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Abstract The assessment of the physiological state of an individual requires an objective eval-

uation of biological data while taking into account both measurement noise and uncertainties

arising from individual factors. We suggest to represent multi-dimensional medical data by

means of an optimal fuzzy membership function. A carefully designed data model is introduced

in a completely deterministic framework where uncertain variables are characterized by fuzzy

membership functions. The study derives the analytical expressions of fuzzy membership func-

tions on variables of the multivariate data model by maximizing the over-uncertainties-aver

aged-log-membership values of data samples around an initial guess. The analytical solution

lends itself to a practical modeling algorithm facilitating the data classification. The experi-

ments performed on the heartbeat interval data of 20 subjects verified that the proposed

method is competing alternative to typically used pattern recognition and machine learning

algorithms.
� 2017 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is

an open access article under theCCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Data mining is increasingly motivating area of research due to
an abundance of data facilitated by modern era of information

technology. Data mining techniques such as classification and
clustering play a vital role in the development of medical deci-
sion support systems contributing to improved healthcare

quality. The medical decision making problems inherently
involve complexities and uncertainties and thus the researchers
have advocated the integration of fuzzy methodologies in

medical data interpretation. The handling of uncertainties by
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Figure 1 An uncertain signal model for a scalar yj.
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capturing of knowledge using fuzzy sets and rules together
with an interpretability offered by simple linguistic if-then
rules are two most important features of fuzzy methodologies.

The fuzzy approaches are commonly applied to medical data
classification problems (Fan et al., 2011; Gadaras and
Mikhailov, 2009; Nguyen et al., 2015; Papageorgiou, 2011;

Seera and Lim, 2014). The mathematical analysis of biomedi-
cal signals is performed to construct models identifying the
mappings between signal features and the patient’s state. The

mathematical relationship between signal features and the
patient’s state is affected by uncertainties arising from individ-
ual factors (e.g. related to body conditions) that can’t be math-
ematically taken into account. The fuzzy filters have been

previously proposed to alleviate the effect of uncertainties on
medical data analysis (Kumar et al., 2007, 2008, 2010) wherein
robust estimation algorithms have been applied to design a

fuzzy model that identifies the functional relation between
physiological parameters and subjective rating scores. Also,
stochastic fuzzy modeling and analysis techniques have been

introduced to take simultaneously the advantages of Bayesian
analysis and fuzzy theory for a mathematical handling of the
uncertainties in biomedical signal analysis (Kumar et al.,

2010, 2012). A recent work (Kumar et al., 2016) introduced
in a rigorous manner a stochastic framework for robust fuzzy
filtering and analysis of signals. Although Kumar et al. (2016)
introduced modeling and analysis framework is general and

rests on strong mathematical foundations, it considers only
the signal and thus can’t be directly applied to nonsignal mul-
tivariate data samples. There remains the need of automated

design methods to fully exploit the uncertain handling capabil-
ities of fuzzy systems. The typically used approaches to design
the fuzzy sets and systems include evolutionary algorithms

(Alcala et al., 2009; Antonelli et al., 2012; Cococcioni et al.,
2011; Gacto et al., 2010; Pulkkinen and Koivisto, 2010;
Robles et al., 2009), data clustering (Celikyilmaz and

Turksen, 2008; Chen and Chen, 2007; Liao et al., 2003; Oh
et al., 2003), adaptive filtering (Aliasghary and Arghavani,
2012; Kumar et al., 2006, 2009; Mottaghi-Kashtiban et al.,
2008; Simon, 2005), and information theoretic concepts

(Aliasghary and Arghavani, 2012; Au et al., 2006; Makrehchi
et al., 2003). The determination of fuzzy membership functions
remains a challenge as membership functions, due to the non-

linearity of the problem, can’t be optimized analytically. Thus,
most design methods of fuzzy membership functions lack in
mathematical theory and are based on numerical algorithms

which might be slow and inexact. Recently, (Kumar et al.,
2016) introduced an analytical approach for the determination
of fuzzy membership functions using the variational optimiza-
tion method. The proposed analytical approach of (Kumar

et al., 2016) allows to mathematically incorporate the given
modeling scenario in fuzzy membership functions’ design
problem and thus can be potentially extended to medical data

modeling scenario. The authors observe that the application of
fuzzy paradigm in medicine, despite being an extensively stud-
ied area, doesn’t provide a rigorous analytically derived

methodology or approach to interpret medical data while tak-
ing mathematically into account the measurement noise as well
as the individuality.

The medical data are multi-dimensional whose good repre-
sentation by means of fuzzy membership functions is the aim
of the mathematical theory presented in this study. This text
introduces a data model that takes into account both
measurement noise and uncertainties arising from individuality
related factors. A multivariate data sample, represented as
y= [y1 � � � yP]T 2 RP, is assumed to be generated by an
uncertain signal model displayed in Fig. 1. It is assumed an

uncertain signal model for a scalar yj. Here, yj is the observed
value of an unknown scalar mj being affected by measurement
noise vj and uncertainty uj. The uncertainty uj (equal to the dot

product of Gj 2 RK and a 2 RK) is being generated by a linear
combination of K different sources: (a1, � � � ,aK) that the jth ele-
ment of y is generated as

yj ¼ mj þ uj þ j

where vj is the measurement noise, uj is the uncertainty

affecting the model, and mj is an unobserved scalar
variable. The uncertainties are assumed to be generated
by linearly transforming a K-dimensional (K 6 P) vector

a ¼ a ¼ ½a1 � � � aK�T 2 RK as follows:

u1

..

.

uP

2
664

3
775 ¼

G11 � � � G1K

..

. ..
.

GP1 � � � GPK

2
664

3
775

a1

..

.

aK

2
664

3
775:

Defining Gj ¼ ½Gj1 � � �GjK�T 2 RK, uj can be expressed as

the dot product of Gj and a, i.e.,

uj ¼ ðGjÞTa:
Our approach is of

1. treating all the variables (appearing in the uncertain signal
model of Fig.1) as uncertain being characterized by fuzzy
membership functions.

2. assuming that medical data, under the given status of a

patient, is generated by a finite mixture of uncertain signal
models of the type that of Fig. 1.

3. determining the fuzzy membership functions on variables

with the help of experimentally measured data samples in
an analytical manner using variational optimization
(Kumar et al., 2016).

The approach results in a tractable solution to model the
multivariate data samples by means of fuzzy membership func-
tions and thus medical decision support systems can be built

up on the top of the data models.
The modeling of data using a finite mixture of signal models

of the type of Fig. 1 is typically considered in a stochastic

setting assuming variables as random (i.e. characterized by



Figure 2 A few examples of Gamma membership functions

(Kumar et al., 2016).

Analytical fuzzy approach to biological data analysis 565
probability distribution functions) and Bayesian framework is
commonly used for the inference of posterior distributions.
The originality of this study lies in solving the modeling prob-

lem in a completely deterministic framework where fuzzy
membership functions are defined over variables to character-
ize uncertainties about their values. The optimal shapes of

fuzzy membership functions are determined via analytically
maximizing the ‘‘over uncertainties averaged log membership”
values of data samples around an initial guess. The maximiza-

tion problem is analytically solved using variational optimiza-
tion as suggested initially in Kumar et al. (2016). The
contribution of this study is to derive the analytical expressions
of fuzzy membership functions on variables of the multivariate

data model leading to the development of a classification algo-
rithm. It is demonstrated through experimental data that our
approach is competing alternative to typically used classifica-

tion algorithms including ‘‘k-nearest neighbors”, ‘‘support vec-
tor machines”, ‘‘decision tree”, ‘‘random forest”, ‘‘AdaBoost”,
‘‘Gaussian naive Bayes”, ‘‘linear discriminant analysis”, and

‘‘quadratic discriminant analysis”. The better classification
performance of our approach is attributed to the efficient mod-
eling of the data distribution in multi-parametric space. The

significance of this work is that the analytically derived expres-
sions for fuzzy membership functions for representing uncer-
tainties associated with medical data would facilitate a
system theoretic approach to mathematically design the medi-

cal expert systems. This would provide researchers, unlike typ-
ically used ad-hoc numerical algorithms, a mathematical
theory on fuzzy membership functions’ applications in

medicine.
This text is organized into sections. Section 2 introduces an

uncertain model of multivariate data and an analytical solu-

tion for optimizing the data model is provided in Section 3.
A practical algorithm, based on the derived analytical solution,
is stated in Section4 4 for the modeling of multivariate data

samples. Section 5 applies the proposed approach on the
experimental heartbeat interval data of 20 subjects followed
by concluding remarks in Section 6.
2. An uncertain model of multivariate data

By an uncertain model, it is meant that system variables are
characterized by fuzzy membership functions. Despite the

availability of a wide range of fuzzy membership function
types, only following two types of fuzzy membership functions
are chosen to model the variables for keeping the analysis in its

most basic form:

Definition 1. (Gaussian’s membership function (Kumar et al.,
2016)). The Gaussian membership function on a vector
x 2 Rn, with mean equal to mx and precision equal to Kx, is
defined as

lðx;mx;KxÞ¼ exp �1

2
ðx�mxÞTKxðx�mxÞ

� �
; mx 2Rn;K�1

x >0:

Definition 2 (Gamma membership function (Kumar et al.,
2016)). The Gamma membership function on a non-negative

scalar z can be defined as
lðz; a; bÞ ¼ b

a� 1

� �a�1

expða� 1ÞðzÞa�1
expð�bzÞ; a P 1; b > 0:

A few examples of this type of membership functions for
different values of a and b are provided in Fig. 2. The param-

eter a is referred to as the shape parameter and b is referred to
as the rate parameter (i.e. the reciprocal of the scale parame-
ter). The peak of the membership function is given at

(a � 1)/b. The skewness of the membership function is inver-
sely proportional to the value of a. The Gamma membership
function can alternatively be represented as

lðz; r; sÞ ¼ ðsÞr expðrÞðzÞr expð�srzÞ; r P 0; s > 0

The relations between the parameters of two forms of
Gamma membership functions are as follows:

r ¼ a� 1; s ¼ b=ða� 1Þ:
All of the variables, appearing in Fig. 1, are assigned care-

fully either of Gaussian or Gamma membership function in
Definition 3, 4, 5, 6, 7, and 8.

Definition 3 (Fuzzy membership function on vj). The fuzzy
membership function on vj 2 R is defined as zero-mean
Gaussian with scaled precisions as

lðj; ky; zyjÞ ¼ exp � kyzyj
2

2
j

� �
ð1Þ

where ky > 0 is the precision scaled by zyj > 0. The uncertain-

ties of ky and zyj are characterized by the following Gamma

membership functions:

lðky; aky ; bky Þ ¼
bky

aky � 1

� �aky�1

expðaky � 1ÞðkyÞaky�1
expð�bkykyÞ;

aky P 1; bky > 0 >

lðzyj ; ry; syÞ ¼ ðsyÞry expðryÞðzyjÞry expð�rysyzyjÞ; ry P 0; sy > 0:

Here, ry > 0, and sy > 0 are uncertain as well as character-

ized by the following Gamma membership functions:
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lðry; aryy; bryÞ ¼
bry

ary � 1

� �ary�1

expðary � 1ÞðryÞary�1
expð�bryryÞ;

ary P 1; bry > 0

lðsy; asyy; bsyÞ ¼
bsy

asy � 1

� �asy�1

expðasy � 1ÞðsyÞasy�1
expð�bsysyÞ;

asy P 1; bsy > 0

Definition 4 (Fuzzy membership function on yj). The fuzzy
membership function on yj 2 R, for a given ðmj;Gj; a; ky; zyjÞ,
is defined as

lðyj;mj;Gj; a; ky; zyjÞ ¼ exp � kyzyj
2

ðyj �mj � ðGjÞTaÞ2
� �

:

The membership function on yj is derived by replacing j in

(1) by yj �mj � ðGjÞTa.

Definition 5 (Fuzzy membership function on y). The multivari-

ate fuzzy membership function on y 2 RP, for a given

ðfmjgPj¼1; fGjgPj¼1; a; ky; fzyjgPj¼1
Þ, is defined as the product of

its individual elements’ membership functions as

lðy; fmjgPj¼1; fGjgPj¼1; a; ky; fzyjgPj¼1
Þ ¼

YP
j¼1

lðyj;mj;Gj; a; ky; zyj Þ

¼ exp � ky
2

XP
j¼1

zyj ðyj �mj � ðGjÞTaÞ2
 !

Definition 6 (Fuzzy membership function on m). The multivari-

ate fuzzy membership function on m = ½m1 � � �mP�T 2 RP is
defined as Gaussian as

lðm;mo;KoÞ ¼ exp � 1

2
ðm�moÞTKoðm�moÞ

� �
;

mo 2 RP; Ko > 0:

Definition 7 (Fuzzy membership function on a). The multivari-

ate fuzzy membership function on a 2 RK is defined as zero-
mean Gaussian with precision equal to unity matrix as

lðaÞ ¼ exp � 1

2
ðaÞTa

� �
:

Definition 8 (Fuzzy membership function on Gj). The multivari-

ate fuzzy membership function on Gj ¼ ½Gj1 � � �GjK�T 2 RK is

defined as zero-mean Gaussian as

lðGj; f/kgKk¼1Þ ¼ exp � 1

2

XK
k¼1

ðGjkÞ2/k

 !

where /k > 0 is the precision of kth element of Gj and is uncer-

tain characterized by the following Gamma membership
function:

lð/k; a/; b/Þ ¼ ð b/
a/ � 1

Þ
a/�1

expða/ � 1Þð/kÞa/�1
expð�b//kÞ;

a/ P 1; b/ > 0:
To model the multivariate data sample distributed arbitrar-

ily in P-dimensional data space, a mixture of finite number of
uncertain signal models is considered in Definition 9.

Definition 9 (Fuzzy membership of y as a finite mixture of
uncertain signal models). The fuzzy membership function on

y ¼ ½y1 � � � yP�T 2 RP, for a given ðfpigCi¼1;XÞ, is defined as a

mixture of C different uncertain signal models as

lðy; fpigCi¼1;XÞ

¼ exp � p1

2
k1y
XP
j¼1

z1yjðyj �m1
j � ðGjÞTaÞ2 � � �

 

� pC

2
kCy
XP
j¼1

zCyjðyj �mC
j � ðGjÞTaCÞ2

where pi 2 ½0; 1� is the mixing proportion of the ith uncertain

signal model with
PC

i¼1pi ¼ 1, and X is a set of parameters

defined as

X¼ffaigCi¼1;fGjgPj¼1;f/kgKk¼1;fmigCi¼1;ffziyjg
P

j¼1
gC
i¼1

;ry;sy;fkiyg
C

i¼1
g

where ai 2 RK ðK 6 PÞ is uncertain characterized by the fol-
lowing Gaussian membership function

lðaiÞ ¼ exp � 1

2
ðaiÞTai

� �
;

Gj ¼ ½Gj1 � � �GjK�T 2 RK is uncertain characterized by the fol-

lowing Gaussian membership function

l Gj; f;kgKk¼1

� �
¼ exp � 1

2

XK
k¼1

ðGjkÞ2;k
 !

; ;k > 0

;k > 0 is uncertain characterized by the following Gamma
membership function:

lð;k;a£;b£Þ ¼ b£
a£ � 1

� �a£�1

expða£ � 1Þð;kÞa£�1
expð�b£;kÞ;

a£ P 1;b£ > 0;

mi ¼ ½mi
1 � � �mi

P�T 2 RP is uncertain characterized by the fol-

lowing Gaussian membership function:

lðmi;mi
o;K

i
oÞ ¼ exp � 1

2
ðmi �mi

oÞ
T
Ki

oðmi �mi
oÞ

� �
;

mi
o 2 RK;Ki

o > 0;

ziyj > 0 is uncertain scalar characterized by the following

Gamma membership function:

lðziyj;ry;syÞ¼ðsyÞry expðryÞðziyjÞry expð�rysyz
i
yjÞ; ryP1; sy>0;

ry is uncertain characterized by the following Gamma member-

ship function:

lðry; ary; bryÞ ¼
bry

ary � 1

� �ary�1

expðary � 1ÞðryÞary�1
expð�bry ryÞ;

ary P 1; bry > 0;
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sy is uncertain characterized by the following Gamma member-

ship function:

lðsy; asy ; bsyÞ ¼
bsy

asy � 1

� �ary�1

expðasy � 1ÞðSyÞasy�1

expð�bsy syÞ; asy P 1; bsy > 0;

kiy > 0 is uncertain scalar characterized by the following

Gamma membership function:

lðkiy;aky ;bkyÞ ¼
bky

aky � 1

� �aky�1

expðaky � 1ÞðkiyÞ
aky�1

expð�bkyk
i
yÞ;

aky P 1;bky > 0:
3. Analytical optimization of mixture of uncertain signal models

Given N data samples, fyngNn¼1, the aim is to define the
multivariate fuzzy membership function on y in an ‘‘optimal”

manner. The approach is to optimize the fuzzy membership
function (defined on y by Definition 1) with respect to

fpigCi¼1 while taking into account the uncertainties of the

parameters represented ziyj by set X. To take into account

the uncertainties of the parameters represented by the set X,
the ‘‘optimal” membership functions on the parameters must

be first determined. For this, assume that qðaiÞ, qðGjÞ,
qð£kÞ, qðmiÞ, qðziyjÞ, qðryÞ, qðsyÞ, and qðkiyÞ are arbitrary fuzzy

membership functions on ai, Gj, £k, m
i,, ry, sy and kiy respec-

tively. Define a function, q(X), as follows

qðXÞ ¼
YC
i¼1

qðaiÞ
( ) YP

j¼1

qðGjÞ
( ) YK

k¼1

qð;kÞ
( ) YC

i¼1

qðmiÞ
( )

�
YC
i¼1

YP
j¼1

qðziyjÞ
( )

qðryÞqðsyÞ
YC
i¼1

qðkiyÞ
( )

Define a differential functional, @X, as follows

@X ¼
YC
i¼1

@ai
( ) YP

j¼1

@Gj

( ) YK
k¼1

@;k
( ) YC

i¼1

@mi

( ) YC
i¼1

YP
j¼1

@ziyj

( )
@ðryÞ@ðsyÞ

�
�YC

i¼1

@kiy

�

Define a differential functional, lðXÞ, as follows

lðXÞ ¼
YC
i¼1

lðaiÞ
( ) YP

j¼1

lðGjÞ;f;kgKk¼1

( ) YK
K¼1

lð;K;a£;b£Þ
( )

�
YC
i¼1

lðmi;mo;KoÞ
( )

�
YC
i¼1

YP
j¼1

lðziyj;ry;syÞ
( )

lðry;ary ;bryÞ

�lðsy;asy ;bsyÞ
�YC

i¼1

lðkiy;aky ;bkyÞ
�

The optimization process maximizes an objective func-
tional, F , defined as
F ffpn
i gCi¼1g

N

n¼1

� �
; qðXÞ

¼ 1R
@XqðXÞ

Z
@XqðXÞ

PN
n¼1logðlðyn; fpn

i gCi¼1;XÞÞ
N

� 1R
@XqðXÞ

Z
@XqðXÞlog qðXÞ

lðXÞ
� �

� 1

N

XN
n¼1

XC
i¼1

pn
i log

pn
i

po
i

� �

ð2Þ

F is maximized with respect to qðaiÞ, qðGjÞ, qð£kÞ, qðmiÞ,
qðziyjÞ, qðryÞ, qðsyÞ, and qðkiyÞ and fpn

i¼1gCi¼1 under the following

constraints:
1. Fixed Integral Constraints on Membership Functions:R

@aiqðai ¼ kai > 0Þ;
Z

@GjqðGjÞ ¼ kGj
> 0;

Z
@£kqð£kÞ ¼ k£k

> 0;Z
@miqðmiÞ ¼ kmi > 0;

Z
@ziyjqðziyjÞ ¼ kzi

yj
> 0;

Z
@ryqðryÞ ¼ kry > 0;Z

@syqðsyÞ ¼ ksy > 0;

Z
@kiyqðkiyÞ ¼ kkiy

> 0:

2. Unity Maximum Value Constraints on Membership
Functions: The values of kai ; kGj ; k£k

; kmi ; kziyj ; kry ; ksy , and

kkiy are so chosen such that maximum value of qðaiÞ,
qðGjÞ, qð£kÞ, qðmiÞ, qðziyjÞ, qðryÞ, qðsyÞ, and qðkiyÞ is equal

to one.
3. Unity Sum Constraint on Mixing Proportions:PC

i¼1

pn
i ¼ 1; pn

i 2 0; 1�½ .

The first term of F computes the averaged log-membership

value of data samples when the average is taken over uncertain
parameters X being modeled by membership function qðXÞ.
The second term of F regularizes the maximization problem

toward initial guess lðXÞ. The third term of F regularizes
the estimation of pn

i toward initial guess po
i .

Result 1. The analytical expressions for variational member-
ship functions, that maximize F under Fixed Integral and
Unity Maximum Value Constrains, are

q�ðaiÞ ¼ exp � 1
2
ðai � m̂aiÞTK̂aiðai � m̂aiÞ

� �
;

K̂ai ¼ Iþ
XN
n¼1

XP
j¼1

p̂n
i

N

âkiy

b̂
kiy

â
ziyj

b̂
ziyj

ðm̂Gj
ðm̂Gj

ÞT þ ðK̂Gj
Þ�1Þ

ð3Þ

m̂ai ¼ ðK̂aiÞ
�1 XN

n¼1

XP
j¼1

p̂n
i

N

âkiy

b̂
kiy

â
ziyj

b̂
ziyj

ðynj � IPj m̂miÞm̂Gj

( )

q�ðGjÞ ¼ exp � 1
2
ðGj � m̂Gj

ÞTK̂Gj
ðGj � m̂Gj

Þ
� �

;

ð4Þ
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q�ð/kÞ ¼ b̂/k
â/k�1

� �â/k�1

expðâ/k
� 1Þð/kÞâ/k�1

expð�b̂/k
/kÞ;

â/k
¼ a/

ð7Þ

b̂/k
¼ b/ þ 1

2

XP
j¼1

fðIKk m̂Gj
Þ2 þ TrððK̂Gj

Þ�1ðIKk Þ
T
IKk Þg

q�ðmiÞ ¼ exp � 1
2
ðmi � m̂miÞTK̂miðmi � m̂miÞ

� �
;

ð8Þ
q�ðkiyÞ ¼
b̂
kiy

âkiy
�1

� �â
kiy
�1

expðâkiy � 1ÞðkiyÞ
â
kiy
�1

expð�b̂kiyk
i
yÞ:

âkiy ¼ aky

ð11Þ

b̂kiy ¼ bky þ 1
2

XN
n¼1

XP
j¼1

p̂n
i

N

âziyj

b̂ziyj

ðynj � IPj m̂mi � ðm̂Gj
ÞTm̂ai Þ2

�

þTrððK̂mi Þ�1ðIPj Þ
T
IPj Þ þ ðm̂ai ÞTðK̂Gj

Þ�1
m̂ai

þðm̂Gj
ÞTðK̂ai Þ

�1
m̂Gj

þ TrððK̂Gj
Þ�1ðK̂ai Þ

�1Þ
� ð12Þ
q�ðziyj Þ ¼
b̂
ziyj

â
ziyj

�1

 !â
ziyj

�1

expðâziyj � 1Þðziyj Þ
â
ziyj

�1

expð�b̂ziyj
ziyj Þ:

âziyj
¼ âry

b̂ry
þ 1

ð13Þ

b̂ziyj
¼ âry

b̂ry

âsy

b̂sy
þ 1

2

XN
n¼1

p̂n
i

N

âkiy
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q�ðryÞ ¼
b̂ry

âry � 1

 !âry�1

expðâry � 1ÞðryÞâry�1
expð�b̂ry ryÞ;

âry ¼ ary

ð17Þ

b̂ry ¼ bry þ
âsy

b̂sy

XC
i¼1

XP
j¼1

âziyj

b̂ziyj

� CPfwðâsyÞ � logðb̂syÞg � CP

�
XC
i¼1

XP
j¼1

fwðâziyj Þ � logðb̂ziyj Þg ð18Þ

q�ðsyÞ ¼ b̂sy
âsy�1

� �âsy�1

expðâsy � 1ÞðsyÞâsy�1
expð�b̂sy syÞ;

âsy ¼ asy þ CP
âry

b̂ry

ð19Þ

b̂sy ¼ bsy þ
âry

b̂ry

XC
i¼1

XP
j¼1

âziyj

b̂ziyj

ð20Þ

Once the membership functions representing the
uncertainties on the parameters have been optimally deter-
mined, the optimal multivariate fuzzy membership function

on y= [y1 � � � yP]T 2 RP is defined by averaging over the
uncertainties such that

l�ðyÞ / exp < logðlðy; fpigCi¼1;XÞÞ>q�ðXÞ

where

pi ¼ po
i expðfiÞPC

i¼1p
o
i expðfiÞ

fi ¼ � 1

2

XP
j¼1

âkiy

b̂kiy

âziyj

b̂ziyj

ðyj � IPj m̂mi � ðm̂Gj
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T
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ÞTðK̂aiÞ

�1
m̂Gj
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�1Þ
�
:

Figure 3 An example of the model learned from 2-dimen
After evaluating the integral, hlogðlðy; fpigCi¼1;XÞÞiq�ðXÞ, the
expression of the optimal membership function on y is as

follows:

logðl�ðyÞÞ / � 1

2
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pi
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âziyj
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�1Þ
�
:

Finally, the constant of proportionality is chosen equal to

one resulting in

l�ðyÞ ¼ exp � 1

2

XC
i¼1

XP
j¼1

pi
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âziyj
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@
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: ð21Þ
4. An Algorithm for multivariate data modeling

4.1. Algorithm

The analytical solution to mixture of uncertain signal models,

derived in section (3), lends itself to Algorithm 1 for the
modeling of multivariate data samples by determining
membership functions on all of the variables and parameters.
Algorithm 1 suggests to choose initial values of parameters

based on k-means clustering and eigenvalue decomposition
of sample covariance matrix.
sional data samples using Algorithm 1 (with b = 0.5).



570 W. Zhang et al.
Remark 1 (Complexity and Iterations) Algorithm 1 is based

on the invoking of parameters updating rules (3–20). The time
complexity of the algorithm, as a result of computing the
inverse of a P � P sized matrix in update rule (10), is O(P 3).
Algorithm 1, after initializing the parameters, invokes a single
iteration of parameters updating rules. Thanks to the analyti-

cally derived solution due to which a single iteration is suffi-
cient for parameters to nearly converge after initializing the
parameters carefully. However, the optimal values of C and
K are determined by maximizing the average fuzzy member-



Figure 4 An example of the comparison between the Gaussian mixture models and Algorithm 1 (with b = 0.5).
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ship value of the data samples through repeated application of
update rules.

Remark 2 (Free parameter b in Algorithm 1) Algorithm 1

has only single free parameter, b 2 [0, 0.5], to be chosen by
the user. The maximum possible number of signal models in
the mixture, Cmax, depends on the value of b. It will be
demonstrated through experiments that algorithm’s perfor-

mance is not highly sensitive to the choice of b.

4.2. Data distribution modeling

The application of Algorithm 1 on given data samples fyngNn¼1

results in the determination of Copt different fuzzy member-
ship functions on unobserved variable m which (membership
functions) are defined as

liðm; m̂mi ; K̂miÞ ¼ exp � 1

2
ðm� m̂miÞTK̂miðm� m̂miÞ

� �
;

8i 2 f1; � � � ;Coptg:

Let M be the set of parameters returned by Algorithm, i.e.,

M ¼ fðm̂mi ; K̂miÞgCopt

i¼1 . Finally, a data model, constructed from

fyngNn¼1 using Algorithm, is represented by a fuzzy membership

function defined as



Table 1 A comparison of different classification algorithms

with the proposed method in term of classification accuracy on

testing data.

Method Dataset 1 Dataset 2 Dataset 3

Nearest neighbors 100% 100% 75%

Linear SVM 91% 46% 51%

RBF SVM 90% 100% 59%

Decision tree 98% 100% 80%

Random forest 98% 100% 73%

AdaBoost 93% 97% 80%

Naive Bayes 92% 97% 57%

LDA 90% 29% 52%

QDA 90% 96% 57%

Analytical fuzzy (b= 0.5) 100% 100% 82%
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lðy;MÞ ¼ max
16i6Copt

exp � 1

2
ðy� m̂miÞTK̂miðy� m̂miÞ

� �� �
:

ð22Þ
4.3. Classification

The data modeling capability of functional lðm;MÞ can be

exploited for the classification purpose. If M1; � � � ;MS are S
different sets returned by Algorithm corresponding to the data

samples of S different classes, then the class-label associated to
a vector y could be predicted as

pred labelðyÞ ¼ arg max
16s6S

lðy;MsÞ ð23Þ
4.4. Demonstrations on Toy data sets

Fig.3 shows an example of the 2-dimensional data samples and
a display of the fuzzy membership function lðy;MÞ (calcu-
lated using (22)) over the data space. As depicted in Fig.3,

the distribution of the samples fyngNn¼1 in P-dimensional space

is modeled by the fuzzy membership function lðy;MÞ.
Stochastic mixture models have been extensively studied in

the literature and are typically used to learn data distributions.
The most commonly used Gaussian mixture models(GMM) fit
Table 2 A The median accuracy (in %) of different algorithms

performed by subjects.

Method Median of % accuracy (P = 2) %

accuracy (P = 2)

Median

(P= 4)

Nearest neighbors 87.11 90.33

Linear SVM 87.11 89.24

RBF SVM 84.07 84.17

Decision tree 84.95 87.22

Random forest 86.75 88.93

AdaBoost 88.36 90.72

Naive Bayes 87.40 89.27

LDA 88.67 90.70

QDA 88.04 88.46

Analytical fuzzy

(b = 0)

88.75 91.16
the given data samples by assuming that each data sample has
been generated by a stochastic mixture of a finite number of
the Gaussian distributions. ‘‘Expectation Maximization” algo-

rithm is typically used for the learning of the Gaussian mixture
models from data samples where the number of components in
the mixture can be efficiently selected using the Bayesian infor-

mation criterion (BIC). There may arise the situations when
GMM don’t give favorable results. Fig. 4(a) is an example of
data samples where better performance of Algorithm 1 than

GMM (together with BIC) is observed. A comparison between
color plots of GMM based likelihood (displayed inFig.4(b))
andAlgorithm 1 based fuzzy membership function (displayed
in Fig. 4(c)) demonstrates the effectiveness of Algorithm 1 in

modeling the distribution of data samples.

5. Heartbeat intervals classification

The section applies the proposed methodology on the experi-
mentally recorded heartbeat intervals (referred to as the R-R
intervals) of 20 different subjects while they were performing

two different types of tasks in a chemical laboratory of Zhe-
jiang University. One task involved manual pipetting of the
chemical solutions while the other task involved working with

the computer. The aim is to classify heartbeat intervals of a
subject between the two tasks. The P-dimensional data samples
were created from the sequence of R-R intervals as(see

Table 1)

Yi ¼ ½RRi�Pþ1 � � �RRi�T

where RRi is ith heartbeat interval. The R-R intervals corre-

sponding to the first half of the task duration serve as the train-
ing data and that of second half as testing data. Table 2 lists
the median of classification accuracy over 20 subjects, obtained

on testing data by different classification methods, for different
values of data dimension P. The better classification accuracy
of the analytical fuzzy approach in Table 2 supports the argu-

ments that proposed approach could be an effective tool for
modeling and analysis of biomedical data.

6. Concluding remarks

The theoretical contribution of this work is to propose an ana-
lytical fuzzy approach that provides a principled basis for
in classifying the testing heartbeat intervals between two tasks

of % accuracy Median of % accuracy

(P= 6)

Median of % accuracy

(P = 8)

91.08 92.65

90.64 91.58

86.99 90.11

88.83 89.57

90.84 92.51

91.87 92.60

91.05 92.18

91.59 92.99

90.08 90.97

92.14 93.14
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determining the fuzzy membership functions to handle uncer-
tainties in a modeling problem. The theoretical results form
the basis for designing an algorithm that results in an efficient

modeling of the data distribution in multi-parametric space.
The analytically derived expressions for fuzzy membership
functions for representing uncertainties associated with

biomedical data should facilitate a system theoretic approach
to mathematically design the medical expert systems.
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