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Abstract Social interactions and the overall psychosocial environment have a demonstrated

impact on health, particularly for people living in disadvantaged urban areas. Here, we investigated

the effect of psychosocial experiences on gene expression in peripheral blood immune cells of

children with asthma in Metro Detroit. Using RNA-sequencing and a new machine learning

approach, we identified transcriptional signatures of 19 variables including psychosocial factors,

blood cell composition, and asthma symptoms. Importantly, we found 169 genes associated with

asthma or allergic disease that are regulated by psychosocial factors and 344 significant gene-

environment interactions for gene expression levels. These results demonstrate that immune gene

expression mediates the link between negative psychosocial experiences and asthma risk.

Introduction
Psychosocial experiences have long been recognized to affect human health (Miller et al., 2009).

Intrapersonal processes (e.g., emotionality [Pressman et al., 2019; Smith et al., 2004], interpersonal

social relationships [Repetti et al., 2002; Robles et al., 2014]) and broader structural environments

(e.g., neighborhood quality and socioeconomic status [SES]; Gallo and Matthews, 2003) are all

associated with the morbidity and severity of diseases such as asthma (Harrison, 1998),

cancer (Meyer and Mark, 1995), cardiovascular disease (Everson-Rose and Lewis, 2005), as well as

mortality rates (Holt-Lunstad et al., 2010; Chida and Steptoe, 2008). Asthma is a chronic inflamma-

tory disease of the respiratory tract that disproportionately affects children (Moorman et al., 2012).

It is one of the costliest pediatric health conditions (Weiss et al., 2000) and a leading cause of

school absenteeism (Akinbami and Centers for Disease Control and Prevention National Center

for Health Statistics, 2006). Financially struggling cities, such as Detroit, are at an especially high

risk for asthma morbidity and mortality (Sullivan et al., 2002). While environmental and genetic fac-

tors lead to the development of asthma and affect the health of children with asthma (von Mutius,

2000; von Mutius, 2009; Umetsu et al., 2002), psychosocial stress is a critical factor contributing to

asthma severity (Wright et al., 1998; Wright et al., 2005; Shankardass et al., 2009; Chen and
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Miller, 2007; Sandberg et al., 2000). Understanding the biological pathways underlying these asso-

ciations is crucial to strengthen the causal claims linking psychosocial experiences and health.

The growing field of social genomics investigates how various dimensions of a person’s social and

psychological environment influence gene expression (Cole, 2014; Slavich and Cole, 2013;

Cole, 2009; Toyokawa et al., 2012; Galea et al., 2011). There is ample evidence for links between

gene expression in blood and three major categories of psychosocial experiences: SES (Chen et al.,

2009), social relationships (Robles et al., 2018; Stanton et al., 2017; Powell et al., 2013), and

emotionality (Farrell et al., 2018; Segman et al., 2010). Beyond single-gene analyses, previous

studies in this area (Slavich and Cole, 2013; Cole, 2014; Cole, 2009) identified a pattern of differ-

entially expressed genes referred to as the conserved transcriptional response to adversity (CTRA).

The CTRA is characterized by increased expression of genes involved in inflammation and decreased

expression of genes involved in type I interferon antiviral responses and IgG1 antibody

synthesis (Fredrickson et al., 2013). However, these studies investigated a limited set of psychoso-

cial experiences and did not resolve whether these pathways are causally linked to health outcomes

or rather a consequence of disease status.

Several approaches have been developed for investigating the role of gene expression in com-

plex trait variation (Nica et al., 2010; Marigorta et al., 2017; Võsa et al., 2018; Nica and Dermit-

zakis, 2008). Recently, transcriptome-wide association studies [TWAS] and other Mendelian

randomization (MR) approaches have been used to integrate genetic effects on gene expression and

on complex traits to establish causal links between a gene and a phenotype (Gusev et al., 2016).

MR approaches have been developed in epidemiology to examine the causal effect of a modifiable

exposure on disease without conducting a randomized trial. MR designs use the genotype associa-

tion with the two variables of interest to control for reverse causation and confounding. Here, we

use this type of approach to connect genes with complex traits. Traditionally genes are annotated to

association signals in genome-wide association studies [GWAS] based on physical proximity. TWAS

test for an association between gene expression and complex traits, where gene expression is pre-

dicted based on genotypes in the GWAS study and independent expression quantitative trait

locus (eQTL) data. Notably this goes beyond physical proximity of GWAS signals to genes and

establishes a putative mechanism linking genetic variants to complex traits through genetic regula-

tion of gene expression. Very few studies of genetic regulation of gene expression (expression quan-

titative trait loci, eQTL mapping) in humans have included comprehensive information on

psychosocial exposures, and no study to date has been able to determine the likelihood of a causal

relationship between psychosocial experiences, gene expression, and asthma. This study aims at fill-

ing this gap by combining genetic and well-characterized psychosocial data from a cohort of chil-

dren with asthma living in Metro Detroit (Figure 1a).

The Asthma in the Lives of Families Today (ALOFT) project was established in 2009 to identify the

behavioral and biological pathways through which family social environments impact youth with

asthma. This study started during the years leading up to Detroit filing for bankruptcy in 2013 and is

still ongoing. Detroit started a marked economic recovery in 2016; yet not all population groups and

geographic areas have experienced it simultaneously or to the same extent. To analyze the relation-

ship between psychosocial experiences, asthma, and transcriptional regulation, we investigated

genome-wide gene expression (RNA-seq) for 251 youth participating in the ALOFT study. For 119

participants, we also collected 53 psychosocial and biological variables (Supplementary file 1a, b,

Figure 1—figure supplement 1). Measures of psychosocial experiences were grouped into three

subcategories, indicating SES, social relationships, and emotionality. Psychosocial experiences were

captured through subjective and objective measures (e.g., negative affect assessed from daily diaries

and recorded audio, respectively), as well as global and daily measures.

Results

Psychosocial factors and asthma alter the transcriptome
To denoise and impute psychosocial effects on gene expression for the entire cohort of 251 partici-

pants, we developed a new machine learning approach based on generalized linear models with

elastic net regularization (GLMnet; Friedman et al., 2010) and cross-validation. Using this approach,

we derived transcriptional signatures that represent the portion of the transcriptome that correlates
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Figure 1. Transcriptional signatures of psychosocial experiences and asthma symptoms. (a) Central hypothesis. (b) Number of genes in elastic net

regression models that explain at least 1% of variance. Colors represent different categories of variables. (c) Pearson’s correlations between cross-

validated transcriptional signatures and measured variables for elastic net regression models that explain at least 1% of variance. (d) Forced expiratory

Figure 1 continued on next page
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with each psychosocial factor. Analogous methods have been adopted to define transcriptional sig-

natures of T-cell exhaustion in aging (Alpert et al., 2019) and survival in cancer (Asgharzadeh et al.,

2006), but have not been previously used for psychosocial factors. We identified significant tran-

scriptional signatures for 31 out of 53 variables (Figure 1b–e, Figure 1—source data 1,

Supplementary file 1c). We used an independent longitudinal dataset to validate the transcriptional

signatures. We considered the changes in the observed variable between two time points (�1 year)

and compared it to the longitudinal changes in the transcriptional signature. Note that the transcrip-

tional signature is imputed for the second time point from gene expression samples that are not

included in the training set. We found significant correlations in the observed and imputed changes

for the majority of variables (Spearman’s correlation p-value<0.05; e.g., Figure 1f,

Supplementary file 1d).

Transcriptional signatures of the SES measures showed a strong overlap with each other (Fig-

ure 2), suggesting that they may have very similar molecular effects or measure the same factors.

However, we also saw correlations across all three variable categories. For example, subjective SES

was significantly correlated with objective maternal responsiveness, family conflict, and self-reported

self-disclosure, which is the extent to which the youths talk about their thoughts and feelings

(r = �0.3, p=1.1 * 10�6, r = 0.29, p=4.26 * 10�6, r = 0.66, p=3 * 10�32, respectively). Overall, correla-

tions between transcriptional signatures reflect correlations between measured variables (Figure 1—

figure supplement 2), yet they are stronger between the transcriptional signatures, highlighting the

denoising effect. Measured psychosocial factors were also associated with interindividual variation in

gene expression for several genes. For example, perceived responsiveness and self-disclosure were

associated with changes in gene expression for 143 and 3279 genes, respectively

(Supplementary file 1e, f). Genes positively associated with perceived responsiveness were

enriched for biological processes relative to the response to IL18, while genes positively associated

with self-disclosure were enriched for the interferon 1 pathway (Figure 1—figure supplement 3).

When we correlated transcriptional signatures of asthma severity with those for psychosocial vari-

ables, we observed overlap with SES and social relationships, but not emotionality. In particular, we

found significant positive correlations between the transcriptional signatures of lung function (per-

cent-predicted FEV1) and psychosocial measures of self-disclosure (r = 0.42, p=4.9 * 10�12) and sub-

jective SES (r = 0.36, p=3.3 * 10�9). Unexpectedly, objective maternal responsiveness was negatively

correlated with lung function (r = �0.19, p=0.002), and percent unoccupied properties in the neigh-

borhood (r = 0.41, p=7.8 * 10�12) was positively correlated with lung function. We also found that

the transcriptional signature of self-disclosure was also significantly associated with other measures

of asthma, such as nightly asthma symptoms (r = 0.27, p=1.2 * 10�5) and asthma severity (r = �0.32,

p=2.9 * 10�7), echoing the large body of work on the importance of self-disclosure for

health (Pennebaker, 1995). These results provide a potential mechanism through gene expression

changes in leukocytes for previously reported links between SES and asthma

Figure 1 continued

volume in one second [FEV1] percent predicted transcriptional signature model fit (Pearson’s rho = 0.76, p<0.001). (e) MacArthur socioeconomic status

transcriptional signature model fit (Pearson’s rho = 0.67, p<0.001). (f) Longitudinal change in observed neutrophils (x axis) and longitudinal change in

transcriptional signature of neutrophils (y axis) (Pearson’s rho = 0.72, p<0.001, gray = identity line).

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. GLMnet model weights for the transcriptional signatures.

Figure supplement 1. Clustered heatmap of (Pearson) correlations between all variables used in the study.

Figure supplement 2. Scatterplot of Pearson’s correlation coefficients between each pair of observed variables (x axis) and metagenes (y axis) for the
19 variables with transcriptional signatures explaining >1% of observed variance.

Figure supplement 3. Gene set enrichment analysis results on genes differentially expressed for psychosocial experiences.

Figure supplement 4. Result of identity-by-descent analysis (IBD; maximum likelihood estimation [MLE]) on DNA-derived genotypes for all 251
participants.

Figure supplement 5. Self-reported ethnicity (x axis) vs. percent global African ancestry (y axis) in 119 participants for whom declared ethnicity is
available.

Figure supplement 6. Proportion of reads mapping to the Y chromosome over all mapped reads separately for self-reported females and males.

Figure supplement 7. Sources of variation in gene expression data.

Figure supplement 8. Comparison of variance explained by conserved transcriptional response to adversity (CTRA)-based (x axis) and unbiased (y axis)
elastic net prediction models; color indicates type of variable (red = identity line).
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symptoms (Litonjua et al., 1999; Mielck et al., 1996). Past research has also found emotionality to

be a strong predictor of asthma severity (Lehrer et al., 1993).

Notably, the transcriptional signatures of blood composition were also associated with asthma

symptoms, with a positive correlation for proportion of lymphocytes and negative correlation for

proportion of neutrophils (Figure 2—figure supplement 1). Given the important role of several

blood cell types in asthma severity and exacerbations (Mamessier et al., 2008; Vedel-Krogh et al.,

2017; Bigler et al., 2017; Ray and Kolls, 2017; Lima-Matos et al., 2018; Casciano et al., 2016;

Figure 2. Correlation among psychosocial and clinical transcriptional signatures. Heatmap of Pearson’s correlations between transcriptional signatures

explaining at least 1% of variance. Heatmap color indicates strength and direction of correlation; white indicates p-value>0.05. Hierarchical clustering of

variables is represented above the heatmap, with colors indicating categories for each variable as indicated in the legend.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Network representation of correlations between transcriptional signatures of psychosocial experiences (edge width reflects
absolute value of Pearson’s correlation score, edge color reflects positive [red] or negative [blue] correlation).

Figure supplement 2. Network representation of correlations between all transcriptional signatures (edge width reflects absolute value of Pearson’s
correlation score, edge color reflects positive [red] or negative [blue] correlation).
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Sinz et al., 2017), it is possible that transcriptional changes associated with blood composition

mediated the correlations between psychosocial experiences and asthma outcomes.

Genetic interactions with psychosocial factors affect gene regulation
To directly investigate whether transcriptional signatures associated with negative psychosocial

experiences contribute to inter-individual variation in asthma risk, we used eQTL mapping combined

with TWAS (Gusev et al., 2016). TWAS uses eQTLs as instrumental variables (IVs) to causally link

gene expression to phenotypes. To examine local genetic effects on leukocyte gene expression, we

performed cis-eQTL mapping and identified 8610 genes with at least one eQTL (eGenes, 10% false

discovery rate [FDR], Figure 3—source data 1). These eGenes were enriched in Genotype-Tissue

Expression Project (GTEx) whole blood eGenes (Aguet et al., 2020) (Fisher’s test OR = 3.2,

p-value<2.2 * 10�16), but we also identified additional 1801 eGenes that were not detected by GTEx

in whole blood.

We used the method for probabilistic TWAS analysis (PTWAS) (Zhang et al., 2020), which

improves upon previous TWAS methods by ensuring only strong IVs are used, and is designed to

allow for validating the causality assumption (see Materials and methods). We identified 2806

eGenes in the GTEx dataset that were causally associated with asthma and allergic diseases (hay

fever, eczema, and allergic rhinitis) (5% FDR). Of these, 853 were eGenes in our dataset (Figure 3—

source data 3). Here, we interrogated whether these causal genetic effects can be modulated by

psychosocial factors through gene-environment interactions. To examine the genotype-by-environ-

ment effects of psychosocial experiences and blood composition on gene expression, we used the

imputed transcriptional signatures for the entire cohort of 251 individuals. In addition to imputing

missing data, we argue that these transcriptional signatures may better capture the environmental

effects on the state of the cells at the molecular level (i.e., after denoising), compared to the

observed variables. This is because observed variables have high levels of noise, and the measured

values may not reflect the true biological effect. Therefore, we used the predicted values for all par-

ticipants, including those for whom the variables were directly measured (denoising). This is similar

to the context eQTL approach (Zhernakova et al., 2017) that uses other genes as a proxy variable

for the environment, but here the ‘context’ is more easily interpretable because it is defined by a

transcriptional signature associated with a specific psychosocial factor. Similarly, cell-type composi-

tion imputed from gene expression was used to map cell-type interaction QTLs for 43 cell-type-tis-

sue combinations in the GTEx v8 dataset (Kim-Hellmuth et al., 2020).

For each of the eGenes identified in our dataset, we tested the lead eQTL for an interaction

effect (see Materials and methods) with any of the transcriptional signatures. We discovered 344 sig-

nificant interaction eQTLs across 134 unique genes (10% FDR; Figure 3a, Figure 3—source data 4).

We found interaction eQTLs for all four blood composition signatures (proportion of lymphocytes,

neutrophils, monocytes, and eosinophils with 81, 65, 27, and 25 GxE interactions, respectively),

which represent cell-type-specific eQTLs (57.6% of all GxE eQTLs). 101 of the 108 blood-interacting

eGenes (93.5%) were also identified as genes with interaction eQTLs with cell-type composition in

GTEx whole blood (Kim-Hellmuth et al., 2020). We identified 124 GxE interaction effects on gene

expression with psychosocial experiences across 77 genes, including self-disclosure (48 genes), sub-

jective SES (40 genes), and objective maternal responsiveness (16 genes) (Figure 3—source data 5).

These only partially overlapped (77%) GxE effects observed for blood composition and included

interactions specific to psychosocial factors (Figure 3c). To evaluate whether the interactions with

psychosocial experiences may be mediated by cell composition, we repeated the GxE mapping after

correcting for blood cell composition. We observed 125 significant GxE effects (10% FDR) after

removing the effect of blood composition differences (Figure 3—source data 6).

To validate these GxE results, we expanded the sample size for all variables with a transcriptional

signature. We found that the GxE eQTLs detected with the measured variables (Figure 3—source

data 7) were significantly enriched for low p-values in the GxE eQTLs detected with the transcrip-

tional signatures (Figure 3A, Figure 3—figure supplement 1), and the interaction effects were

highly significantly correlated (Supplementary file 1g).

Next, we explored the overlap between the GxE genes and previously published datasets that

measured interactions with different environments (N = 134 genes, see Materials and methods and

Supplementary text). We found that 94.8% of our GxE genes replicated in other datasets of GxE in

gene expression (p<0.05). For example, 62 interaction eGenes for psychosocial experiences
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Figure 3. GxE effects on gene expression and asthma risk. (a) Interaction expression quantitative trait locus (eQTL) results. GxE genes: number of

significant GxE interactions with transcriptional signatures at 10% FDR; OR: odds ratio of enrichment of GxE genes with measured variable (p<0.01) in

GxE genes with transcriptional signatures (p<0.01). (b) Network of interactions between environments and eGenes. Each node represents an eGene

with an interaction eQTL (black) or a variable that modulates the genetic effect on gene expression. Only nodes with at least two interactions are

Figure 3 continued on next page
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overlapped with interaction eGenes in response to pathogens (Lee et al., 2014; Barreiro et al.,

2012; Çalışkan et al., 2015; Nédélec et al., 2016). This result may indicate that negative psychoso-

cial experiences lead to genotype-specific adverse health effects by influencing the same immune

pathways activated by infections. Furthermore, psychosocial experiences may modify the individual

response to pathogens and affect health outcomes.

Risk for asthma is modulated by GxE
We hypothesized that genes and pathways that contribute to asthma risk are also involved in asthma

symptom severity through gene regulatory variation in immune cells. We investigated whether genes

associated with risk for asthma were modulated through psychosocial experiences (E) and/or GxE

effects. Among the genes causally linked to asthma or allergic disease risk by PTWAS, expression of

169 genes was modulated by psychosocial environments, including self-disclosure (125 genes), sub-

jective SES (105 genes), family conflict (30 genes), percent unoccupied houses in the neighborhood

(27 genes), maternal responsiveness (17 genes), objective negative affect (e.g., feeling sad or angry,

11 genes), child-reported conflict with parent (9 genes) and percent �fair houses in the neighbor-

hood (2 genes) (Figure 3—source data 5). The genetic effect on gene expression is modulated by

psychosocial factors through GxE for seven genes causally implicated in asthma (four genes) and

allergic diseases (four genes) (Figure 3c–f, Figure 3—figure supplements 2–4). For example, higher

expression of the Exocyst Complex Component three gene (EXOC3) is associated with an increased

risk of asthma. We found that self-disclosure, which is the extent to which the youths talk about their

thoughts and feelings, increases expression of this gene only for individuals carrying at least one

copy of the T allele at rs5865330 (Figure 3e). The genetic effect was even more pronounced in the

highest tertile of self-disclosure (Figure 3e, inset). Lower expression of the Growth Arrest Specific 8

gene (GAS8) is associated with an increased risk of asthma. The A allele at rs12922757 increases

expression of this gene only in individuals with perceived high SES, thus reducing the risk of disease

(Figure 3f). A similar effect, and in the same direction, is found for GAS8 and higher self-disclosure

(Figure 3—figure supplements 2 and 3).

Figure 3 continued

labeled. Edges represent significant interaction eQTLs (10% FDR). (c, d) Causal gene-complex trait interactions identified through transcriptome-wide

association studies (TWAS) are modulated by psychosocial experiences. Psychosocial variables (c) or blood composition (d) are in the left column,

eGenes in the central column and complex traits in the right column. A connecting line represents either a causal link between eGene and asthma or

allergic disease trait identified through TWAS (middle to right) or a significant interaction eQTL (left to middle). (e, f) Examples of genes causally

associated with asthma and with GxE effects that modulate genetic risk. Both genes are causally associated with asthma in TWAS. Each dot is an

individual. The same data are presented in the inset and main figure within each panel. In the main figure, the trend lines represent the best model fit

between the psychosocial variable and gene expression for each genotype class. The slope of each line and the q-value for the GxE effect are also

reported. The boxplot in the inset represents the same normalized gene expression data across the three tertiles of the psychosocial variable.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. Results of cis-expression quantitative trait locus (cis-eQTL) mapping permutation pass with FastQTL correcting for top 18 gene

expression principal components [PCs] (space-delimited file).

Source data 2. Results of cis-expression quantitative trait locus (cis-eQTL) mapping permutation pass with FastQTL without correction for gene expres-

sion principal components [PCs] (space-delimited file).

Source data 3. Overlap of eGenes with psychosocial effects and significant probabilistic transcriptome-wide association studies (PTWAS) association

results (5% FDR) for asthma and allergic disease.

Source data 4. Results of cis-interaction-expression quantitative trait locus (eQTL) mapping (tab-delimited file).

Source data 5. Overlap of GxE interactions and significant probabilistic transcriptome-wide association studies (PTWAS) association results (5% FDR).

Source data 6. Results of cis-interaction-expression quantitative trait locus (eQTL) mapping after correcting for cell composition effects (tab-delimited file).

Source data 7. Results of cis-interaction-expression quantitative trait locus (eQTL) mapping with measured variables (tab-delimited file).

Figure supplement 1. QQplots of expression quantitative trait locus (eQTL)-transcriptional signature interaction test permutation-corrected p-values,
combined for blood composition (top) and psychosocial variables (bottom).

Figure supplement 2. Genetic variants interact with psychosocial environments to alter expression of genes linked to asthma and allergic disease.

Figure supplement 3. Genetic variants interact with psychosocial environments to alter expression of genes linked to asthma and allergic disease.

Figure supplement 4. Causal gene-complex trait interactions identified through transcriptome-wide association studies (TWAS) are modulated by
psychosocial experiences.

Figure supplement 5. QQplots of interaction expression quantitative trait locus (eQTL) mapping test p-values (black), permutation p-values (green),
and permutation-corrected p-values (pink).
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Discussion
In this study, we collected a unique dataset with genome-wide gene expression paired with exten-

sive and accurate assessment of each participant’s biological and psychosocial functioning, across a

variety of domains known or likely to be relevant for asthma. We developed a new approach to

denoise and impute the transcriptional signatures of asthma symptoms and psychosocial experien-

ces in peripheral blood. Longitudinal data collected on the same individuals validated the transcrip-

tional signatures imputed on an unobserved later time point, mirroring the changes on phenotype.

This demonstrates that the molecular signature of psychosocial experiences on immune cells can

track changes over time and can be used to analyze cohorts where these variables are not available.

We showed overlap between transcriptional signatures of asthma symptoms and both SES and

social relationships, thereby demonstrating that molecular blood gene expression pathways exist

through which psychosocial experiences can affect asthma. While some of the variables used to

describe pulmonary function may not directly reflect a conventional clinical endpoint, the fact that

they were associated with significant transcriptional signatures indicates that they may still have

pathophysiological relevance for individuals with asthma. For example, we found a significant tran-

scriptional signature for FEV1, which is endorsed by the National Asthma Education and Prevention

Program as a means for grading asthma severity (Birnkrant, 1997). Interestingly, we detected a

higher number of significant correlations across imputed variables compared to the measured varia-

bles. This observation supports the effectiveness of the denoising procedure that we used to define

transcriptional signatures.

Correlations between asthma phenotypes and psychosocial variables may be partially due to

changes in blood compositions. Correlations between asthma severity and blood composition are

supported by previous findings from the U-BIOPRED cohort where the number of genes differen-

tially expressed between individuals with severe asthma and healthy controls was reduced by 90%

after accounting for blood cell composition (Bigler et al., 2017). This is not surprising as several

partially overlapping endotypes of asthma have been described to date, distinguished by pro-inflam-

matory contributions from different immune cell types. The most common asthma subtype is charac-

terized by the involvement of T helper type 2 cells (Th2) sensitized primarily to allergens and

subsequent eosinophilic airway inflammation triggered by the type two cytokines (particularly Il-

5) (Woodruff et al., 2009). However, in non-allergic individuals, eosinophilic inflammation may be

triggered by other immune cell types (Brusselle et al., 2013). Elevated levels of neutrophils have

been associated with more severe asthma and suggested as an alternative mechanism to eosino-

philic inflammation (Ray and Kolls, 2017). Further work to dissect the contributions of each cell type

can be accomplished in future studies with single-cell transcriptomics.

Genes sets associated with psychosocial variables were enriched for different Gene Ontology

functions and pathways. For example, self-disclosure is associated with genes distinctly enriched for

neutrophil-mediated immunity (Figure 1—figure supplement 3), while parent-reported conflict with

child is associated with expression of genes enriched for erythrocyte differentiation. This result sug-

gests that response to negative psychosocial experiences involves processes outside of the scope of

the CTRA, which was designed to capture inflammation, antibody production, and type I interferon

response. Psychosocial experiences change over time because of the children’s development as a

result of broader changes in the urban environments and as a consequence of shifts in family dynam-

ics. These changes of the psychosocial experiences are reflected longitudinally in the gene expres-

sion of immune cells and may modify the asthma symptoms and overall health. As we gain

additional knowledge on the mechanisms connecting psychosocial experiences to disease, these

results can be useful to support the need for social interventions that may ultimately lead to

improved overall health. For example, family counseling may improve the psychosocial environment

of children with asthma, ameliorating their symptoms, and reducing the impact of systemic health

disparities. These social interventions may be implemented independently or together with drug

treatments, and their impact could be further monitored through gene expression with larger longi-

tudinal samples in future studies.

Pioneering work by our group and others has shown that environmental effects on gene expres-

sion and their interactions with genetic factors can play a very important role in regulating genes

that are associated with disease (Moyerbrailean et al., 2016; Richards et al., 2019; Findley et al.,

2019; Knowles et al., 2017; Nédélec et al., 2016; Zhernakova et al., 2017). This is also applicable
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to asthma genetics (Rava et al., 2015) and exposure to rhinovirus infection (Çalışkan et al., 2015)

and cytokines (Thompson et al., 2020).

Our study demonstrates that many psychosocial experiences leave an impact on gene expression,

including genes that are known to be associated with asthma. When considering genetic effects on

gene expression, 21% of the 8610 eQTL we discovered were not found in GTEx whole blood sam-

ples. These newly identified genetic effects may be due to limited power when performing an over-

lap between results from different eQTL studies. An alternative explanation is that we captured

context-specific genetic effects that are due to differences between our cohort and GTEx samples in

cell-type composition, ancestry, age, psychosocial environment, and/or the asthma status. Indeed,

our GxE analysis identifies 344 instances of eGenes with context-specific genetic regulation of gene

expression, including 124 instances of GxE with psychosocial experiences.

One outstanding challenge in human complex trait genetics focuses on the portability of poly-

genic risk scores across population groups or environments (Mostafavi et al., 2020). The 124 instan-

ces of GxE with psychosocial experiences are particularly relevant when evaluating a polygenic risk

score for asthma phenotypes. For example, the individual contribution of a gene can be modified by

SES in one direction and in a different direction for a different gene.

Here, we show that these altered gene expression immune profiles may in turn exacerbate

asthma symptoms in children living in inner cities, who are exposed to riskier psychosocial environ-

ments. Using human genetics tools, we established that psychosocial factors can modulate the

causal genetic effects between gene expression and asthma. Importantly, our results demonstrate

that psychosocial factors, such as self-disclosure and SES, modulate genetic risk of asthma and other

allergic diseases through altered peripheral blood gene expression.

Materials and methods

Study participants
Participants were included from an ongoing longitudinal study, ALOFT ( recruited from November

2010 to July 2018, Wayne State University Institutional Review Board approval #0412110B3F). The

ALOFT study investigates the links between family dynamics, biological changes, and asthma mor-

bidity among youth from the Detroit metropolitan area. Participants were recruited from local area

hospitals and schools (for recruitment details, see Supplemental text). To be included in the study,

youth were required to be between 10 and 15 years of age at the time of recruitment and diagnosed

with at least mild to persistent asthma by a physician (with diagnosis confirmed from medical

records). Youth were screened for medical conditions and medications that might affect asthma and

associated biological markers. Only one participant reported current oral corticosteroid use. The full

sample included 297 youth and their primary caregivers (typically mothers, referred to as ‘parent’

below). However, only youth with valid gene expression data were included in this investigation.

Thus, the sample comprised 251 youth (148 boys and 103 girls), whose average age was 12.89 years

old (sd = 1.77 years), and at least one parent. Psychosocial and biological variables, including asthma

measures, were available for a subset of 119 participants. For a subset of up to 103 participants, we

have collected longitudinal data (either 1- or 2 year follow-up), which we used to validate the tran-

scriptional signatures. For cross-sectional and longitudinal sample sizes for each variable, refer to

Supplementary file 1b.

Participant recruitment and collection of psychosocial and biological
variables
The parent completed a telephone screening interview to determine eligibility in the study. Written

assent and consent were obtained from the participating youth and their parent, respectively.

In-lab assessments
The participating youth and parent visited the laboratory, where they completed background ques-

tionnaires on a computer and individual interviews assessing stress and asthma management. The

parent reported demographics, including their annual income and education level, and completed

measures of subjective SES (the McArthur ladder [Adler et al., 2000], adjusted so that 1 corre-

sponds to the lowest status and 10 to the highest), neighborhood stress (Ewart and Suchday,
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2002), conflict with their child (the Parental Environment Questionnaire; Elkins et al., 1997), and

depressive symptoms (the CES-D; Radloff, 1977). The zip code for each family was also collected

and used to retrieve objective measures of neighborhood quality based on census block data from

2010 and Data Driven Detroit (collected in 2009), including the percentage of houses rated as fair in

quality or better, percentage of houses currently unoccupied, and the percent of people in that area

living below the poverty line (Zilioli et al., 2017).

At the same time, youth reported on demographics, warmth received from their mother (Parental

Behavior Inventory; Schaefer, 1965), conflict with their mother, the quality of their family environ-

ment (the Risky Families Questionnaire; Felitti et al., 1998; Taylor et al., 2004), depressive symp-

toms (the Child Depression Inventory; Kovacs, 2011), and the frequency and severity of their

asthma symptoms (the Teen Asthma History). Youth also reported on their parents smoking inside

the household. However, due to low prevalence as well as uncertainty on whether the parents were

present in the household during the 4 days of data collection, we decided to not use this information

in our analyses. They also completed a spirometry test using the nSpire Health KoKo PFT to obtain

the following pulmonary measures: FEV1 percent predicted, FVC percent predicted, FEV1/FVC per-

cent predicted. Also at this visit, the youth and parent were given detailed instructions regarding a

4-day daily assessment period. The laboratory visit lasted approximately 2 hr.

In-home assessments
For 4 days following the laboratory visit (two weekdays and two weekend days), youth and their par-

ent completed daily assessments. Both youth and their parent completed daily diaries each evening

about their experiences throughout their day, and sleep diaries each morning about the quality of

their sleep. Daily diaries contained items assessing their positive (i.e., happy, interested, excited,

and proud) and negative (i.e., sad, angry, upset, worried, distressed) affect, and how much affection

and conflict they witnessed between their parents. Youth were also asked to think about the most

important and meaningful conversation they had with someone that day and the extent to which

they talked about their thoughts and feelings during that conversation (to measure self-disclosure),

and how understanding, validating, and caring their conversation partner was (to measure perceived

responsiveness). The sleep diaries contained the Pittsburgh Sleep Scale (Monk et al., 1994), which

assesses sleep latency (how long to fall asleep), sleep efficiency (how much time in bed spent sleep-

ing), the number of awakenings throughout the night, the total duration of sleep in hours, and the

quality of the sleep. Through the daily and sleep diaries, the participants provided information on

the following measures of asthma: severity and frequency of daily and nightly asthma symptoms

(wheezing, shortness of breath, coughing, chest tightness, other) and nightly inhaler use. Description

of daily diary and sleep diary items used in this investigation is included in Supplementary file 2.

When youth completed the daily and sleep diaries (i.e., at awakening and before bed), they used a

peak flow meter twice to measure peak flow, with the best score between the two assessments used

as our measure of morning and evening peak flow. Only daily and sleep diary reports from youth are

used in this investigation. Additionally, youth provided four samples of saliva daily for 4 days at

wakeup, 30 min after wakeup, before dinner, and immediately before bed using passive drool meth-

ods. Sample time was recorded by participant report, time stamps, and MEMS 6 TrackCap monitors

(Aardex Ltd., Switzerland). Samples were initially stored in participants’ refrigerators, but upon

return to the lab, saliva samples were stored in the laboratory refrigerator at �20˚C until assayed. To

reduce positive skewness, we natural log transformed the cortisol values (raw cortisol +1). Hierarchi-

cal linear models were run in HLM to extract the average diurnal cortisol intercept, slope, and corti-

sol awakening response (CAR) for each participant. Finally, participants wore the Electronically

Activated Recorder (EAR) in their front pocket or in a belt clip provided from the time they woke up

until bedtime. The EAR captured 50 s of sound every 9 min (Mehl et al., 2001). EAR data were

coded by trained coders using the Everyday Child Home Observation (ECHO) coding system

(Tobin et al., 2015). Specifically, for this investigation, we use codes of wheezing, positive affect (i.

e., happy, interested, excited), negative affect (i.e., sadness, anger, upset, worry, distress), maternal

responsiveness (i.e., how much the mother expresses pride, support, and warmth towards the

youth), and family conflict (i.e., whether an argument, conflict, fight, or yelling was overheard).

Scores for each EAR-observed behavior reflect a mean of the total recordings in which the behavior
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was observed during waking hours. After completion of the in-home assessment period, the partici-

pants returned study materials and the EAR. Youth and parents were compensated for their time.

Additional details on the measures collected in-home are provided in Supplementary file 2.

Descriptive and reliability statistics can be found in Supplementary file 1b. Correlations between

measures can be found in Figure 1—figure supplement 1.

Biological sample collection
Following the daily assessment period, a peripheral blood draw was conducted for each youth par-

ticipant. Each youth provided 16, 4, and 8 ml of peripheral blood collected into Vacutainer Cell Prep-

aration Tubes (Becton Dickinson and Co., East Rutherford, NJ) for PBMC (FICOLL gradient

vacutainers), DNA (sodium citrate vacutainer, Fisher Scientific catalog #BD-366415), and RNA (EDTA

vacutainer) extraction, respectively. Peripheral blood mononuclear cells (PBMCs) were extracted

from this sample, as previously described (Weckle et al., 2015). All PBMC samples were pheno-

typed for glucocorticoid (GC) resistance in an established in vitro assay (Marin et al., 2009) measur-

ing the levels of IL-5, IL-13, and IFN-g in the supernatant (Quantikine ELISA D5000B, D1300B, and

DIF-50, R&D Systems, Minneapolis, MN). Specifically, PBMCs cultured in RPMI-1640 solution (Life

Technologies, Carlsbad, CA) supplemented with 10% FBS (Life Technologies) and 2% HEPES

(Sigma-Aldrich, St. Louis, MO) were stimulated for 48 hr with PMA + ionomycin (phorbolmyristate

acetate 25 ng/ml, Fisher Scientific, Hanover, IL; ionomycin calcium salt, 1 mg/ml, Sigma-Aldrich) and

treated with hydrocortisone (28 nmol/l, Sigma-Aldrich) or vehicle control. GC resistance was calcu-

lated as log-fold change of cytokine level in hydrocortisone condition over control and averaged

over two replicates. DNA was extracted using DNA Blood Mini Kit (Qiagen, Germantown, MD), and

RNA was extracted using LeukoLOCK Total RNA Isolation System (Thermo Fisher Scientific, Wal-

tham, MA).

Each of the aforementioned measures were collected annually for a period of 2 years (three data

collection waves) from participants who provided continued informed consent. In this study, we used

both cytokine levels in stimulated PBMCs (e.g., IL5 stimulated), as well as log-fold change in cytokine

levels between stimulated and stimulated + glucocorticoid-treated condition (e.g., IL13 GC

resistance).

Genotype data
All individuals in this study were genotyped from low-coverage (~0.4�) whole-genome sequencing

and imputed to 37.5M variants using the 1000 Genomes database by Gencove (New York, NY). The

genotype accuracy at this sequencing depth has 98.22% positive agreement and 99.82% negative

agreement compared to genotyping arrays (Wasik et al., 2021; Li et al., 2021). These data were

also used for sample quality control (see Ancestry QC, Sex QC and Genotype QC) and to calculate

the top three principal components [PCs] to use as covariates in all statistical analyses.

Genotype QC
To detect potential sample swaps that may have occurred in sample processing or library prepara-

tion, we compared genotypes of RNA and DNA samples from all individuals. We used samtools mpi-

leup function to obtain genotypes from each individual’s RNA-seq bam files for NCBI dbSNP Build

144 variants and kept only variants with more than 40 reads coverage. We used bcftools gtcheck

function to compare genotype calls across all biallelic SNPs in all DNA and RNA samples. RNA sam-

ples that failed to cluster with their respective DNA sample were repeated (library preparation and

sequencing). If the discrepancy was not resolved, these samples were excluded from the analysis. A

total of 251 samples passed this QC filter. Ultimately, the pairwise discordance rate between geno-

type calls from RNA and their respective DNA samples from the same individual ranged between

0.03 and 0.12. In contrast, the pairwise discordance rate between all the other unrelated samples

ranged from 0.20 to 0.33. This rate is not a direct measure of genotype call accuracy, but it is useful

to identify possible sample swaps and mismatches.

We also used the DNA-derived genotype information to confirm none of the participants were

related. We performed identity-by-descent (IBD) analysis by maximum likelihood estimation (MLE)

using the R package SNPRelate (version 1.16.0). As input we used random 1500 SNPs passing the
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following criteria: minor allele frequency (MAF) >0.05, missing rate <0.05, LD threshold <0.2 (Fig-

ure 1—figure supplement 4).

Ancestry and sex QC
For the individuals for whom the data was available, we plotted self-reported ethnicity against per-

cent global African ancestry defined as the sum of West, East, Central, and North African global

genetic ancestries calculated by Gencove (Figure 1—figure supplement 5). All samples were in

agreement with self-reported ethnicity. Three participants who identified as multiracial were found

to be of admixed African and European ancestry based on genotype analysis provided by Gencove.

To check consistency of self-reported sex against genetic data, we plotted fraction of reads mapping

to the Y chromosome for all samples. We noted a clear separation between the sexes with no out-

liers (Figure 1—figure supplement 6).

RNA-seq data collection and preprocessing
Total RNA was extracted using LeukoLOCK (Thermo Fisher), which captures total RNA from neutro-

phils, eosinophils, basophils, monocytes, and lymphocytes, and preserved at �80˚C. All RNA sam-

ples had a RNA Integrity Number (RIN) of at least 6 measured on Agilent Bioanalyzer. Library

preparation was performed in batches of up to 96 samples (with multiple samples from the same

participant always processed within the same batch) on 1–4 mg total RNA, per standard Illumina Tru-

Seq Stranded mRNA library preparation protocol, and sequenced on Illumina NextSeq500 to a

depth of 21 million (M) to 76M reads, mean 41M reads (150 bp paired-end). HISAT2 (Kim et al.,

2015) was used to align demultiplexed reads to the human genome version ‘GRCh37_snp_tran’,

which considers splicing and common genetic variants. Aligned and cleaned (deduplicated) reads

were counted using HTSeq and GRCh37.75 transcriptome assembly across 63,677 genes. Post-

sequencing quality control included removal of samples with excess PCR duplicate rate (>60%) and

genotype QC check against respective DNA sample. For all gene expression analyses, genes on sex

chromosomes and genes with expression below 6 reads or 0.1 counts per million in at least 20% of

samples were dropped. The final RNA-seq dataset consists of 251 unique samples and 18,904

genes.

Differential gene expression analysis
We used DESeq2 v1.22.1 (Love et al., 2014) to test for differential gene expression across the 23

psychosocial experiences using a likelihood ratio test (LRT) in 119 individuals from the first wave of

data collection. To adjust for potential confounders, we included as covariates the three top PCs of

a matrix of possible confounders that included RIN, site of RNA extraction, library preparation batch,

percent reads mapping to exons, percent non-duplicate reads, age, sex, height, weight, top three

genotype PCs, and the four transcriptional signatures of blood composition (Figure 1—figure sup-

plement 7), except when testing for the effect of blood composition differences on gene expression

where we have not included transcriptional signatures of blood composition when calculating PCs of

potential confounders. Many of these confounders are very correlated, and the three top PCs

explained 99.7% of their variance. Supplementary file 1h represents correlations between individual

covariates and the three top PCs of the covariate matrix. In short, PC1–PC3 largely represent weight,

height, and age, respectively. For each tested variable, the LRT is then used to compare between

two models: GE ~ cvPC1+cvPC2+cvPC3+tested_variable (full model) and GE ~ cvPC1+cvPC2

+cvPC3 (reduced model). To control for FDR, we used the default independent filtering step and

multiple test correction implemented in DESeq2. Supplementary file 1e lists differentially expressed

genes at 10% FDR, while Supplementary file 1f contains the full results of the analysis.

Supplementary file 1i lists differentially expressed genes for blood composition measures at 10%

FDR, while Supplementary file 1j contains full DESeq results for this analysis.

GO and pathway enrichment analyses
We used the R package clusterProfiler (Yu et al., 2012) to run GO, KEGG, and REACTOME enrich-

ment analyses (hypergeometric test) across genes upregulated and downregulated compared to the

background of all expressed genes (Figure 1—figure supplement 3). Enriched categories were

defined at 5% FDR.

Resztak et al. eLife 2021;10:e63852. DOI: https://doi.org/10.7554/eLife.63852 13 of 25

Research article Genetics and Genomics

https://doi.org/10.7554/eLife.63852


Imputation and denoising of transcriptional signatures
We assume that the observed variables have high levels of noise and the measured values do not

reflect the true biological effects. Therefore, we used the predicted values for all participants, includ-

ing those for whom the variables were directly measured (denoising). We developed an approach to

impute and denoise a transcriptional signature for psychosocial, environmental, and other pheno-

typic variables based on Generalized Linear Models with Elastic-Net Regularization. First, we normal-

ized the count data using the voom function in the limma v3.38.3 package in R (Law et al., 2014).

Second, we regressed out the following confounding factors: RIN, percent reads mapping to exons,

percent non-duplicate reads, site of RNA extraction, library preparation batch, sample collection

wave, age, sex, height, weight, genotype PC1, genotype PC2, and genotype PC3. Third, we used

the R package glmnet v2.0–16 in R/3.5.2 (Gaussian model), with a relaxed alpha = 0.1 to allow for

highly co-regulated genes to be included in the prediction model.

The predicted values are imputed based on the generalized linear models with penalized maxi-

mum likelihood built using glmnet for each variable separately, according to the general model:

PhenotypeorEnvironment¼ interceptþb1Eðgene1Þþb2Eðgene2Þþ . . .þbnEðgenenÞ; (1)

where E (genen) is normalized expression of gene n, bn is its estimated coefficient, and n is mini-

mized via penalized maximum likelihood with elastic-net mixing parameter a set to 0.1 (0 represent-

ing ridge regression, 1 representing lasso regression).

The best fit for the model was used to predict, for both observed and unobserved samples, the

biological impact on gene expression of the relevant variable. We did this because the measurement

error for the observed variables will also not be uniform as some individuals may not respond accu-

rately or truthfully (e.g., to self-disclosure questions) to all questions. If the objective was to estimate

the measurement including its biases and errors, the ‘technical’ variance for the observed variable

would be smaller if we were to use the observed values. However, we use the denoised/imputed val-

ues, where the ‘biological’ variance, or the error between the fitted value of the signature with

respect to the true unobserved biological impact, would be the same for both the measured and

non-measured individuals. Overall, our procedure should not create any biases but rather decrease

the variability of the imputed/denoised variables, thus reducing the chance of false-positive GxE.

Leave-one-out cross-validation was used to evaluate the best models. We used the cross-vali-

dated mean square error (MSE) metric and its standard deviation to evaluate which signatures were

more predictive. We calculated the R2 for each of the models based on the % MSE reduction from

cross-validation. To compare the results that would be achievable with the CTRA-based approach,

we used the same method but we limited the molecular signature to only include the 53 genes that

are used to calculate the CTRA score (Fredrickson et al., 2013). 48 of the 53 genes comprising the

CTRA are measurable in our sample (CTRA genes below detection: IL1A, IFIT1L, IFITM5, IFNB1,

IGLL3). We compared the fraction of variance explained between the CTRA-based and unrestricted

models (Figure 1—figure supplement 8).

Correlation between transcriptional signatures
We used Pearson’s correlations to evaluate overlap between transcriptional signatures of variables

explaining at least 1% of variance imputed on the entire cohort of 251 participants as in Equation (1).

We only considered correlations with p-value<0.05.

Longitudinal replication
We collected a second time point (approximately 1 or 2 years after the time point used in current

analyses) for a subset of 13 variables – subjective SES, self-disclosure, YR parent-child conflict, stimu-

lated IL5, IL13 GC resistance, eosinophils, lymphocytes, monocytes, neutrophils, FEV1 percent pre-

dicted, nightly asthma symptoms, nightly inhaler use, and asthma severity – to validate the

transcriptional signatures. We considered the longitudinal changes in the transcriptional signatures

imputed from the new gene expression data and compared them to the changes in the observed

variable between the two time points. Note that the transcriptional signature is imputed for the sec-

ond time point from gene expression samples that are not included in the training set. We used

Spearman’s correlation to compare the changes from the imputed transcriptional signature to those

directly observed.
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cis-eQTL mapping
We calculated gene expression residuals (as in the imputation and denoising approach) and then

used FastQTL (Ongen et al., 2016) with adaptive permutations (1000-10,000). For each gene, we

tested all genetic variants within 1 Mb of the transcription start site (TSS) and with cohort

MAF > 0.1, for a total of 17,679 genes and 82,679,170 variant-gene pairs tested. We optimized the

number of gene expression PCs in the model to maximize the number of eGenes. The model that

yielded the largest number of eGenes included 18 gene expression PCs (Figure 3—source data 1).

Interaction eQTL mapping
To identify interaction eQTLs, we considered the lead eQTL for each of the eGenes identified at

10% FDR by FastQTL (without correcting for gene expression principal components). This is similar

to what was done by GTEx (Kim-Hellmuth et al., 2020) and others (Alasoo et al., 2018; Kim-

Hellmuth et al., 2017), and equivalent to a very conservative pruning of all SNPs in the entire cis-

association region. We did not correct for gene expression principal components because some of

them are correlated with cell composition and the environmental variables, thus complicating the

interpretation of the linear model. To reduce impact of potential outliers, we quantile-normalized

each transcriptional signature prior to GxE testing. We fit a linear model that includes both the

genotype dosage and the marginal environmental effect as well as their interaction:

Expression ~dosage + transcriptional signature +dosage*transcriptional signature. To fit this model,

we used the lm function in R-3.5.2. We generated an empirical null distribution of 100 million per-

muted p-values to correct the interaction p-values (Figure 3—figure supplement 4). The empirical

null distribution was obtained through multiple runs of the model for each tested transcriptional sig-

nature-gene pair while permuting the genotype dosages. Storey’s q-value method to control for

FDR was applied on the permutation-corrected p-values for all tests within each transcriptional sig-

nature separately.

To ensure the signal detected was not solely due to cell composition differences, we repeated

the GxE eQTL mapping procedure as above, while correcting for four signatures of cell composition

using the following model: Expression ~ eosinophils + leukocytes+monocytes + neutrophils+dos-

sage + transcriptional signature +dosage*transcriptional signature. Figure 3—source data 6 con-

tains full results of this analysis.

Interaction eQTL mapping with measured variables was performed the same way as with tran-

scriptional signatures, except sample size was limited by the available data (Figure 3—source data

7).

Replication analysis of GxE
We calculated the enrichment of GxE genes from the measured variables (p-value<0.01) in the set of

GxE genes from the transcriptional signatures (p-value<0.01). To this end, we performed Fisher’s

exact tests on 2 � 2 contingency tables indicating whether a gene had a GxE eQTL with the mea-

sured variable (yes/no) and with the corresponding transcriptional signature (yes/no). Additionally,

we calculated the correlation of the standardized interaction effect size (z-score) for each gene

obtained when considering measured variables and corresponding transcriptional signatures.

To validate our GxE results, we considered the following GxE studies for which full interaction

testing results are available (Barreiro et al., 2012; Lee et al., 2014; Çalışkan et al., 2015;

Nédélec et al., 2016; Moyerbrailean et al., 2016; Kim-Hellmuth et al., 2020). We show numbers

of our GxE eGenes (FDR < 10%) that replicated in other studies (p-value<0.05).

TWAS analyses
To directly investigate whether discovered effects on gene expression and GxE interactions may

contribute to asthma, allergic disease risk, and/or behavioral phenotypes, we used PTWAS

results (Zhang et al., 2020) (5% FDR) as an independent source of evidence of causality between

gene expression levels and asthma/allergic disease risk. PTWAS utilizes probabilistic eQTL annota-

tions derived from multivariant Bayesian fine-mapping analysis conferring higher power to detect

TWAS associations than existing methods. The evidence for causality from PTWAS is strong for the

following reasons: (1) we use only strong IVs by combining the strength of multiple independent

strong eQTLs for each gene and combining information across all tissues; (2) within the PTWAS
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framework, we can then validate the causality assumption for each gene-trait-tissue combination.

We found that the exclusion restriction criterion was violated (heterogeneity of independent esti-

mates across multiple strong eQTLs, I2 statistic >0.5) in only 0.36% of the gene-trait pairs for which

we computed this statistic, none of which overlap our reported results. Using eQTL data across 49

tissues from GTEx v8, we used PTWAS to analyze GWAS summary statistics from several large-scale

projects. Here, we specifically focused on the following asthma studies: GABRIEL-Asthma, TAGC-

Asthma-EUR, UKB-20002–1111-self-reported-asthma, UKB-6152–8-diagnosed-by-doctor-Asthma,

and allergic disease studies: EAGLE-Eczema, UKB-20002–1452-self-reported-eczema-or-dermatitis,

UKB-6152–9-diagnosed-by-doctor-Hayfever-allergic-rhinitis-or-eczema. Additionally we considered

other phenotypes that may be relevant for our cohort: chronotype (Jones-et-al-2016-Chronotype,

UKB-1180-Morning-or-evening-person-chronotype), sleep duration (Jones-et-al-2016-SleepDuration,

UKB-1160-Sleep-duration), and depressive symptoms (SSGAC-Depressive-Symptoms). To identify

eGenes in children with asthma that are causally associated with asthma, we considered all 4943

eGenes that were used for the interaction eQTL analysis with a significant (10% FDR) marginal effect

of the psychosocial experiences from the linear model that includes both the genotype dosage and

the marginal environmental effect as well as their interaction: Expression ~ dosage + transcriptional

signature +dosage*transcriptional signature.
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Author response https://doi.org/10.7554/eLife.63852.sa2

Additional files
Supplementary files
. Supplementary file 1. Supplementary tables. (a) Basic demographic information on 119 individuals

used to train the transcriptional signature models (‘training’) and the entire cohort of 251 partici-

pants (‘total’). Reported are the count (N) and percentage of non-missing values per each category.

For each variable in parentheses, we reported the p-values for significant differences in variable dis-

tribution between the training group and the group not included in the model. (b) List of variables

collected for the current study. DD: daily diary; SD: sleep diary; EAR: coded from Electronically Acti-

vated Recorder; YR: youth reported; PR: parent reported; CD: census data; GC: glucocorticoid; SD:

standard deviation; a: Chronbach’s alpha measuring reliability as the average correlation between

scale items, as a function of the number of items included in the scale, N initial – sample size used

for differential gene expression analysis and building transcriptional signatures (mean, SD, and a are

reported for this subset), N longitudinal – number of samples with measurements from two

time points available, N expanded – final sample size used for transcriptional signature and GxE vali-

dations. (c) Evaluation of transcriptional signatures derived using elastic net regression. For each var-

iable, we report Pearson’s correlation coefficient, p-value, cross-validated percent variance

explained, and sample size for the training dataset (columns 2–5), and Pearson’s correlation coeffi-

cient, p-value, and sample size for the entire cohort (columns 6–8). (d) Longitudinal replication of

transcriptional signatures. For each variable, we report Spearman’s correlation coefficient between

longitudinal change in observed variable and change in the transcriptional signature, p-value, coeffi-

cient of variation of longitudinal change in observed variable, and sample size. (e) Differentially

expressed genes (DEGs) for all psychosocial variables (10% FDR; N: sample size). (f) Full DESeq

results for differential gene expression analyses for psychosocial variables. (g) Correlations between

z-scores of GxE interaction effects measured using transcriptional signatures and observed data. For

each variable, we report Spearman’s correlation coefficient and its p-value, and odds ratio and

p-value from Fisher’s test for enrichment of nominally significant results (permutation-corrected

p-value<0.01) between GxE expression quantitative trait locus (eQTL) testing using transcriptional

signatures and observed data. (h) Correlations between the top three principal components of

covariate matrix and individual covariates (Pearson’s product-moment correlations with numeric vari-

ables, polyserial correlations with bivariate variables; ns: correlation p-value>0.05). (i) DEGs associ-

ated with blood cell composition (10% FDR; N: sample size). (j) Full DESeq results for differential

gene expression analyses for blood composition variables.

. Supplementary file 2. Detailed descriptions of methods for psychosocial data collection.

. Transparent reporting form

. Reporting standard 1. STREGA reporting recommendations, extended from STROBE Statement.

Data availability

The data are available on dbGAP (accession number: phs002182.v1.p1).

The following dataset was generated:

Author(s) Year Dataset title Dataset URL
Database and
Identifier

Zilioli S, Slatcher RB, 2021 Asthma in the Lives of Families https://www.ncbi.nlm. dbGAP, phs002182.
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Eosinophilic asthma, according to a blood eosinophil criterion, is associated with disease severity and lack of
control among underprivileged urban brazilians. Respiratory Medicine 145:95–100. DOI: https://doi.org/10.
1016/j.rmed.2018.10.025, PMID: 30509723

Litonjua AA, Carey VJ, Weiss ST, Gold DR. 1999. Race, socioeconomic factors, and area of residence are
associated with asthma prevalence. Pediatric Pulmonology 28:394–401. DOI: https://doi.org/10.1002/(SICI)
1099-0496(199912)28:6<394::AID-PPUL2>3.0.CO;2-6, PMID: 10587412

Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with
DESeq2. Genome Biology 15:550. DOI: https://doi.org/10.1186/s13059-014-0550-8, PMID: 25516281

Resztak et al. eLife 2021;10:e63852. DOI: https://doi.org/10.7554/eLife.63852 19 of 25

Research article Genetics and Genomics

https://doi.org/10.1016/j.psyneuen.2018.02.011
https://doi.org/10.1016/s0749-3797(98)00017-8
https://doi.org/10.1016/s0749-3797(98)00017-8
http://www.ncbi.nlm.nih.gov/pubmed/9635069
https://doi.org/10.1534/genetics.119.302419
http://www.ncbi.nlm.nih.gov/pubmed/31492806
https://doi.org/10.1073/pnas.1305419110
https://doi.org/10.1073/pnas.1305419110
http://www.ncbi.nlm.nih.gov/pubmed/23898182
https://doi.org/10.18637/jss.v033.i01
http://www.ncbi.nlm.nih.gov/pubmed/20808728
https://doi.org/10.4161/epi.6.4.14944
https://doi.org/10.1037/0033-2909.129.1.10
https://doi.org/10.1037/0033-2909.129.1.10
http://www.ncbi.nlm.nih.gov/pubmed/12555793
https://doi.org/10.1038/ng.3506
http://www.ncbi.nlm.nih.gov/pubmed/26854917
https://doi.org/10.1136/thx.53.6.519
https://doi.org/10.1136/thx.53.6.519
https://doi.org/10.1371/journal.pmed.1000316
http://www.ncbi.nlm.nih.gov/pubmed/20668659
https://doi.org/10.1038/nmeth.3317
http://www.ncbi.nlm.nih.gov/pubmed/25751142
https://doi.org/10.1038/s41467-017-00366-1
http://www.ncbi.nlm.nih.gov/pubmed/28814792
https://doi.org/10.1126/science.aaz8528
http://www.ncbi.nlm.nih.gov/pubmed/32913075
https://doi.org/10.1038/nmeth.4298
https://doi.org/10.1038/nmeth.4298
http://www.ncbi.nlm.nih.gov/pubmed/28530654
https://doi.org/10.1186/gb-2014-15-2-r29
http://www.ncbi.nlm.nih.gov/pubmed/24485249
https://doi.org/10.1126/science.1246980
http://www.ncbi.nlm.nih.gov/pubmed/24604203
https://doi.org/10.1016/0022-3999(93)90007-3
https://doi.org/10.1016/0022-3999(93)90007-3
http://www.ncbi.nlm.nih.gov/pubmed/8350293
https://doi.org/10.1101/gr.266486.120
http://www.ncbi.nlm.nih.gov/pubmed/33536225
https://doi.org/10.1016/j.rmed.2018.10.025
https://doi.org/10.1016/j.rmed.2018.10.025
http://www.ncbi.nlm.nih.gov/pubmed/30509723
https://doi.org/10.1002/(SICI)1099-0496(199912)28:6%3C394::AID-PPUL2%3E3.0.CO;2-6
https://doi.org/10.1002/(SICI)1099-0496(199912)28:6%3C394::AID-PPUL2%3E3.0.CO;2-6
http://www.ncbi.nlm.nih.gov/pubmed/10587412
https://doi.org/10.1186/s13059-014-0550-8
http://www.ncbi.nlm.nih.gov/pubmed/25516281
https://doi.org/10.7554/eLife.63852


Mamessier E, Nieves A, Lorec AM, Dupuy P, Pinot D, Pinet C, Vervloet D, Magnan A. 2008. T-cell activation
during exacerbations: a longitudinal study in refractory asthma. Allergy 63:1202–1210. DOI: https://doi.org/10.
1111/j.1398-9995.2008.01687.x, PMID: 18699937

Marigorta UM, Denson LA, Hyams JS, Mondal K, Prince J, Walters TD, Griffiths A, Noe JD, Crandall WV, Rosh
JR, Mack DR, Kellermayer R, Heyman MB, Baker SS, Stephens MC, Baldassano RN, Markowitz JF, Kim MO,
Dubinsky MC, Cho J, et al. 2017. Transcriptional risk scores link GWAS to eQTLs and predict complications in
crohn’s disease. Nature Genetics 49:1517–1521. DOI: https://doi.org/10.1038/ng.3936, PMID: 28805827

Marin TJ, Chen E, Munch JA, Miller GE. 2009. Double-exposure to acute stress and chronic family stress is
associated with immune changes in children with asthma. Psychosomatic Medicine 71:378–384. DOI: https://
doi.org/10.1097/PSY.0b013e318199dbc3, PMID: 19196805

Mehl MR, Pennebaker JW, Crow DM, Dabbs J, Price JH. 2001. The electronically activated recorder (EAR): a
device for sampling naturalistic daily activities and conversations. Behavior Research Methods, Instruments, &
Computers 33:517–523. DOI: https://doi.org/10.3758/BF03195410, PMID: 11816455

Meyer TJ, Mark MM. 1995. Effects of psychosocial interventions with adult Cancer patients: a meta-analysis of
randomized experiments. Health Psychology 14:101–108. DOI: https://doi.org/10.1037/0278-6133.14.2.101,
PMID: 7789344

Mielck A, Reitmeir P, Wjst M. 1996. Severity of childhood asthma by socioeconomic status. International Journal
of Epidemiology 25:388–393. DOI: https://doi.org/10.1093/ije/25.2.388, PMID: 9119565

Miller G, Chen E, Cole SW. 2009. Health psychology: developing biologically plausible models linking the social
world and physical health. Annual Review of Psychology 60:501–524. DOI: https://doi.org/10.1146/annurev.
psych.60.110707.163551, PMID: 19035829

Monk TH, Reynolds CF, Kupfer DJ, Buysse DJ, Coble PA, Hayes AJ, Machen MA, Petrie SR, Ritenour AM. 1994.
The pittsburgh sleep diary. Journal of Sleep Research 3:111–120. DOI: https://doi.org/10.1111/j.1365-2869.
1994.tb00114.x, PMID: 11537903

Moorman JE, Akinbami LJ, Bailey CM, Zahran HS, King ME, Johnson CA, Liu X. 2012. National surveillance of
asthma: united states, 2001-2010. Vital & Health Statistics 35:1–58.

Mostafavi H, Harpak A, Agarwal I, Conley D, Pritchard JK, Przeworski M. 2020. Variable prediction accuracy of
polygenic scores within an ancestry group. eLife 9:e48376. DOI: https://doi.org/10.7554/eLife.48376, PMID: 31
999256

Moyerbrailean GA, Richards AL, Kurtz D, Kalita CA, Davis GO, Harvey CT, Alazizi A, Watza D, Sorokin Y, Hauff
N, Zhou X, Wen X, Pique-Regi R, Luca F. 2016. High-throughput allele-specific expression across 250
environmental conditions. Genome Research 26:1627–1638. DOI: https://doi.org/10.1101/gr.209759.116
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Appendix 1

Participant recruitment methods
We used the following three recruitment methods, in order of most-used to least-used:

1. Dr. Secord, a co-I on the study, identifies patients who meet some of the basic criteria for the
study who are then sent informational letters to their home address. The letter informs them
of the basic information about the study and a telephone number to contact if interested.

2. A nurse from DMC Children’s Hospital approaches patients and their guardians in asthma
clinic or ER and informs them about the study. If interested, patient’s guardian is later con-
tacted to further inform them about the study and screen them for eligibility.

3. Through informational flyer, posted in local asthma clinic, distributed to local K-12 schools with
basic information about the study and eligibility criteria, and study coordinator contact
information.

Basic information provided to potential participants across the three methods informs them that

this is a family asthma study looking at everyday life and how health is affected, that there is a home

or office/lab visit focused on surveys, a brief interview, and a 4-day at-home period and a follow-up

where blood is collected.

Participant eligibility

1. Child is between 10 and 15 years old.
2. Child has an asthma diagnosis of at least mild to persistent asthma.
3. At least one parent/guardian is willing to participate as well as the child.
4. Participating parent/guardian should be living with the child consistently for the last six

months.
5. If unsure of which parent/guardian should participate, then the one that would have the most

knowledge about health and day-to-day life.
6. If multiple children in the house have asthma and are in the study age range, the family can

choose which child will participate based on who would be most agreeable to the various
measures taken throughout the study.

Identification of gene expression confounders
There are many sources of technical and biological noise in RNA-seq data. To accurately estimate

gene expression differences between meaningful groups, one must account for additional sources of

gene expression variation that are not of interest. To investigate the major sources of variation in the

RNA-seq dataset, we performed principal component analysis (PCA) on normalized RNA-seq data

and investigated (1) the correlation between first 15 PCs and each of the covariates (data not

shown), and (2) proportion of variance explained by each covariate overall (Figure 1—figure supple-

ment 7a), and per each gene (Figure 1—figure supplement 7b). The following covariates were sig-

nificantly correlated with at least one PC: library preparation batch (confounded with library

sequencing batch), RNA quality score (RIN), laboratory where the RNA sample was extracted, age,

sex, height, weight, and ancestry (measured as first three principal components on the genotype

matrix). These variables were also correlated with each other; therefore, we used PCA to calculate

the PCs of all these covariates that explained >99.5% variance and incorporated them in the gene

expression analyses as described in the Materials and methods.

Blood composition has a profound effect on gene expression
Blood composition is expected to have a strong effect on overall blood gene expression as blood is

a heterogeneous tissue and different cell types may contribute different transcripts to the overall

gene expression. The results of differential gene expression analysis with DESeq2 using LRT are dis-

played in Supplementary file 1i, j. As expected, the number of differentially expressed genes is

larger for cell types that constitute a bigger fraction of the cell pool. Accordingly, we did not find

genes differentially expressed for basophils, a cell type that constitutes less than 1% of total
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leukocytes. Based on these results, cell composition was accounted for in differential gene expres-

sion analyses of psychosocial variables and other analyses that distinguished between the two types

of effects (mediation analysis).

Overlap of transcriptional signatures
We investigated whether transcriptional signatures for different variables were correlated with each

other, which would suggest shared transcriptional pathways for these phenotypes and environments

(Figure 2—figure supplement 1). Transcriptional signatures of the socioeconomic measures showed

strong overlap: specifically, houses rated �fair, unoccupied houses, and subjective SES were inter-

correlated. There was also some overlap in the social relationships category, with transcriptional sig-

natures of daily youth-reported self-disclosure and objective maternal responsiveness significantly

correlated. However, we also saw correlations crossing all three variable categories. For example,

subjective SES was significantly correlated with objective maternal responsiveness, family conflict,

and self-disclosure; objective negative affect was correlated with self-disclosure, family conflict,

objective maternal responsiveness, and houses rated �fair.

We were able to identify transcriptional signatures that explained at least 1% of variance for four

of the five blood composition variables and two of the seven glucocorticoid variables. Models pre-

dicting blood composition performed best with 47–150 genes, and models predicting glucocorticoid

variables contained 17–100 genes. Notably, the transcriptional signatures explained a far greater

percent of variation in blood composition than other categories of variables. Transcriptional signa-

tures within each category were highly correlated, showing greater overlap within all glucocorticoid

response variables and all blood composition variables (except for eosinophils, which were uncorre-

lated with all other blood composition signatures) than seen in asthma severity or social relationship

categories. When we correlated glucocorticoid and blood composition transcriptional signatures

with transcriptional signatures for psychosocial experiences and asthma severity, we observed some

overlap for glucocorticoid response: specifically, stimulated levels of IL-5 were associated with per-

cent-predicted FEV1 (r = �0.51, p<0.001), unoccupied houses (r = �0.27, p=<0.001), and youth-

reported parent-child conflict (r = 0.18, p=0.003). There was much more overlap in blood composi-

tion transcriptional signatures with asthma severity and psychosocial experience signatures. For

example, transcriptional signature of monocytes was correlated with a large number of transcrip-

tional signatures of both asthma and psychosocial experiences, including nightly asthma symptoms

(r = 0.21, p<0.001), and FEV (r = 0.45, p<0.001), self-disclosure (r = 0.49, p<0.001), unoccupied

houses (r = 0.39, p=<0.001), subjective SES (r = 0.43, p<0.001), and objective negative affect

(r = 0.35, p<0.001). Lymphocytes showed a very similar pattern of correlations to neutrophils, but in

the opposite direction.

Targeted vs. unbiased approach to identifying effects of psychosocial
experiences on gene expression
Previous research analyzing blood gene expression developed the CTRA (Fredrickson et al., 2013),

which proposes expression of 53 immune genes as a composite indicator of immune system

response to adverse social environments (reviewed in Cole, 2014). We compared the performance

of our unbiased prediction model with a model limited to the 53 CTRA genes (Figure 1—figure sup-

plement 8). The CTRA-based model performs better at predicting the fraction of two of the five

blood cell types. This may reflect differential expression of CTRA genes in some cell types. CTRA-

based and unbiased models perform similarly on psychosocial and neighborhood measures, with 9/

16 traits (56%) predicted more accurately by the unbiased model. CTRA-based model performs

poorly at predicting asthma and glucocorticoid phenotypes, and is outperformed by the unbiased

model in 10/14 traits (71%), which is expected because it was not originally developed to capture

these phenotypes. In summary, limiting the scope of the prediction model to preselected immune

genes does not greatly diminish performance in predicting blood and psychosocial phenotypes, but

the CTRA-based model does not appropriately reflect transcriptomic signatures of asthma and glu-

cocorticoid phenotypes. This result suggests that genes outside the CTRA subset are important to

many asthma and some psychosocial phenotypes.
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Replication of GxE effects
To validate the observed GxE effects on gene expression, we explored the overlap between the

GxE genes and previously published datasets that measured interactions with different environ-

ments. We found that the majority of our GxE genes replicated in other datasets of GxE in gene

expression (p<0.05). Of our genes with GxE, 2 were found to have GxE in response to

influenza (Lee et al., 2014), 59 were found to have GxE in response to a variety of chemical

treatments (Moyerbrailean et al., 2016), 75 were found to have GxE in response to a variety of

Mycobacterium tuberculosis (Barreiro et al., 2012), 87 were found to have GxE in response to

rhinovirus (Çalışkan et al., 2015), 99 genes were found to have GxE in response to

pathogens (Nédélec et al., 2016), and 117 had GxE with cell-type fraction in whole blood (Kim-

Hellmuth et al., 2020).
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