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ABSTRACT Continuous respiratory monitoring is an important tool for clinical monitoring. The most
widely used flowmeasure device is nasal cannulae connected to a pressure transducer. However, most of these
devices are not easy to carry and continue working in uncontrolled environments which is also a problem.
For portable breathing equipment, due to the volume limit, the pressure signals acquired by using the airway
tube may be too weak and contain some noise, leading to huge errors in respiratory flow measures. In this
paper, a cost-effective portable pressure sensor-based respiratory measure device is designed. This device
has a new airway tube design, which enables the pressure drop efficiently after the air flowing through the
airway tube. Also, a new back propagation (BP) neural network-based algorithm is proposed to stabilize the
device calibration and remove pressure signal noise. For improving the reliability and accuracy of proposed
respiratory device, a through experimental evaluation and a case study of the proposed BP neural network
algorithm have been carried out. The results show that giving proper parameters setting, the proposed BP
neural network algorithm is capable of efficiently improving the reliability of newly designed respiratory
device.

INDEX TERMS Respiratory monitoring, mainstream, airway flow, respiratory tube, BP neural network.

I. INTRODUCTION
Respiration is an important physiological process which can
maintain the vital signs of people stability. Respiratory dis-
eases, such as asthma, chronic rhinosinusitis, bronchiecta-
sis and obstructive sleep apnea, are widely prevalent all
around the world. According to the survey from WHO [1]
in 2016, over 235 million people suffer from asthma and over
3 million people die each year from chronic obstructive pul-
monary disease (COPD). To effectively and accurately assess
cardiorespiratory functions, respiratory monitoring is a key
component during the administration of respiratory diseases
and intensive care unit [2]–[4].

Various techiniques have been used to measure respira-
tory flow by now, which can be categoried as two ways:
direct-mode [5], [6] and indirect mode [12]–[14]. The direct

way of measuring respiratory flow is typically achieved by
utilising respirometry devices for monitoring airflow, includ-
ing pneumotachorgraph, heated thermistor, and anemome-
try or nasal cannulae connected to a pressure sensor [5].
For instance, we have made some progress in the CO2 con-
centration detected based on the NDIR technology [7]–[9]
and the accuracy of CO2 concentration monitoring device
with pyroelectric sensor can be up to 0.23 mmHg [10], [11].
Due to the advantage of direct connection and close measure
to the patient airway, these devices are able to accurately
measure people’s pulmonary function and further precisely
deliver monitoring their respiratory flow. But this method is
easy to cause the respiratory pipeline to be polluted, so the
precision of the measurement is affected. The indirect way
of monitoring respiratory flow can rely on detecting chest or
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abdomincal movements using respiratory inductance plethys-
mography (RIP), strain usages or magnetometers [12]–[14].
In comparison with direct-mode, due to ease of attachment
and comfort, indirect approaches are more suitable to contin-
uous respiratory monitoring in clinics. However, it is limited
by its relatively low accuracy and slow responses to patients.
Considering that accuracy is top priority of most respiratory
monitoring systems, in this article we chose direct way of
measuring respiratory.

For direct-mode approaches, they require the systems to
pay great attention to accuracy, calibration, repeatability,
and precision for strict laboratory measurements. The most
widely used flow measuring device is nasal cannulae con-
nected to a pressure transducer. The operation principle of
pressure sensors for measuring respiratory flow is that the
volume flow can be measured by the pressure drop via a flow
element, which involves sensing a flow-induced differential
pressure. The Philips-Respironic family [15] has made some
early attempts on adding pressure-sensing ports on both the
proximal and distal sides of the optical window in a main-
steam CO2 cuvette. For daily use, due to the pursuit of the
device’s accuracy, the portability of the breathing machine is
greatly decreased so it is not easy to carry, and needs higher
requirements for the environment, so the research on a small
volume, simple power suppied mode and the device which
can adapt to various environmental respirationmonitoring are
very necessary.

In this paper, we proposed a pressure sensor based mea-
suring device which combines the designed airway tube
with breathing circuits. In order to accurately monitor the
physical condition of patients, we designed a device which
combines the respiratory tube with the breathing circuit. Our
system uses piezoresistive silicon sensor to measure airway
flow [16]. Considering some issues may affect the accuracy
of our experimental results, we adopted mainstream airway
adapter to make the results in real-time and with higher
fidelity. Accurate sensor and stable circuits are chosen to
enhance the accuracy of our experimental results. The main-
stream device can be used for monitoring the respiratory flow
in patient care, anesthesia, and transport. By confirming the
device can produce stable signals, we carried out targeted
experiments depending on the proposed device. On the basis
of analyzing the experiment data, we proposed the algorithm
which is based on the back propagation (BP) neural network,
and BP neural network model is also established. We carried
out targeted experiments by using the proposed device and
confirmed that the device was reliable. The main contribu-
tions of this paper are below:

1) A cost-effective portable pressure sensor based respi-
ratory measureing device is designed. This device has
a new airway tube design, which enables that the pres-
sure drop can efficiently emerge after the air flowing
through the airway tube.

2) A new back propagation (BP) neural network based
algorithm is proposed to stablise the device calibra-
tion and remove pressure signal nosie, for improving

the reability and accuracy of proposed respiratory
device.

3) A through experimental evaluation and a case study of
proposed BP neural network algorithm have been car-
ried out. The results show that giving a proper parame-
ters setting, the proposed BP neural network algorithm
is capable of efficiently improving the reliability of new
designed respiratory device.

The remainder of this paper is organized as follows:
Section 2 introduces the related work to respiratory flow
measurement. Section 3 presents the detailed design of
device and method and analysis of calibiration and testing.
Section 4 describes the experimental analysis and compar-
isons, and Section 5 concludes the paper.

II. RELATED WORK
A. MAINSTEAM DIFFERENTIAL PRESSURE FLOW SENSORS
Given the portability and the requirement of clinical respi-
ratory monitoring, the most widely used flow measurement
devices are the Fleisch or Lilly-type differential pressure
pneumotach [17], [18] with a heated microtube or screen
orifice. For enabling faster signal response and precise time
alignment between the flow and gas concentration signal,
these pressure sensor based respiratory devices are main-
stream, located directly on the patient’s endotracheal tube.

The measurement of airway flow is based on the method
of measuring differential pressures between two pressure
ports which are placed on the airway tube. The Bernoulli
law is used to determine flow based on the differential
pressure:

1
2
ρν2A + ρA =

1
2
ρν2B + ρB (1)

Where ρ is the density of air, vA and vB are the velocities of the
airflow at the two different ports, ρA and ρB are the magnitude
of the pressure [18].

Usually, it is quite simple and precise for the monitor-
ing of airway flow by measuring the differential pressure.
However, a common problem in many cases is that the pres-
sure signals acquired by using the airway tube may be too
weak and contain some noise, further leading to huge errors
in respiratory flow measures. The acquisition of pressure
signals has a strong relationship with the airway tube [29].
As such, the airway tube is the basis of the system to acquire
pressure signals, the structure of airway tube must be taken
into consideration and a reasonable pipeline directly affects
the accuracy of measurement results.

B. ARTIFICIAL NEURAL NETWORKS
Due to huge uncertainty and noise of sensor signals in res-
piratory flow measures, it is indispensable to employ some
advance algorithms to improve the classification of respi-
ratory states. For respiratory states estimation, many ANN
based classification methods have been proposed to deal with
various type of sensing signals, for instance, ANN with mul-
tilayer perceptron [19], Fuzzy logic with Fuzzy Knowledge

1600112 VOLUME 6, 2018



D. Fan et al.: Effectively Measuring Respiratory Flow With Portable Pressure Data Using BPNN

Base Controller (FKBC) [19], Black propagation neural net-
works (BPNN) [20], K-Nearest Neighbour (KNN) supervised
learning classifer and Support Vector Machine (SVM) [21].
Owning to the capability to solve nonlinearly separable prob-
lems and the flexibility to implement on-chip processor,
Artifical Neural Networks (ANN) [19], [20] are frequently
used for classification. The conventional ANN can achieve
the indispensable conversion and clustering operations rou-
tinely and concurrently.

In this work, BP neural network (BPNN) algo-
rithm [22], [23] are investigated as a potential way for
enhancing the efficiency and accuracy of respiratory flow
meausres. BP neural network has many advantages, such as
that it has the characteristics of self-learning and it is adaptive.
Moreover, BP neural network has robustness and generaliza-
tion which makes it widely used in many fields [24], [25],
such as function approximation, pattern recognition, image
processing, forecasting and other fields. The basic principle
of the neural network is to put input vector (provided by the
training sample data) through a series of hidden layers [26]
and then it will build the relationship between input and
output data. The forward transmission of input data and the
reverse transmission of output error data form the information
cycle of BP neural network. BP algorithm modifies the
connection weights of neurons on the basis of output error
data. The purpose is to make output error data to reach an
expected range. Hebb learning rule [27] and Delta learning
rule are the two very classic learning rules for neural network
learning.

III. METHOD
A. DESIGN OF THE MAINSTREAM DEVICE
Given the portability and the requirement of clinical respi-
ratory monitoring, the mainstream device has been designed
with three functional modules (see Fig.1).

FIGURE 1. Structure of mainstream device.

The pressure sensor is a piezoresistive silicon sensor in
which the piezoresistors are arranged in the Wheatstone
bridge configuration to achieve higher voltage sensitivity and
low temperature sensitivity [28]. Since the signals which

are acquired from the sensor may be too weak and noisy,
a band-pass filter amplifying circuit is designed to intensify
pressure signals and filter the noise [17].

In general, in this device, sampling and amplifying circuits
are integrated in the samemodule, and the system can directly
filter on the lower position machine. The design helps to
improve the portability of the device and high integrate of
the system to reduce the external circuit interference which
can generate electromagnetic wave of the signal. At the same
time, the two modules are independent power supplied to
improve the anti-interference performance. So the device
is more concise, stronger anti-interference compared to the
similar equipment.

The design of this device has also considered other envi-
ronmental issues’ impacts. First, regarding the influence of
temperature on respiratory equipment accuracy, the device
we designed will be used in normal daily environmental
temperature conditions. So a cost-effective silicon piezoresis-
tive pressure sensor MS4515 with temperature compensation
circuit is chosen to be integrated in this device. The operating
temperature range of this sensor is between 0 to 60 degrees.
In comparing with common pressure sensors, our device
has the feedback circuit with temperature compensation, and
the pressure curve is calibrated after compensating. Also,
the analog signal in our device is converted by alternating
current AD and direct current DA. The second issue is the
effect of humidity on the precision of the sensor. Some initial
experiments are carried out to evaluate the change of humidity
impacting on the carrier signal of AC component and DC
component. The experimental results show that humidity
change mainly affects the strength of AC component; and
the airflow intensity change mainly causes the oscillation of
the DC component. Therefore, we have used 3D printing
technology to make the pipeline replaceable, so it is simply
and conveniently for users to replace the pipeline, which is
seriously polluted. Finally, in order to reduce the effects of
the foreign body produced when breathing we added filter
screen at the front of the pressure ports. In order to reduce
the influence of the breathing precision, we calibrated every
pipeline after installing filter screen, and saved the calibrated
parameters.

B. DESIGN OF BP NEURAL NETWORK MODEL
When we collected the output data of the sensor, we found
that the data were a set of discrete voltage values; and as our
device is portable, its performance will be reduced compared
with the professional equipment, so if we want to make use of
these data for further processing, we must select appropriate
algorithm tomake up for declining accuracy caused by simple
hardware equipment, and make the results closer to the actual
testing result.

Usually, interpolation method can fit the data of the sen-
sor [29] or the least square method [30], [31]. During the
experiment, the application of interpolation fitting requires
the fitting curve through all the points, but our portable
equipment is not high precision as professional equipment,
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so the fitting accuracy and resolution of the original data
are not up to the requirements of professional equipment.
If the interpolation method is used to fit the curve, the curve
will appear a very obvious inflection point, which makes the
flow in some specific appear relatively large error. Using
the least square method will also appear such a situation.
Because the least square method is restricted by the function,
so sometimes it will not exactly fit the desired function.
It requires applying a more professional fitting algorithm
to achieve the results of fitting and make the equipment to
achieve the best response to the change of the weak airflow.
Also for the universal ventilator sensors, the typical range of
the fitting is between 0 and 1 psi, the sampling points in this
range can satisfy the condition of least squares fitting. But in
some places where the air changes are relatively large so the
application of piecewise least square method will have a steep
line, which leads to inaccurate measurement results. Even
worse, in the actual measurement process, we found that the
maximum pressure generated by breathing is far less than the
1psi. In this experiment, we selected 2inH2O as themaximum
range of the sensor. It is proved that this measurement range
can well meet the needs of the measurement, the decrease of
themeasurement range of the sensor can shorten the sampling
accuracy of the least square method to increase the further
error.

FIGURE 2. Three layers BP neural network.

The specific function of the network topology does not
restrict BP neural network, it is simple, and has high accuracy,
and it has strong maneuverability, so we selected BP neural
network as fitting function to fit the data. In this paper BP
neural network model is designed as a three layers network
(see Fig.2), which includes input layer, output layer and hid-
den layer. When the actual output data are not in conformity
with the expected output data, the algorithm turns to transmit
in the opposite direction, from the output layer to the hidden
Layer then to the input layer and corrects weights and thresh-
olds of each layer according to the predictive error gradient.
In this work, the selected excitation function is hyperbolic
tangent sigmoid transfer function; the training function is
trainlm training function.

C. ANALYSIS OF THE AIRWAY TUBE
Considering that the mainstream device must be portable and
real-time, so it is designed by combining airway tube with
breathing circuits. The airway flow is monitored by sampling
pressure, which has a strong relationship with the airway
tube. The main consideration of the airway tube design is that
the pressure drop can emerge after the air flowing through
the airway tube. The design of airway tube is based on the
Bernoulli law and the continuity law:

ρsAυA = ρsBυB = m (2)

where sA and sB are the cross sectional area, ρ is the density
of air, vA and vB represent the velocity of the two ports, m is
the mass of the airflow.

According to the equation 1 and equation 2, we can calcu-
late the pressure drop 1p:

1p = ρ ∗
s2A − s

2
B

2s2As
2
B

∗ Q2 (3)

where Q is the volume flow.
Therefore, we should know the pressure drop and then we

can calculate the respiratory flow.
In our previous study [9]–[11], a mesh generator (Gambit)

was used to design a computational fluid dynamics mesh of
the airway adapter and a computational fluid dynamics solver
(Fluent) was used to simulate the computational model. But
in application, we utilize this mesh generator method to give
an initial experimental evaluation of potential pressure ports
position, with an approximate range. And then, we adapt
control variable methods to practically evaluate the best posi-
tion during experiments. This is a calibration procedure to
determine the final position of the pressure hole and make
the difference of the pressure reach the maximum.

In order to obtain the pressure signal, the key point lies
in the design of airway tube. And pressure ports and throt-
tling device are hardly to generate the pressure drop with
high accuracy. Pressure signals are acquired from pressure
ports and the pressure drop forms before and after throttling
device. Then we need to select the appropriate location of the
pressure ports and the throttling device. In response to this,
several different design solutions of airway tube are designed
as shown in Fig.3.

In Fig.3, the numbers represent the locations of pressure
ports before and after throttling device, and letters represent
the different locations of the throttling device. Then we tested
the relationship by using these designed airway tubes. Finally,
we chose the appropriate airway tube for the mainstream
device.

D. ANALYSIS OF CALIBRATION
The typical calibration techniques are important to remove
the noisy raised from the positions of differential pressure
sensors. In this research work, we have taken some actions
in designing the pipeline and the position of pressure sensors
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FIGURE 3. Different settings of pressure ports and throttling device.
(a) Design (1) of location of the pressure ports. (b) Design (2) of
location of the pressure ports.

instead of utilizing traditional algorithm calibration proce-
dures. The focus of this work is to investigate the feasibility of
using neural network algorithm in improving the measures of
a cost-effective wearable device. We assume the output data
of BP neural network are a vector which is J in length. The
actual output of the network is:

Y (n) =
[
υ1j , υ

2
j , . . . , υ

J
j
]

(4)

where υ represents the output data.
The expected output of the network is:

d (n) = [d1, d2, . . . , dJ ] (5)

where n is iterations.
The iterative error signal is defined as:

ej (n) = dj (n)− yj(n) (6)

The error energy is defined as:

e (n) =
1
2

∑J

j=1
e2j (n) (7)

FIGURE 4. Process of BP neural network.

Then we can represent the implementation steps in the
form of the flow chart (see Fig.4).

For fitting the function curve of voltage and flow rate
accurately, it is very important to select the appropriate exci-
tation function and training function. In this paper, we chose
sigmoid function as the excitation function, and use
Levenberg-Marquardt (LM) algorithm to train.

1) EXCITATION FUNCTION
The excitation is defined as:

tansig (n) =
2

e−2n
− 1(−1 < tansig (n) < 1) (8)

The output of the function ranges from -1 to 1 as shown
in Fig.5.

2) TRAINING FUNCTION
We chose Levenberg-Marquardt (LM) algorithm to train data.
LM algorithm is a kind of fast algorithm which uses the
standard numerical optimization, and it is the combination of
the gradient descent and Gauss-Newton method. LM algo-
rithm not only has the local convergence of Gauss-Newton
method, but also has the global character of the gradient
descent method.

LM algorithm uses the information of two-order derivative,
so it is much faster than the gradient descent method.
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FIGURE 5. Function of Tan-sigmoid.

The vetor of weights and thresholds is:

x = [ωih (1, 1) . . . ωih (h, i) ,

bh (1) . . . bh (h) ωho (1, 1) . . . bo (0)]T (9)

So the vector which is composed by updated weights and
thresholds is:

x (k + 1) = x (k)+1x (10)

Where 1x indicates the change of weights and threshold.
LM algorithm is the improved algorithm of the Newton-
Gauss method which is defined as:

1x = −
[
JT (x) J (x)+ µI

]−1JT (x)e (11)

Where J (x) is Jacobian matrix, u is damping coefficient, I is
unit matrix.

LM algorithm is similar to gradient descent method, after
each iterating, reduces the value of coverages. So when the
algorithm is close to the target error, it is gradually close to
Gauss-Newton method.

LM algorithm is an efficient algorithm whose basic idea of
the iterative process allows the error search along the direc-
tion of deterioration. At the same time, in order to achieve the
purpose of optimizing the network weights and thresholds,
we adopted gradient descent method and adaptive adjust-
ment method, which can make the network convergence and
improve the generalization ability and convergence speed of
the network.

IV. RESULTS AND DISCUSSION
A. DESIGN OF THE AIRWAY TUBE
Using the airway tubes made by different design solutions,
we began to do experiments. After 1 min of warming upwhile
the systemwas powered on, we passed into air at one velocity.
We collected the data from the system for 1min after the
airflow stabilizing. And then we passed different velocities
of air and did the same experiments by using the same airway
tube. We have added the analysis of different velocity values
in the section 4.4 Table 2 and Table 3. In section 4.1, it only

shows an initial experimental estimation for observing the
performance of the different pressures of the pipeline.

Secondly, we verified the relationship between signals and
the location of pressure ports and the throttling device. On the
basis of simulation experiments, we have made different
types of pipelines. We selected different airway tubes to do
the experiment and finally we chose the reasonable scheme
which had the most significant effect of differential pressure
to design the airway tube. After repeated experiments and
combined with simulation results, we finally determined the
outer diameter of the pipeline is 16mm, the internal diameter
is 12mm, the length of the pipeline is 80mm, the pressure
hole diameter is 4mm, the two-pressure hole center distance
is 18mm.

FIGURE 6. Relationship between flow and voltage.

While measuring the exhaled gas flow, the control
variable method was used to eliminate the interference.
We just changed the velocities of airflow without any other
changes. For our simulation, we simulated natural breathing.
By changing the flow varying from 0L/min to 60L/min,
we gathered data from both channels of the pressure trans-
ducer. Fig.6 shows the changing trends when sampling from
each pressure port. As the Bernoulli law describes, when air
flows through the throttling device, the airflow slows down
and the pressure sampling from the proximal port increases
(see Fig.6 (a)).
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FIGURE 7. Structure of airway tube.

After the airflow passes through the throttling device,
the pressure on the distal decreases (see Fig.6 (b)). With
repeated experiments using the airway tube, the desired
results were achieved which suggested that the new airway
tube that we selected can be used to accuratelymonitor airway
flow. According to these designs, the structure of airway tube
is designed by mechanical drawing software (see Fig.7).

In Fig.7, A represents the improvement of pressure ports
and filter screen is set to avoid the interference caused by
condensed water and patient secretions. B represents the
chamfer edge of the throttling device, turbulence will be
caused when the airflow gets to the right-angle tube wall.
In consideration of this case, so we changed the edge of the
throttling device. We set the chamfer edge of the throttling
device, which can make the airflow a smooth transition so
as to avoid turbulence. And next we manufactured the tube
adopting photosensitive resin material that can form a smooth
surface through 3D print technology.

After the design of the airway tube, we can acquire pressure
signals sampling from the airway tube by combining with
breathing circuits. However, if the pressure signals are too
weak, it will have an impact on our results. In addition to
the design of airway tube, the amplifier circuit can also be
used for intensifying the pressure signals. By comparison,
we chose the chip AD8619 and designed the amplifier circuit.
In order to acquire better signals, the signals produced by the
transducer are filtered through adding the bypass capacitor.
The calibration of pressure transducer is one major problem
in our study. According to the Bernoulli law, the airway flow
is in a tightly correlated exponential relation with the pressure
drop. However, though the experimental results followed this
pattern, the mainstream device still contains considerable
error that the pressure signals may drift. And the signal
drift will decrease the accuracy of the mainstream device.
Therefore, we only acquired the differential pressure directly
between the two pressure ports, after which the differential
pressure singles were converted to voltage values (see Fig.8).

B. CALIBRATION AND TESTING
Normally, each ventilator needs a calibration before use.
In previous studies, we have designed and experimented
different types of ventilators for children, adults, and the
elderly. The results show that while the ventilator models
can be different, their calibration curves are slightly different.
It implies that the choices of different calibration methods

FIGURE 8. Airway tube and breathing circuits.

have no apparent impact on the errors of fitting curves. In this
work, we are currently designing a software for automatic
calibration of the curve. The standard flow meter is used for
calibration.

The experiment focused on the data of 60 groups, with
flow changing from 1L/min to 60L/min slowly at the interval
of 1L/min to collect the corresponding voltage values. The
flow data were divided into two groups, the odd numbers of
the flow data were trained and the dual numbers of the flow
data were tested.

After training, we inputted testing data to the neural net-
work to describe the shape of the fitting curve and calculate
the accuracy index. The neural network used in this calibra-
tion consists of two layers, the hidden layer and the output
layer. As the design, the hidden layer contains 20 neurons.
The iterations are 6 times, and the time is 1s. When the
iterations reach 6 times, the value of the gradient is 0.00496.
Fig.9 expresses the fitting degree between both of the training
and testing data and the real output data. With the increasing
of iterations, the minimum mean square error is declining,
which is less than when iterations reach 6 times. Then it will
stop learning, the specific curves will finally get.

FIGURE 9. Predictive and actual data.

Fig.10 shows the condition of the network during the learn-
ing process. We can see the specific gradient change of LM
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FIGURE 10. Condition of the network.

FIGURE 11. Predictive and actual data.

algorithm with the increase of iterations directly. Mu is the
mean of normal distribution, which is similar to error.With
the increase of iterations, if the error value increases, then the
mu value will increase accordingly, so when the value of mu
is too large, the learning process should be stopped.

Fig.11 shows the output data which are acquired after BP
neural network training and from the experiment respectively.
We can observe the error directly. The distance between the
majority of the output data and the actual output data is short,
only a small numbers of data happen to jump. The trend of
fitting curve will not be affected and the relationship between
the flow rate and the voltage will be reflected by the trend of
the curve. So we can conclude that the training of the neural
network is accurate.

However, a noticeable issue is that the data in Fig.11 we
collected can be fitted by traditional calibration methods like

least square method in the literature [30], [31]. It is because
these data in Fig.11 are mainly collected from a controllable
lab environment, not from practically uncontrollable environ-
ments. The advantages of proposed BP neural network over
traditional least square methods on accuracy have been not
fully reflected with these data set. However, the device of
our developed in this paper is a low-cost wearable equipment
for uncontrollable environments. It means that the data from
practical application may be more sensitive and noisy. The
utilisation of BP neural network has some advantages over
traditional calibration methods in these cases. In the future
work, we will take more experiments on real applications and
validate the proposed BP methods.

Regarding the measure of overall accuracy of the data
of 60 groups, we use RMSE (Root Mean Square Error) and
RE (Range of Error), Absolute Error (AE) to measure the
predicted voltage data over 60 gourps with both our pro-
posed BP neural network method and traditional least square
method [30]. The results are shown in Table.1. It could reflect
that the over all accuracy performance of our method can
reach the same level to the state-of-the-art least square fitting
method. Also, we have calculated the absolute error and
percentage of error and plotted them in the Fig.12 and 13.

TABLE 1. RMSE and RE arrange of predicted voltage.

FIGURE 12. AB error of BP neural network.

From Fig.12 we can see that in BP neural network,
although the training output data have a relatively large error
in individual data, but the fluctuation of training error is
very small. Finally we got the absolute error 0.7594, this
figure is very intuitive to show the overall accuracy of neural
network training. Fig.13 shows the percentage of the error
between the testing output and the actual output data after
BP neural network processing for 30 sets of testing data.
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FIGURE 13. Error percentage of BP neural network.

The mathematical formula is defined as:
m− n
m

(12)

where m is the testing output data and n is the actual output
data. From Fig.13 we can directly infer that the result is
corresponded with Fig.12. They both produce large error
in 4L/min, 12L/min and 40L/min. But it only happens in the
very few data, and it can’t affect the good fitting function of
our neural network.

C. THE PARAMETER OF BP NEURAL NETWORK
For LM algorithm, the parameters that need to be considered
are the hidden layers, threshold, learning step and maximum
iterations.

1) THE NUMBER OF THE HIDDEN LAYERS
We select the hidden layer as 5 layers, 50 layers to record
the output results in order to analyze and to compare. When
the number of layers is selected as 5, the iterations of the
neural network are more than 20 times, and sometimes are
about 30 times, so we can judge that the fitting effect is
not ideal. When the number of layers is 50, the iterations
are 3 times, it is satisfactory, but the absolute average value
error of BP neural network is 8.9315(see Fig.14), and the
value cannot reach a steady state. When the number of hidden
layer is 20, the iterations can reach the ideal requirement,
and the output error is 0.7594, which means that the neural
network expresses a good performance. Indeed, there are
some significant errors in Fig.12, however, it is because the
flow is unstable and easily affected by many minor factors in
practical environment. It is inevitable to remove these errors
from device completely in real cases.

2) THE SELECTION OF THE THRESHOLD
The neural network can change the threshold so as to
make the fitting better. But taking the smaller the threshold
into account, the larger the iterations required. Therefore,
the choice of the threshold is based on the actual situation to
judge.When the threshold is 4∗10–6, the iterations are 6 times
and the Sum of absolute value of the testing output data error

FIGURE 14. AE error of BP neural network with 3 iterations.

is 0.7594. And when the threshold is 4∗10–7, the iterations
are 18 times and the Sum of absolute value of the testing
output data error is 0.4266. When the threshold is 4∗10–8,
the number is 34 and 0.2395 respectively. Finally, combining
with the iterations, the selected threshold is 4∗10–6.

3) THE SELECTION OF THE LEARNING STEP
In this experiment, we chose different steps, and then chose
the best learning step according to the results. We found that
the Sum of the absolute value of testing output error data was
0.7594 when the learning step size was 0.01. Comparing with
2.2351 when the learning step was 0.2 and 1.4325 when the
learning step was 0.1, we could easily judge that the most
suitable step size was 0.01 and then concluded that the Sum
of the absolute value of output error became larger and larger
with the step size increasing, which indicates that the fitting
process was getting worse and worse. In practice, the smaller
the learning step size is, the more iterations required to build a
neural network, and the longer time it will take, so the result
is relatively better. If the learning step is longer, the result
of the neural network will be worse, and the number of
iterations will be less. To sum up, we select the learning step
as 0.01.

D. ANALYSIS OF EXPERIMENT RESULTS
In this experiment, we sat the temperature as 23 ± 5◦C, the
relative humidity t <= 2% and kept the Environmental
stability, we randomly selected a volunteer for the respiration
experiment. The volunteer wore breathing masks (BMC-FM)
which connected to our device through hose, the sensor
collected respiratory pressure then converted the differen-
tial pressure into analog voltage signal. The slave computer
sended the analog signal to the host computer through the
serial port. Firstly, we filtered the received data to make them
stable, to improve the sensitivity of the device, we sat the
12-sampling data as a circular queue, every time we received
a new data we putted it into the tail of the queue, and then
threw away the first data of the queue, each output data
was always the current arithmetic average of the 12 data
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FIGURE 15. Respiratory data curve.

in the queue. After data filtering we got the trend of the
breathing which was calculating by the BP neural network
Fitting function.

In order to determine the effect of the filtering, we putted
the data which were directly received by the serial port into
the BP neural network Fitting function to get the trend of the
breathing, and then we saw the outcome from Fig.15. From
Fig.15 we could see that the jumping of data significantly
decreased after flitering.

TABLE 2. Exmperimatal data analysis with our proposed BP neural
network method.

Then we evaluated the accuracy and uncertainty of the
system by doing experiments.we chose 6 different flows in
this environment and for each flow we did experiment for
10 times. We calculated the mean value and standard devi-
ation by the formula (see TABLE 2):

S =
1
υ

√∑10
i=1 (Vi − υ)
10− 1

(13)

where S is standard deviation, V and v is sample data and
mean value.

Then we changed BP network filtering function to the least
square method to fit the function of the received signal, repeat
the above experiment to obtain data (see TABLE.3).

From Table 2 and 3, it appears that with using our proposed
BP neural network method and the traditional least square
method [30], the standard deviation and RMSEwill gradually
decrease as the increment of voltage signals. But our pro-
posedmethods have lower standard deviation and RMSE than
least square method [30]. When the voltage signals are within

TABLE 3. Exmperimatal data analysis with traditional least square
method [30].

FIGURE 16. The result of the master computer.

low input, this difference is not apparent; but when the voltage
signals are outputted within high value, our method performs
better accuracy than least square method. It means that the
proposed neural network fitting function is capable of mak-
ing the equipment more stable. Through the above analysis,
we got the conclusion that the appropriate filter ing and fitting
algorithm could effectively improve the performance of the
device. Finally, we examined the continuity and accuracy of
the real-time application of the device. We randomly selected
an adult in the same respiration experiment and showed his
breathing data which was dynamically displayed on the host
computer (See Fig.16).

Through the display of the respiratory waveform of the
host computer and combined with the previous experiments,
we could clearly infer that the waveform is continumm and
accurate, the respiratory parameters of the tested person can
be measured effectively. Comparing with the parameters of
the breathing machine at home and abroad and through
the verification of the clinical experiment, we could prove
that our device can meet the requirements of accuracy and
uncertainty.

V. DISCUSSION AND FUTURE WORK
The experiments show that although the processing speed
of the neural network algorithm is slower than the simple
method of fitting, but taking into account of the practicality
and accuracy of the device, we improved the design of the
pipeline and the filter algorithm of the host computer and
slave computer to make sure the data are suitable for the
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algorithm. At the same time as the respiratory frequency of
human is slow, so the speed of the sensor data update is
relatively slow too, so the processing speed of the computer is
not particularly high, this makes us pay more attention in the
design of the algorithm on the processing accuracy rather than
processing speed. The most important reason is that because
of the instability of the respiratory data so it is difficult to
use specific formula to express, which requires us to look
for a simple network topology, but also has high accuracy,
and it is easy to implement and has strong operability. In the
process of training, we only considered the hidden layer,
learning step size, the maximum number of iterations and
threshold, in the future experiments, we should consider more
parameters, and enhanced the reliability of the equipment in
the further experiments. Finally considering the temperature
and humidity effects on the experimental results, in the future
research, we should not only improve the hardware, but also
consider improving the software to reduce the cost of the
equipment.

In addition, the design of circuit schematic and PCB layout
is indeed an important component of this wearable devices.
However, the key contribution of this article will mainly the
effect of the BP neural network algorithm on the accuracy of
the respirator and the perfection of the pipeline; the algorithm
is also suitable for other similar principles. So, we did not
address the detailed information about hardware design in this
article, and rely on our previous work of designing hardware
device in [10] and [11]. The involvement of human subjects
including respiratory related diseases in further experiment
is also very important to verify the efficiency of proposed
method. However, in practice, due to the ethical and safety
issues, it is very difficult to invite more patients to verify the
proposed method in uncontrolled environment. At present,
our volunteers are healthy adults who are randomly selected
in our university. Hence, the main effect of this paper is to
demonstrate the feasibility of applying a BP neural network
algorithm and pipeline for improving the performance of a
cost-effective wearable device.

Regarding the specification of equipments, we also exam-
ine the equipment in other laboratories where they used Bell
type gas flow calibration equipment in ChinaMetrology Insti-
tute. For our ventilator, we used small standard flow meter
and gas tank which can generate a steady flow. It is very
convenient for us to carry out experiments to improve the
accuracy. Our pipeline is made by 3D printing technology,
which is cheap and convenient replacement. At the interface
of the pipe, there is a sponge for filtering water vapor and our
breathing pipe is replaceable for period.

In future, above mentioned limitations will be further
studied. We will work on a further verification of proposed
methods in the real systems, including interference factors,
design for adults and children, the use of breathing pipe cycle.
Additionally, considering a trend of intergrating this device
into internet of things enabled healthcare system [32]–[35],
we will focuse on the work of connecting this device into
a hetegenous internet of things environment, and cooperate

with the hospital for clinical testing and date analysis in the
future.

VI. CONCLUSION
We describe a mainstream device for monitoring the respi-
ratory flow in this paper. Respiratory flow monitoring with
differential pressure methods can provide valuable informa-
tion for diagnosis. New airway tube is designed when the
acquisition of pressure singles is taken into consideration.
BP neural network is used to fit the experimental results,
and good linear relationship is obtained. It is proved that
comparing with the least square method, BP neural network
can be used in more complex function which is used for
calculating the target value. A host of experiments and tests
show that the designed mainstream device can accurately
monitor respiration and acquire stable and real-time signals.
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