict as in our SKAT analyses. However, for Cis-
associations, only 405 proteins and a 2Mb region up- and downstream of each of
the 405 genes encoding the proteins were considered. Therefore,
~405 * 4Mb= 1616Mb (about 53.87% of the total genome size), was analysed in
total for all proteins together. We therefore adopted a p-value threshold of
3.00 × 10−8 to fully adjust for multiple testing.

Conditional analyses were then performed using SKAT, adjusting for common
GWAS SNVs (both primary and conditional GWAS SNVs). The same threshold
for defining a variant as commons vs. rare (MAF= 0.0239), as in the CommonRare
analyses, was used. GWAS-significant SNVs with a MAF above the threshold were
included as covariates in the SKAT analyses, in addition to the covariates used in
the primary analyses. We performed the same set of analyses as above with the
same weighting and filtering options. Conditional SKAT analyses were only
performed if there was an overlap between the SKAT results and the GWAS results,
i.e., if a Cis-regulatory SNV/SNV-set was identified with both methods, or if a
Trans-regulatory SNV/SNV-set in the same region was identified with both
methods. Also, from the SKAT analyses, only one SNV-set (with the lowest
p-value) per locus was included in the conditional analyses, but all seven SKAT
methods (Table 1) were used. Here, multiple-testing adjustment was applied,
considering the number of proteins analysed and the seven SKAT methods.

Backward stepwise regression was performed in a leave-one-out manner by
comparing the likelihoods of two linear, nested models (full and reduced). The full
model included all SNVs in a SNV-set, as well as sex, age and PCs. The reduced
model included the same variables, except that one randomly selected SNV was
excluded. The test statistic was estimated using the anova function in R. If there
was not a significant difference in the performance of the full and reduced model
(F-test, p > 0.05), the SNV that was excluded in the reduced model was considered
as non-contributing to the gene-based association and was excluded from the
SNV-set. This procedure was repeated until all SNVs left in the SNV-set were
significantly contributing to the model.

Validation using UK Biobank whole-exome sequencing (WES) data. The UKB
includes 502,682 participants from all across the United Kingdom, aged 37-73 at
recruitment between 2006 and 2010. The UKB study was approved by the National
Research Ethics Committee (REC reference 11/NW/0382). Informed consent to
the study was given by all participants. Use of UKB data has been approved by the
UKB. The UKB analysis performed in this study has also been approved by the
Swedish Ethical Review Authority (dnr: 2020-04415).

Gene-based analyses were performed using the UKB200K WES dataset, in which
200,643 UKB participants have been sequenced. Exome sequencing was performed

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-30208-8

10 NATURE COMMUNICATIONS |         (2022) 13:2532 | https://doi.org/10.1038/s41467-022-30208-8 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


using IDT xGen Exome Research Panel v1.0 on the Illumina NovaSeq 6000 platform.
We excluded first-, and second-degree relatives using kinship data by using a cutoff
for an estimated kinship of 0.044. Participants with discordance between self-reported
and genetic sex, as well as high heterozygosity, discordance with microarray data or
more than 5%missing genotypes were also excluded. Moreover, participants that self-
reported not being of white-British descent, or who were not classified as Caucasians
by principal component analysis, were excluded resulting in 148,435 participants with
WES data included. A total of 4,934,795 polymorphic CDS variants (call rate > 95%)
were identified. This is a dramatically larger number compared to the NSPHS.
However, reducing the sample size of the UKB cohort, the number of CDS variants
decreased accordingly to 1,563,997 variants when including 10% (N= 14,844) of the
cohort, and 388,570 variants when including 1% of the cohort (N= 1484). In order to
investigate the MAF distribution and the fraction of variance/heritability that can be
attributed rare variants, the three subsets of the UKB cohort (N= 148,435;
N= 14,844; and N= 1484) were used in the analyses below. Only autosomal variants
were included, and variants were annotated using CADD (version 1.5). The UKB data
is reported using hg38 coordinates.

In the UKB, a panel of blood biomarkers were assayed using ten immunoassay
analysers (6x DiaSorin Liaison XL & 4x Beckman Coulter DXI 800) and four clinical
chemistry analysers (2x Beckman Coulter AU5800 & 2x Siemens Advia 1800). All
blood biomarkers were assayed using serum samples, and glycated haemoglobin was
measured using red blood cell samples. For details of the assay production please refer
to the report at http://biobank.ctsu.ox.ac.uk/showcase/showcase/docs/serum_
biochemistry.pdf. For this analysis, we selected a total of 27 biomarkers
(apolipoprotein A1, apolipoprotein B, total cholesterol, alanine aminotransferase,
aspartate aminotransferase, alkaline phosphatase, calcium, cystatin C, creatinine,
C-reactive protein, low-density lipoprotein cholesterol, gamma glutamyltransferase,
high-density lipoprotein cholesterol, triglycerides, insulin-like growth factor I,
glycated haemoglobin, glucose, sex hormone binding globulin, total protein, urea,
phosphate, urate, albumin, direct bilirubin, total bilirubin, and vitamin D) that
had been associated with at least one GWAS hit in a previous GWAS38, and excluded
sex-specific biomarkers (testosterone and 17β-oestradiol).

The gene-based tests were performed using SAIGE-GENE (ver. 0.44.6.5) where
the gene-based SKAT-test is implemented and which is better suited for cohorts
with larger sample size. The 148,435 unrelated white-British participants were
included in the analyses, and since WES data was available, only CDS-sets were
analysed. Since most of the biomarkers in the UKB are not protein biomarkers that
are encoded by one single gene, all analyses were performed genome-wide. In
SAIGE-GENE, the six models were adjusted for sex, age and the first ten principal
components. The CommonRare model (model 6) was excluded because it is not
implemented in the package. The CDS sets were only analysed for autosomal
chromosomes. A Bonferroni-corrected p-value of 1.6 × 10−8 (0.05/27 biomarkers/
18,782 genes/6 models) was used as threshold for significance.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Pseudonymized individual level data from the UK Biobank, that was used for the current
study, are available to bona fide researchers from the UK Biobank, and can be accessed
by an application to the UK Biobank. The application process is described in details at
the UK Biobank homepage (http://www.ukbiobank.ac.uk/about-biobank-uk/). The UK
Biobank data that support the findings of this study are submitted as Supplementary
Data 6. The NSPHS dataset analysed in this project are not publicly available due to the
sensitive nature of this population and due to the informed consent of the participants.
The NSPHS data that support the findings of this study are submitted as Supplementary
Data 2–5. Access to pseudonymized individual level data for NSPHS could be granted by
the corresponding author (asa.johansson@igp.uu.se) for research purposes. Data access
requires that an application has been approved by the Swedish Ethical Review Authority,
for which comprehensive information and a digital application portal available at
(https://etikprovningsmyndigheten.se/). Briefly, the application must have a clear
scientific purpose and clearly describe the objectives, methods, timetable, data
management, and ethical considerations, as well as details about the principal
investigator and all collaborators that needs to have access to the data, together with
information about the entity responsible for the principal investigator. Data delivery is
further subject to legal contracts regarding General Data Protection Regulation (GDPR)
and Material Transfer Agreement (MTA) between Uppsala University and the receiving
entity. Any questions regarding data access could expect a response from the
corresponding author within a week. For annotations following databases were used:
CADD (version 1.3 and 1.5), Eigen-PC scores v1.1, and GENCODE (ver. 26), and
Ensembl regulatory annotations release 92.

Code availability
Code for the heritability calculations and to reproduce the Fig. 1 is available for
download:39 https://zenodo.org/record/6380152.
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