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Abstract

The aim of this study was to explore the development of the gut microbiota in 168 German

Shepherd dogs (30 litters) from 7 weeks to 18 months of age and furthermore, to study the

effect of relatedness, maternal microbiota composition and living environment in a large and

well-defined population of dogs. Using 454 pyrosequencing, we assessed the effects of pre-

and postnatal probiotic supplementation (Lactobacillus johnsonii NCC533 (La1)) and ana-

lysed whether administration of the probiotic strain influenced fecal microbiota composition in

a placebo controlled double-blinded study. The bitches were treated with probiotics or pla-

cebo during last trimester of pregnancy and until their puppies were 8 weeks old, the puppies

received the same treatment as their mothers between 3–12 weeks of age. Samples from

bitches were collected at pregnancy day 42, partum, 4 weeks postpartum and 7 weeks post-

partum and from puppies at the age 4 weeks, 7 weeks, 12–13 months and 15–18 months.

Serum IgA, total serum IgE, fecal IgA and IgG antibody responses against canine distemper

virus were analysed by ELISA in order to detect any immune stimulating effects of the probi-

otic strain. Analysis of the fecal microbiota composition showed that the predominant phyla

were the same in 7 weeks old puppies as in pregnant and lactating bitches (Firmicutes, Fuso-

bacteria, Bacteroidetes). Proportions among different bacteria as well as diversity varied

from 7 weeks old puppies up to 15–18 months of age. Litter mates had a more similar fecal

microbiota compared to unrelated dogs and 7 weeks old puppies were more similar to their

mothers than to unrelated bitches at 7 weeks postpartum but not at partum. We observed a

change in the relative abundance of different bacteria during lactation, and an increase in

diversity from pregnancy to end of lactation. The microbial diversity was affected by living

area where dogs living in big cities had higher diversity compared to dogs living at the coun-

tryside. However, we were not able to demonstrate an effect by pre and postnatal exposure

to Lactobacillus johnsonii NCC533 (La1) upon the diversity or composition of the microbiota

or the levels of serum IgA, total serum IgE, fecal IgA or vaccine response. Our findings pro-

vide a better understanding of the canine fecal microbiota in growing dogs as well as in preg-

nant and lactating bitches. This information forms a basis for further research on the

connection between early gut colonization and immune function later in life.
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Introduction

The distal gut microbiota in mammals is characterized by high population density with a great

amount of diversity. It forms a closely integrated ecosystem which plays a vital role in the func-

tion of the immune system in dogs as well as in other mammals. Knowledge of the canine gut

microbiota has improved with the increased throughput and reduced cost of next-generation

sequencing technologies [1]. Despite this, not much is known about what impact different

environmental factors have on the canine microbiota. To date, the analyses have been limited

to cross-sectional analyses and represent few breeds [2–4]. Hand et al. [4] compared the fecal

microbiota among closely related dogs using 454-pyrosequencing and showed that genetically

related dogs have a more similar fecal microbial composition compared with unrelated dogs of

the same breed. It has also been shown that the gut microbiota is influenced by age [2], but it is

not clear how it changes from puppyhood to adult age. Nor is it known how the gut microbiota

correlates between pregnant and lactating bitches, and their puppies.

The prevalence of allergy and other immune-related disorders have increased in dogs and

humans, particularly during the past decades, which is proposed to be a result of a decreased

microbial exposure that provides a strong environmental signal for postnatal maturation of

the immune system [5,6]. Exposure early in life to immune regulatory bacteria colonizing the

gastrointestinal tract is proposed to have life-long consequences in humans [7,8]. Björkstén [6]

suggested that microbial diversity is an essential environmental signal for maturation of the

human immune system.

It is essential to our understanding of immune-related disorders in both dogs and humans

that we study important factors in shaping the microbiota and maturation of the immune sys-

tem. In this respect, probiotic bacteria are of particular interest. Probiotics are defined as live

microorganisms with documented beneficial effects on health [9]. They are of interest as

potential modulators of immunity and in prevention and treatment of immune mediated dis-

orders, such as allergies.

Probiotic supplementation in dogs early in life could provide an important tool for modula-

tion of immune function well into adulthood [10]. The immune modulatory effects of early

probiotic supplementation in a larger population of free-living dogs have not yet been

described. Since the German Shepherd dog is predisposed to immune-related disorders [11],

this breed is a logical choice as a model to study the maturation of different immune parame-

ters, the fecal microbiota and the effect of probiotic supplementation.

The aim of this study was to explore the development of the gut microbiota in German

Shepherd dogs from 7 weeks to 18 months of age and furthermore, to study the effect of relat-

edness, maternal microbiota composition and living environment in a large and well-defined

population of dogs. Additionally, we evaluated whether administration of probiotics (Lactoba-
cillus johnsonii NCC533 (La1)) would enhance IgG antibody responses against canine distem-

per virus (CDV) in serum, as well as the levels of serum IgA, total serum IgE and fecal IgA.

Furthermore we assessed the effects on the fecal microbiota of early age probiotic supplemen-

tation to bitches and puppies.

Material and methods

Animals and treatment

Thirty pregnant German Shepherd bitches from the kennel of the Swedish Armed Forces

(SAF) were recruited at 42 days of pregnancy and the bitches as well as their offspring alive at

seven weeks of age (n = 184 puppies) were included in the study (Table 1). Consent was

received from the kennel facility manager to use the bitches and their puppies in the study.
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The bitches lived with private families and arrived at the kennel at pregnancy day 37 or earlier.

At the kennel, each bitch and her litter had a separate room (9m2) in room temperature and

with access to outdoor kennel (9m2) without any direct contact to other dogs. The bitches

were walked in leash three times daily and the puppies were socialized daily by the staff at the

kennel. They had free access to water and were fed three-four times daily. All dogs at the ken-

nel were examined weekly by a veterinarian. Upon arrival they were gradually introduced to

the diet (Nestlé Purina Pro Plan Puppy Sensitive Skin, Salmon & Rice Dry (32% protein, 20%

fat, 1.2% omega 3) used throughout the study. Twenty of the bitches were imported, mainly

from other European countries except one from the US, while nine were born at the kennel

and one at another Swedish kennel. Twenty-one sires were used for the 30 litters. Four of the

sires were imported, seven were from other Swedish kennels, and the rest were born at the

SAF kennel. All bitches and their litters were housed and reared with identical routines at the

kennel. When the puppies were eight weeks old, they were moved from the kennel to live with

families throughout Sweden where living areas were registered as countryside (an area local-

ized between cities) (n = 73), small city (population <200,000) (n = 85) or big city (population

>200,000) (n = 26).

Mothers and puppies were restricted to the same diet during the entire study period. Moth-

ers and their litters were separated from other dogs at the kennel and were not given access to

other food. All dogs followed the same vaccination program. The bitches were routinely vacci-

nated every third year against parvo and CDV before time of enrolment, with the last vaccina-

tion within three years. Puppies were vaccinated with the live vaccine Nobivac DHPPi vet. at 7

weeks of age, at 12 weeks and at 12–13 months of age (all after sample collection).

Intervention by probiotic supplementation

The pregnant bitches were divided into two equally sized groups (n = 15) through block

randomization (block size 6), where one group received probiotic supplementation (Lactoba-
cillus johnsonii, La1) and the other group placebo (maltodextrin). The bitches started on treat-

ment three weeks prior to estimated parturition (pregnancy day 42), and continued until the

puppies where eight weeks old. Puppies received oral treatment (same as their mother) at

the age of 3 weeks at the onset of exposure to solid food. The treatment continued until the

puppies were 12 weeks old. The dogs were treated orally once daily with 0.55g (1010 CFU)

powder (or poured on the food after 8 weeks of age). The number of active L. johnsonii was

1.9�1010CFU/g.

The chosen probiotic strain was first identified as L. acidophilus but was reclassified to L.

johnsonii in 1995. It was isolated from the fecal microbiota of a healthy male human. Studies

have shown that the bacteria survives the gastrointestinal tract and enhance immune function

in mice [12,13].

Table 1. Information of the study population with number of dogs in each treatment group (probiotic (La1) and

placebo).

La1 Placebo Total

No. of litters 15 15 30

No. alive at birth 106 87 193

Stillborn 10 18 28

No. at 7w 101 83 184

No. caesarean sections 1 1 2

Sex distribution (F/M) 59/42 39/44 98/86

Birth weight (g) 499 519 507

https://doi.org/10.1371/journal.pone.0193507.t001
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The study was approved by the Local Animal Ethical Committee in Uppsala, Sweden

(C355/9).

Time for sample collection

Blood and feces were collected from bitches at pregnancy day 42, 12-24h after completed

whelping (referred to as partum), 4 and 7 weeks postpartum. Blood and feces were collected

from puppies at 7 weeks, 12–13 months (median 12 months and 20 days) and 15–18 months

(median 16 months and 16 days) of age.

Serum IgA, IgE and IgG against CDV were measured in puppies at the age of 7 weeks, 12–

13 months and 15–18 months, and bitches at 7 weeks postpartum.

Assessment of fecal microbiota

The fecal microbiota was assessed by 454-pyrosequencing of 16S rRNA genes in puppies at 7

weeks, 12–13 months and 15–18 months of age and from bitches at pregnancy day 42, partum

and 7 weeks postpartum. The fecal samples were collected by rectal swabs and frozen at -80˚C

within 48 hours. Between collection and freezing at -80˚C, the samples were stored on dry ice

or in -25˚C freezer.

DNA extraction and preparation of libraries for 454-pyrosequencing. Fecal swabs were

placed in a 15 ml conical tubes containing 1.5 ml PBS (0.85% NaCl, 120 mM NaH2PO4, pH =

8.0) and allowed to set for 5–10 min to loosen. The samples were then vortexed 2–3 times to

remove as much of the fecal materials as possible. Samples were transferred to 2 ml tubes and

the 15 ml tubes were rinsed with an additional 0.3 ml PBS, which was added to the original

sample. After centrifugation at 13,000 x g for 2 minutes. The supernatant was discarded and

the pellet was resuspended in 450 μL of Solution CB1 (warmed to 55˚C) by vortexing at max

speed for 5 minutes using a MoBio Vortex Adapter. Lysates were transferred to the 2 ml

Microbead Tubes and the DNA was extracted following the BiOstic Bacteremia DNA Isolation

Kit (MoBIO Laboratories, Inc. Carlsbad, CA) protocol. Final Volume of the Eluate was

approximately 100 μL. 1 μL of the Genomic DNA was quantified using the Quant-It PicoGreen

dsDNA Assay kit (Invitrogen) on an Flx 800 Microplate Fluorescence reader (Bio-Tek Instru-

ments, Inc.) using Gen 5 software v 2.00.18. Additionally a 1:10 dilution was run on a 1% E-gel

(E-gel 96 1% Agarose (GP), Invitrogen cat), with a Ladder (Invitrogen E-gel 96 High range

Marker) for 12 minutes (EG setting). Bands were imaged for 700–900 ms on a SynGene G:

Box with a Transilluminator using GeneSnap 7.12.06 Software to detect any degradation of the

gDNA. Amplicons from 16S rRNA gene was sequenced using 454 at the Core for Applied

Genomics and Ecology, University of Nebraska, Lincoln. The V123 and V456 region of the

16S rRNA gene was amplified using bar-coded fusion primers[14] with the Roche-454 A or B

titanium sequencing adapters. All samples were multiplexed with equal amount and sequenced

using Roche GS FLX pyrosequencer at the Core for Applied Genomics and Ecology, Univer-

sity of Nebraska, Lincoln.

Bioinformatics data processing. The raw data from 454-pyrosequencing were processed

using QIIME version 1.8.0 [15]. Data were filtered to remove low-quality reads not meeting

the following quality criteria: (1) a complete barcode sequence immediately followed by a for-

ward primer sequence, with no mismatch in either barcode or primer sequence; (2) read

lengths between 200 and 500 base pairs (bps); (3) average quality score of 25 or higher in a slid-

ing window of 50 bases; and (4) maximum homopolymer run of 6. Sequencing errors charac-

teristic to pyrosequencing were removed by flowgram clustering [16]. Chimeric sequences

generated due to PCR amplification of multiple sequences were removed using UCHIME [17].

Processed reads were then demultiplexed into barcode-indexed samples. The barcode, forward
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primer, and reverse primer were subsequently trimmed from each read. This yielded a total of

1502990 reads from 507 samples from puppies and 246464 reads from 90 samples from

bitches. The average length of the reads was 427 and 338 bps for bitches and puppies

respectively.

Reads were clustered into operational taxonomic units (OTU) using a closed reference-

based UCLUST algorithm at a 97% sequence similarity level implemented in QIIME [15,17].

The reference sequences and taxonomy assignment map were constructed from the green-

genes database, August 2013 release [www.greengenes.lbl.gov].

Sampling and measurement of antibodies in fecal contents

Fecal IgA was extracted from fresh (mothers) or frozen (puppies) feces (due to practical rea-

sons). Fecal samples from puppies were frozen within two hours of collection and extracted in

association with analysis, while the fresh fecal samples from the mothers were extracted within

45 min and then frozen. Using 1.5ml of the extraction buffer (50mM-EDTA and 100μg/l soy-

bean trypsin inhibitor in PBS/1% BSA from Sigma-Aldrich, Schnelldorf Germany), 0.5g of fae-

ces were vortexed. Phenylmethanesulphonyl fluoride (25μl, 350mg/l from Sigma-Aldrich,

Schnelldorf Germany) was added to each tube, and the samples were centrifuged for 10min.

The supernatants were collected and frozen at -80˚C until assayed for IgA by ELISA (Bethyl

laboratories Inc. Montgomery, Texas) within 45 months (when all samples were collected) as

follows: a 96 well plate was coated overnight at 4˚C with a 1:100 dilution of goat anti-canine

IgA, affinity purified in 50μl of borate buffer (6.2g H3BO3/l, 9.54g Na2B4O7 10H2O/l and 4.4g

NaCl/l, pH7) and then washed with PBS-Tween-20. Free binding sites were blocked with

100μl of PBS containing 5% fetal calf serum and 0, 1% Tween-20 (ELISA buffer) for 1h at

37˚C. Duplicate fecal extracts were incubated with ELISA buffer (final volume 50μl) for 2h at

37˚C and then washed with PBS-Tween-20. The plate was incubated with a 1:10000 dilution of

polyclonal goat anti-canine IgA conjugated with horseradish peroxidase in ELISA buffer (final

volume 50μl) for 1h at 37˚C, washed with PBS-Tween-20 and developed with 50μl of the TMB

peroxidase substrate system according to the manufacturer´s instructions. The reaction was

stopped with 50μl of 1M-phosphoric acid. Colour development was read at 450nm (BioTek

Synerge H1 Hybrid Reader), and results expressed as μg/ml using a canine IgA standard. The

concentration of fecal IgA was adjusted against total protein content in feces and expressed

as μg IgA/μg total protein (TP).

Sampling and measurement of antibodies in serum

Blood samples were collected from the cephalic vein. Before centrifugation samples were left

to clot for at least 30 min at room temperature. After centrifugation (10 min, 7,200 rpm),

serum was collected and frozen. All samples were frozen at -80˚C within 48 hours. Between

collection and freezing at -80˚C, the samples were stored in dry ice or in -25˚C freezer.

Serum was assayed for IgA, total IgE, and IgG against CDV within 45 months by ELISA

(Bethyl laboratories Inc. Montgomery, Texas) as follows: a 96 well plate was coated overnight

at 4˚C with a 1:100 dilution of goat anti-canine IgA, IgE (Bethyl laboratories Inc., Montgom-

ery, Texas) or CDV (VMRD, Inc.) Affinity purified in 50ul of borate buffer (6.2g H3BO3/l,

9.54g Na2B4O7 10H2O/l and 4.4g NaCl/l, pH7) and then washed with PBS-Tween-20. Free

binding sites were blocked with 100ul of PBS containing 5% fetal calf serum and 0.1% Tween-

20 (ELISA buffer) for 1h at 37˚C. Duplicate serum samples were incubated with ELISA buffer

(final volume 50μl) for 2h at 37˚C and then washed with PBS-Tween-20. The plate was incu-

bated with a 1:10000 dilution of polyclonal goat anti-canine IgA conjugated with horseradish

peroxidase in ELISA buffer (final volume 50μl) for 1h at 37˚C, washed with PBS-Tween-20
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and developed with 50μl of the TMB peroxidase substrate system according to the manufac-

turer´s instructions. The reaction was stopped with 50ul of 1M-phosphoric acid. Colour devel-

opment was read at 450nm (BioTek Synerge H1 Hybrid Reader), and results expressed as μg/

ml using a canine standard. The vaccine response was calculated as the difference in concen-

tration of IgG against CDV between 7 weeks and 13 months. All results were expressed in this

paper as g/L.

Statistical data analysis

The relationships between the microbiota and metadata variables were explored using Orthog-

onal partial least square method with discriminant analysis (OPLS-DA) [18,19] using SIM-

CA-P+ and MATLAB routines. OPLS-DA is a constrained multivariate model meaning that

the program is aware of the grouping and/or clustering of the samples and can answer if there

are differences between treatments.

A standard 7-fold cross validation method was applied to establish the robustness of the

models. In OPLS-DA models the Q2 are reported. The cross-validation parameter, Q2 (which

can range from -1 to +1), represents the predictability of the models and is used to test the

validity of the model against over-fitting. A Q2 value >0.6 indicates that differences between

groups that are significantly different. Analysis of variance testing of cross-validated predictive

residuals (CV-ANOVA) was also applied for each model and the ANOVA tables were

reported. CV-ANOVA is another diagnostic tool for assessing the reliability of OPLS-DA

models [20]. Pairwise OPLS-DA were applied to sample clusters (age, treatment, living area)

with unit-variance scaling (each parameter has a mean of zero and a variance of one). Pairwise

OPLS-DA models were generated with 1 predictive component, and 2 orthogonal components

to discriminate between the groups. In order to detect any correlations between fecal IgA and

microbiota, the fecal IgA data from puppies at all ages were divided into three percentiles,

where the lower and upper 30% were regarded as low and high fecal IgA respectively.

To calculate the Shannon diversity index, the OTU table was first rarefied at the depth level

of 500–550 sequences for 10 iterations per sample. Shannon index was calculated for each rare-

fied OTU table. Mann Whitney U test was performed to compare the diversity indexes

between groups and the P values and mean +/- SD were reported. Mann Whitney U test was

also performed to test for similarities in microbiota composition between mothers and puppies

(based on weighted unifrac distances).

Linear discriminant analysis (LDA) effect size (LEfSe) was utilized to identify differentially

abundant bacterial taxa. Linear discriminant analysis effect size algorithm is a high-dimen-

sional class comparisons with a particular focus on metagenomic analyses [21]. LEfSe first

determines the features (OTUs in this study) which are most likely to explain differences

between classes by using nonparametric factorial Kruskal-Wallis sum-rank test. Then, LEfSe

uses LDA to estimate the effect size of each differentially abundant feature. It can also provide

a mapping of the differences to taxonomic or functional trees.

Similarities between littermates and unrelated dogs were tested using an analysis of similar-

ity (ANOSIM) based on weighted UniFrac distance, where a p-value of<0.05 was regarded as

a significant difference.

R (R Core Team, 2012) and lme4 [22] were used to perform linear mixed effect analyses on

the change of immunoglobulins over time and the effect of probiotic treatment upon immuno-

globulins. Linear mixed effects models allowed us to control for this non-independence. For

all the linear mixed models, litter membership was entered as a random effect where the inter-

cept was allowed to vary between litters. The results were presented as the estimated popula-

tion mean differences based on the model (β). P-values were obtained by Wald Z-tests.
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For all analyses, data with a z-score less than -3 or greater than 3 was regarded as an outlier

and was not included in the analyses. Level of significance was set to p = 0.05.

Results

This study included 30 bitches and their 184 offspring, of which 168 completed the study.

Fourteen dogs were excluded due to unrelated medical reasons and two dogs due to behaviour

problems. Eleven of the 16 excluded puppies were excluded before 13 months of age. One litter

(n = 2) in the La1-group and one litter (n = 2) in the placebo-group were delivered by caesar-

ean section. It was too few dogs to do any separate analyses on this group. However, the four

pups born by caesarean section were not outliers in the data.

Gut microbiota in puppies and their mothers

Pyrosequencing of amplicons prepared from the V123 and V456 region of the 16 rRNA genes

identified 306 unique operational taxonomic units (OTU) (S1 Table).

The composition of the microbiota in puppies showed a clear age-related structure with a

significant difference between 7 weeks old puppies and dogs at 15–18 months of age

(OPLS-DA; Q2 = 0.61) (Fig 1).

Firmicutes was the most dominant phylum at all ages with a relative abundance of 78–89%

whereas Actinobacteria was the second most dominant phylum at all ages with a relative abun-

dance of 4–9%. (Fig 2A). The abundance of three families, Clostridiaceae, Erysipelotrichaceae

(unidentified genus) and Lachnospiraceae increased from puppyhood to adulthood (15–18

months of age) whereas Erysipelotrichaceae (genus Allobaculum), Lactobacillaceae and Bifido-

bacteriaceae decreased from puppyhood to adulthood (Fig 3). The dramatic change in compo-

sition of the microbiota from young to adult, was not reflected in diversity. The Shannon

diversity index was similar from 7 weeks up to 15–18 months of age (3.28±0.63 to 3.02±0.81).

There was a strong litter effect at 7 weeks of age when the puppies lived in the same envi-

ronment (ANOSIM analysis on weighted UniFrac distances: R = 0.49, p = 0.001). This litter

effect was less obvious, but still significant, at 18 months of age when the dogs lived in different

environments but still fed the same diet (weighted UniFrac R = 0.17, p = 0.001). The distribu-

tion of weighted Unifrac indexes between littermates and unrelated dogs for different ages are

shown in Fig 4.

Firmicutes was the predominating phylum also in the bitches at all sampling points with

relative abundances of 50–75% (Fig 2A). The bacterial community structure in bitches was sta-

ble from pregnancy day 42 to partum, but was shifted after whelping (between partum and 7

weeks postpartum; OPLS-DA, Q2 = 0.64 and pregnancy day 42 to 7 weeks postpartum;

OPLS-DA, Q2 = 0.57). During this period, Erysipelotrichaceae and Lactobacillaceae were most

increased, while Fusobacteriaceae and Clostridiaceae were most decreased (Fig 5). The micro-

bial diversity increased from pregnancy day 42 to 7 weeks postpartum (Shannon´s diversity

index: 3.76±0.41 to 4.03±0.37, p<0.01). The diversity was higher in the mothers than in the

puppies at all ages. Interestingly, the composition of the microbiota also differed between the

mothers 7 weeks postpartum and the 15–18 months old dogs (Q2 = 0.84) where the young

dogs had more Clostridiaceae and Coriobacteriaceae, and the mothers had more Erysipelotri-

chaceae and Alcaligenaceae (Fig 2B). The composition of the fecal microbiota in bitches was

more similar to the microbiota of puppies at 7 weeks postpartum than at partum. The 7 weeks

old puppies were no more similar to their mothers than to unrelated bitches at partum. How-

ever, the puppies were significantly (P< 0.001) more similar to their mothers than to unre-

lated bitches at 7 weeks postpartum (Fig 6).
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The effect of environmental factors on fecal microbiota and

immunoglobulins

The bitches were treated daily with Lactobacillus johnsonii NCC533 (La1) from pregnancy day

42 until the puppies were eight weeks old. Puppies were treated between 3–12 weeks of age.

Supplementation of the probiotic strain (La1) did not influence the diversity or composition of

the microbiota in either the bitches or the puppies. The probiotic treatment did not affect the

levels of serum IgA, total serum IgE, fecal IgA in bitches or puppies or the vaccine response.

Diversity was significantly affected by living environment (countryside, small cities or big

cities). Dogs living in big cities during their first 1.5 year of life had higher diversity compared

to dogs living in small cities (3.36±0.63 vs 2.95±0.81, p<0.01) or at the countryside (3.36±0.63

vs 2.91±0.83, p<0.01). This difference was not seen at 7 weeks when all puppies lived at the

kennel. The structural composition of the fecal microbiota was not significantly affected by liv-

ing environment.

Fig 1. An OPLS-DA revealed differences in composition of the microbiota of dogs related to age. The OPLS-DA plot

shows a comparison of the fecal microbiota in 7 weeks old puppies (blue) and when they becomes 15–18 months old (green),

OPLS-DA; Q2 = 0.61.

https://doi.org/10.1371/journal.pone.0193507.g001
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Discussion

This is the first study to describe the fecal microbiota in a large number of dogs of the same

breed, from the same kennel under well controlled natural conditions -giving us a unique

opportunity to study the effects of age, relatedness, reproductive stage, living area and the

effects of a characterized probiotic strain on the fecal microbiota.

We found that Firmicutes, Bacteroidetes, Fusobacteria and Actinobacteria were the pre-

dominant phyla in feces in puppies as well as in pregnant and lactating bitches. This is in

accordance with earlier studies where a similar pattern has been described in adult dogs using

Fig 2. Relative abundance of bacteria phyla (a) and family (b) in feces from bitches at pregnancy day 42, partum and 7 weeks postpartum and from puppies at 7 weeks,

12–13 months and 15–18 months of age. Families with relative abundance>1% are included.

https://doi.org/10.1371/journal.pone.0193507.g002

Fig 3. Linear discriminant analysis (LDA) effect size (LEfSe) showing differentially abundant bacterial taxa

between 7 weeks and 15–18 months old dogs. Taxonomic groups significantly enriched in 7 weeks old puppies are

indicated with green whereas the taxa enriched in 15–18 months are shown in red. P-value = 0.05 and absolute LDA

score>4.0.

https://doi.org/10.1371/journal.pone.0193507.g003
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pyrosequencing of fecal samples [23–25]. Although the predominant phyla are similar, propor-

tions vary among these studies. Several sources can contribute to such variability, including

breed, age, living conditions, diet and methodology. In our study, the microbial diversity was

similar from 7 weeks to one year of age, although the composition of the fecal microbiota

Fig 4. Boxplot showing the distribution of weighted unifrac distances comparing the microbiota between siblings

and unrelated dogs at different ages. A distance of 0 represents an identical composition of the microbiota whereas 1

represents a total dissimilarity.

https://doi.org/10.1371/journal.pone.0193507.g004

Fig 5. Linear discriminant analysis (LDA) effect size (LEfSe) showing differentially abundant bacterial taxa

between pregnancy day 42 and 7 weeks postpartum. Taxonomic groups significantly enriched at pregnancy day 42 is

shown in green and the taxa enriched 7 weeks postpartum are shown in red. P-value = 0.05 and abs LDA score>4.0.

https://doi.org/10.1371/journal.pone.0193507.g005
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changed during this period with Erysipelotrichaceae being the most abundant family at 7

weeks of age and Clostridiaceae at one year of age. Litter mates had a more similar fecal micro-

biota profile compared to unrelated dogs, especially at 7 weeks of age. This could be explained

by a more heterogenic environment at 13 and 18 months of age, compared to 7 weeks where

the puppies lived in the same place. Our results are in accordance with the results of Hand

et al. [4] who showed that 11 closely related miniature Schnauzer dogs had a more similar fecal

microbiota profile compared to unrelated dogs within the same breed. By contrast, Middelbos

et al. [23] could not find any correlation in a study where they compared 3 pairs of littermates.

However, our study compared a much larger number of litters (n = 30) and this may account

for the discrepancies between studies. The low sequencing depth in our study could also be a

reason for different results between the studies. There were more pronounced differences in

the composition of the fecal microbiota among younger than older dogs. This could be

explained by a greater variation in diet between litters at 7 weeks of age, were some of the litters

were weaned and only had solid food, while others were still suckling. The composition of

microbes and oligosaccharides in the milk may also have had an effect.

Fig 6. Boxplot showing the distribution of weighted unifrac distances comparing the composition of the

microbiota in 7 weeks old puppies with their mothers at partum and 7 weeks postpartum, and with unrelated

bitches at partum and 7 weeks postpartum. A distance of 0 represents an identical composition of the microbiota

whereas 1 represents a total dissimilarity.

https://doi.org/10.1371/journal.pone.0193507.g006
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In our study we observed a significant change in the relative abundance of different fecal

bacteria during lactation (from partum to 7 weeks postpartum), but not during the last tri-

mester of pregnancy. We also observed an increase of diversity (Shannon´s index) from preg-

nancy day 42 to 7 weeks postpartum. Lactobacillus was one of the genus that increased during

lactation (in the probiotic as well as the placebo group). This genus was also higher in relative

abundance in 7 week old puppies (probiotic and placebo groups) compared to young adults.

Canine milk contains lactobacilli and may be a natural source of these potentially probiotic

bacteria for the suckling puppy [26]. In humans [27,28] and mice [29] it was shown that during

lactation, cells of the intestinal lymphoid tissue travelled to the mammary glands through the

lymphatic system and peripheral blood, transferring maternal microbiota to the newborn via

milk. This entero-mammary pathway could be a possible route in which maternal probiotic

treatment during lactation affected the microbiota in suckling puppies. However, we could not

detect a difference in the amount of lactobacilli in the fecal microbiota of puppies between the

La1-group and the placebo group.

There was no difference in composition of the fecal microbiota between mothers and unre-

lated bitches at partum when comparing with 7 week old puppies. Our findings are similar to

those of Koren et al. [30] in humans where they showed that children´s microbiotas (at all

ages) were no more similar to their own mothers´ than unrelated mothers´. However, the pup-

pies were significantly more similar to their mothers than to unrelated bitches at 7 weeks post-

partum. This could be explained by the mothers´ behaviour of eating their puppies´ stool,

making the maternal microbiota more similar to the microbiota of their puppies. That could

also explain why the relative abundance of Lactobacillus spp. increased in the bitches during

lactation.

As far as we know, this is the first and only study comparing the gut microbiota in pregnant

and lactating bitches. Koren et al. [30] showed that the composition of the gut microbiota in

women changes dramatically during pregnancy but are then stabilized during first month

postpartum. This finding was supported by Carrothers et al. [31], Hesla et al. [32] and Jost

et al. [33] who found that the microbiota in lactating women was relatively stable in the post-

partum period. The results from the human studies are in contrast to our study where we

found a significant change in the bitch fecal microbiota during lactation, which–once again–

could be explained by the mothers´ behaviour of eating their puppies stool.

Our study is the first to show that the living environment affects the fecal microbiota of

dogs. We observed differences between dogs growing up in the countryside compared to dogs

living in cities. Dogs growing up in big cities had higher diversity than dogs living in small cit-

ies and at the countryside. These differences were not observed at 7 weeks of age when all pup-

pies shared the same environment at the kennel, indicating that living area is the affecting

factor in this aspect. Dicksved et al. [34] showed that anthroposophically raised children had

higher diversity of their fecal microbiota compared to farm children, indicating that living

conditions affect the diversity of human fecal microbiota. It was, however, not possible to pin-

point the responsible factors in their lifestyle that contributed to this difference. One important

factor could be the diet, since the different lifestyles are related to consumption of different

food. In our study, food was standardized throughout the whole study period which mini-

mized the effect of diet. The impact of lifestyle upon the human gut microbiota has also been

shown by Martinez et al. [35] who compared the fecal microbiota in adults from non-industri-

alized regions of Papua New Guinea with that of United States residents. They showed that

Papua New Guineans had a fecal microbiota with higher diversity, lower inter-individual vari-

ation and different abundance profiles. However, dogs ingest more environmental microbes

than humans because of their grooming habits, which might affect their fecal microbiota.

Dogs living in big cities are often exposed to many different environments and a wide range of
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microbes, which might affect the microbial diversity. We also suspect that dogs living in big

cities are more prone to travel around in different milieus, compared with dogs living at the

countryside. Furthermore, the hygienic lifestyle of humans living in cities may not be reflected

in their dogs.

Pre- and postnatal treatment with the probiotic La1 did not alter the composition of the

fecal microbiota or diversity in either puppies or bitches. This is in accordance with results

from the study of Garcia-Mazcorro et al. [36], who could not observe any changes in the

fecal microbiota of healthy adult dogs (n = 12) after 3 weeks of treatment with a multi-species

symbiotic (Proviable1-DC). Roos et al. [37] treated infants with Lactobacillus reuteri for

three weeks and could not detect any significant changes in the composition of their fecal

microbiota. However, the fecal microbiota may not be a representative marker to display how

the microbiota in different parts of the gut is affected by the treatment. Samples from different

parts of the gut would be needed to answer that question. Furthermore, a higher sampling

depth would yield more extensive information regarding the composition and diversity of the

microbiota. Besides the absence of impact on the intestinal microbiota, probiotic supplementa-

tion did not affect the levels of serum IgA and fecal IgA in our study, which is in accordance

with the findings of Garcia-Mazcorro et al. [36]. Benyacoub et al. [10] fed laboratory dogs with

Enterococcus faecium (SF68) daily from weaning up to one year of age. They showed that the

treatment increased vaccine (CDV) response and amount of circulating IgA and fecal IgA,

indicating an immune-stimulatory effect. However, we used another probiotic strain and a

shorter treatment period which might account for our absence of a treatment effect.

Limitations of this study include the long interval time between first and second sample col-

lection in puppies, the differences in diet and living conditions in bitches before the study, dif-

ferent length of the lactation period between litters, and a short treatment period in puppies.

The treatment of puppies could have been more effective if started at birth, and in a larger

study population with enough statistical power. That might have made it possible to detect the

effect of probiotic treatment upon outcome of immune-related diseases. Biopsies from the

small intestine would also give valuable information regarding the effects of probiotic treat-

ment upon the gut microbiota. A methodological limitation is the low sequencing depth. Fur-

ther studies should be focused on earlier treatment of puppies and with different probiotic

strains, and in a larger study population with enough statistical power. That might have made

it possible to detect the effect of probiotic treatment upon outcome of immune-related

diseases.

In conclusion, we were able to describe the composition of gut microbiota in dogs and how

it changes in different life stages including pregnancy, lactation and growth. Litter mates had a

more similar fecal microbiota compared to unrelated dogs. We observed a change in the rela-

tive abundance of different bacteria during lactation, and an increase of diversity from preg-

nancy to end of lactation. We also found that the diversity of fecal microbiota was affected by

living environment but we were unable to demonstrate an effect of pre and postnatal exposure

to the chosen strain of probiotics.

Our findings provide a better understanding of the canine fecal microbiota in growing dogs

as well as in pregnant and lactating bitches. Our results provide information to an area within

canine microbiology which is not studied before -this is the first study to describe the gut micro-

biota in pregnant and lactating bitches and their offspring in a large well-defined study popula-

tion. This extensive trial, with a large study population, born and raised under controlled

conditions, provided us with a large amount of data, useful for further research on the relation-

ship between the microbiome influences at an early age and immune function later in life.
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