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The IDentif.AI-x pandemic readiness platform: Rapid
prioritization of optimized COVID-19 combination therapy
regimens
Agata Blasiak 1,2,3,4,17✉, Anh T. L. Truong 1,2,3,17, Alexandria Remus1,2,3,17, Lissa Hooi5,17, Shirley Gek Kheng Seah6,17,
Peter Wang 1,2,3, De Hoe Chye6, Angeline Pei Chiew Lim6, Kim Tien Ng6, Swee Teng Teo7, Yee-Joo Tan 7,8, David Michael Allen 9,10,
Louis Yi Ann Chai9,10, Wee Joo Chng5,9,11,12, Raymond T. P. Lin13,14, David C. B. Lye9,13,15,16, John Eu-Li Wong9,11, Gek-Yen Gladys Tan6,
Conrad En Zuo Chan6,13✉, Edward Kai-Hua Chow1,2,3,4,5,12✉ and Dean Ho1,2,3,4✉

IDentif.AI-x, a clinically actionable artificial intelligence platform, was used to rapidly pinpoint and prioritize optimal combination
therapies against COVID-19 by pairing a prospective, experimental validation of multi-drug efficacy on a SARS-CoV-2 live virus and
Vero E6 assay with a quadratic optimization workflow. A starting pool of 12 candidate drugs developed in collaboration with a
community of infectious disease clinicians was first narrowed down to a six-drug pool and then interrogated in 50 combination
regimens at three dosing levels per drug, representing 729 possible combinations. IDentif.AI-x revealed EIDD-1931 to be a strong
candidate upon which multiple drug combinations can be derived, and pinpointed a number of clinically actionable drug
interactions, which were further reconfirmed in SARS-CoV-2 variants B.1.351 (Beta) and B.1.617.2 (Delta). IDentif.AI-x prioritized
promising drug combinations for clinical translation and can be immediately adjusted and re-executed with a new pool of
promising therapies in an actionable path towards rapidly optimizing combination therapy following pandemic emergence.
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INTRODUCTION
COVID-19 drug development has largely focused on repurposing,
either through single agent or combination therapy1–5. To date,
clinical trial outcomes of the repurposed candidates have varied6–8.
While many monotherapies did not mediate substantial clinical
benefit, their use in effectively designed drug combinations may
lead to unforeseen efficacy. Addressing this point is challenging for
traditional antiviral susceptibility assays. Therefore, developing new
methods that leverage unpredictable drug interactions to resolve
the complexity of drug selection and dose-dependent drug
synergy is essential. In fact, drug and dose selection are so tightly
connected that among a pool of candidate therapies, true
optimization often yields combinations of unforeseen but clinically
actionable drugs and doses.
Unfortunately, simultaneous drug and dose optimization repre-

sent an insurmountable challenge. For example, 12 drugs assessed
at three dosage levels results in over 500,000 possible combina-
tions. Important strategies for synergy prediction and higher-order
drug interaction analysis have been explored9–13. To address the
challenge of ensuring clinical actionability of the combination
design outcome, we developed the IDentif.AI platform, an Artificial

Intelligence (AI)-based workflow for rapid combination therapy
development. The first permutation of IDentif.AI used neural
networks to reveal that the biological response to therapy can be
represented by a smooth surface. Subsequent studies resolved this
surface, which can rapidly identify optimal combinations, using a
second-order algebraic function, with its coefficients determined
through a small number of prospective experiments14–26. This
correlation has subsequently been verified in prospective, human
studies in infectious disease, cancer therapy, transplant medicine,
and other indications27–33. IDentif.AI does not use pre-existing data
for algorithm training, in silico modeling, or synergy prediction.
Instead, it uses experimental assays to determine the drugs and
doses that constitute globally optimized combination regimens.
Our most recent IDentif.AI study pinpointed top-ranked combina-
tions (based on inhibition of SARS-CoV-2-led cytopathic effects)
mediated by unforeseen drug interactions19.
While the use of AI has facilitated a rapid identification of

potential therapeutic drugs for COVID-19, in view of the rapidly
evolving pandemic, and the surge in knowledge generation about
drugs, targets and pathways as time passes, it is imperative that an
effective AI platform can readily support a rapid response along
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the pandemic timeline. The desirable features of a pandemic
readiness platform include technical flexibility of the AI platform
and clinical acceptability of the AI-based findings. The technical
flexibility of an AI platform allows it to be applied in a timely,
resource-efficient, and adaptable manner at different stages of a
pandemic. Moreover, the incorporation of features that improve
the clinical acceptability of the AI platform, such as: involving
clinical expertise in the workflow, incorporating physiological
applicability, and considering practical aspects of implementation
of the proposed therapies, can support rapid and broad clinical
deployment of the study findings. Therefore, following the earlier
demonstration19, we expanded the workflow and further devel-
oped the platform to its current version, IDentif.AI-x (Fig. 1). This
study aimed to demonstrate IDentif.AI-x as a pandemic readiness
platform by harnessing it to evaluate a starting pool of candidate
therapies that have been or are being evaluated in various COVID-
19 clinical settings, and in consultation with the clinical commu-
nity. Candidate therapies were: EIDD-1931 (metabolite of EIDD-
2801 (molnupiravir)), baricitinib (BRT), ebselen (EBS), selinexor
(SEL), masitinib (MST), nafamostat mesylate (NFM), telaprevir (VX-
950; TPV), SN-38 (metabolite of irinotecan), imatinib mesylate
(IMT), remdesivir (RDV), lopinavir (LPV), and ritonavir (RTV) (Table
1)4,34–45. IDentif.AI-x implementation on a propagated, original live
SARS-CoV-2 strain was completed within three weeks.

RESULTS
Assay quality details for each experimental step are included in
the Supplementary Note 1.

Monotherapies were broadly not sufficiently efficacious in the
actionable dosing range
The first experimental step aimed to gauge the drugs’ antiviral
activities when administered as monotherapies. The dose-
response (D-R) curves (Supplementary Fig. 1) revealed that the
antiviral activities of the drugs were limited when they were
administered as monotherapies (Table 1). RDV and EIDD-1931
were the only drugs that achieved half maximal absolute effective
concentration (EC50) less than their maximum plasma concentra-
tion (Cmax) achieved in the human body with Cmax/EC50 ratios of
2.92 and 11.46, respectively. RDV, RTV and LPV performances in
monotherapies were comparable with that observed in the
previous IDentif.AI study based on the same assay19.

IDentif.AI-x drug combination optimization
IDentif.AI-x was developed as a clinical decision support system
(CDSS) for real-world application under pandemic preparedness
circumstances, where experimentation is often performed under

shortened timelines, as it can be executed in concert with high
biosafety level laboratories and specified viral volumes processed
per session. In this study, IDentif.AI-x workflow substantially
reduced the time and workload needed for combination design
compared to traditional methods, but the natural biological and
experimental variations required incorporating an additional study
team oversight process into the workflow to narrow the initial
drug pool, which was performed based on each drug’s clinical
acceptability, accessibility in the local context, as well as toxicity
and efficacy demonstrated as a monotherapy. This additional step
selected RDV, EBS, MST, IMT, BRT and EIDD-1931 to be included in
a focused, six-drug experimental set that enabled the team to
complete the downstream optimization process alongside labora-
tory guidelines while also minimizing biological and experimental
variation.
The drug combinations design based on the Orthogonal Array

Composite Design (OACD) table (Supplementary Table 1) con-
sidered each drug at three concentration levels (Table 2). 10% of
the maximum drug concentration achieved in human blood (10%
Cmax) identified from the published clinical studies for each drug
(Table 1; Supplementary Note 2) was broadly considered as an
achievable dose at the target tissue and served as the cutoff
concentration level for use in the experimentations. As EC50 of
EIDD-1931 (0.929 μM) was below its 10% Cmax (1.146 μM), the
maximum concentration of EIDD-1931 was further restricted to its
EC20 to avoid overrepresentation of this drug in the experimental
set and a potential saturation of the %Inhibition results (Table 2).
IDentif.AI-x analysis used a quadratic equation to describe the

six-drug interaction space against the SARS-CoV-2 (adjusted R2=
0.794). The IDentif.AI-x estimated coefficients, modeling statistics
and validation tests are summarized in Supplementary Table 2
and Supplementary Fig. 2. Monotherapy results demonstrated
that EIDD-1931 was the most efficacious drug in the pool, even
when given at EC20, with moderate antiviral effects. IDentif.AI-x
analysis of the drug-drug interaction detected an unforeseen
interaction between EIDD-1931 and RDV, which was the most
efficacious combination and was predicted to achieve close to
maximal %Inhibition in a synergistic or additive interaction
demonstrated by the convex shape of the EIDD-1931/RDV
interaction surface (Fig. 2). In addition, IDentif.AI-x-derived
coefficients pointed to an interaction between EIDD-1931 and
BRT (Supplementary Table 2). The EIDD-1931/BRT interaction
surface had a slight concave shape across the tested BRT
concentration range. BRT was predicted to have a mild
antagonistic effect on the EIDD-1931-driven %Inhibition at its
mid-concentration (Fig. 2). Little to no cytotoxic effects were
detected in the IDentif.AI-x analysis step (Supplementary Note 3;
Supplementary Data 1).

Fig. 1 IDentif.AI-x workflow and its alignment with the pandemic response therapies prioritization. IDentif.AI-x systematically ranks drug
combinations for further preclinical and potentially clinical deployment from a multitude of potential therapies. Clinical applicability
considerations are integrated into IDentif.AI-x workflow to pre-emptively best position the optimized combinations for a clinical translation.
EIDD-1931 (metabolite of EIDD-2801 (molnupiravir)), baricitinib (BRT), ebselen (EBS), selinexor (SEL), masitinib (MST), nafamostat mesylate
(NFM), telaprevir (VX-950; TPV), SN-38 (metabolite of irinotecan), imatinib mesylate (IMT), remdesivir (RDV), lopinavir (LPV), and ritonavir (RTV)
were included in the original pool in this study. CPE cytopathic effects. D-R dose-response. OACD orthogonal array composite design.
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Experimental validation of the IDentif.AI-x analysis
In the IDentif.AI-x validation step we investigated the %Inhibition
effects at different drug ratios and constructed interaction
surfaces for EIDD-1931/RDV and EIDD-1931/BRT assuming a
quadratic equation. With the focus on a two-drug interaction
only, we recalibrated the size of the validated interaction space to
range from 0 to 15% Cmax of EIDD-1931 to capture the clinically
actionable range (<10% Cmax) and the adjacent space (Fig. 3). Both
EIDD-1931/RDV and EIDD-1931/BRT demonstrated ratio depen-
dent relationships (Supplementary Fig. 3). The EIDD-1931/RDV
interaction surface had a convex shape pointing to the highest %
Inhibition achieved when both drugs are at their highest
concentrations, suggesting it is beneficial to provide these drugs
in a combination. The flat shape of the EIDD-1931/BRT interaction
surface indicated that the %Inhibition results driven by EIDD-1931
were not affected by the presence of BRT. Due to an interesting
multi-drug behavior observed from IDentif.AI-x analysis, we
further assessed the EIDD-1931/MST combination. Although
IDentif.AI-x analysis did not identify a significant interaction
between EIDD-1931 and MST, it indicated that EIDD-1931/MST

at maximum doses is the second most effective two-drug
combination after EIDD-1931/RDV (Supplementary Data 2). After
expanding the concentration range in the validation set to 15%
Cmax of both EIDD-1931 and MST, the concave shape of the EIDD-
1931/MST interaction surface indicated that an increase in the
concentrations of both drugs could mediate maximum %
Inhibition (Supplementary Fig. 4A). This phenomenon, however,
had the strongest effect outside of the clinically actionable range,
potentially explaining why the EIDD-1931/MST interaction was not
detected in the IDentif.AI-x analysis step.
Given the previously demonstrated immunomodulatory activity

of BRT and synergistic potential of MST, the EIDD-1931/BRT and
EIDD-1931/MST combinations can potentially be evaluated
further, where dose optimization and pharmacokinetics studies
may be essential to achieving optimal efficacy for clinical
application.

Dose-response curves revealed additional information for the
EIDD-1931 interactions with RDV and BRT
Interaction surfaces were constructed with a small number of drug
combination data points and therefore had a limited resolution.
To validate IDentif.AI-x-determined EIDD-1931 interactions with
RDV and BRT at a higher fidelity, in the same dataset, we included
drug treatments to generate D-R curves at the two different drug
ratios: as used in the OACD table and as dictated by Cmax.
The D-R curves revealed additional information. There was no

statistical difference between D-R curves (p= 0.0513); however,
we observed a slight shift in the D-R curves for both combinations:
towards a lower and higher EIDD-1931’s absolute EC50 for EIDD-
1931/RDV and EIDD-1931/BRT, respectively (Fig. 3c, d; Supple-
mentary Fig. 5). The mild antagonistic effect of BRT at the OACD
ratio was consistent with the IDentif.AI-x analysis. Overall, these
results suggest small effect sizes of the tested interactions of EIDD-
1931. Interestingly, at high concentrations, the D-R curve shapes
revealed a potential boost in maximum %Inhibition achievable by
EIDD-1931 co-administered with RDV at both ratios, and by EIDD-
1931/BRT[Cmax ratio] (Fig. 3c, d; Supplementary Fig. 5). This
phenomenon was not observed for EIDD-1931/BRT[OACD ratio]

which, instead, was shown to induce a mildly antagonistic shift in
EC50.

Table 1. Drug anti-SARS-CoV-2 efficacy and cytotoxicity when administered in monotherapy as compared to Cmax obtained from the literature and
regulatory documents.

Drug EC50 (μM) CC50 (μM) Cmax (μM)a COVID-19 clinical trial

EIDD-1931 0.929 >10 11.457 NCT04575597, NCT04405570, NCT04405739, NCT04746183,

BRT >10 >10 0.140 NCT04421027, NCT04832880, NCT04401579, NCT04891133

EBS 8.448 >10 0.00136 NCT04484025, NCT04483973

SEL b 4.123 1.218 NCT04349098

MST 4.119 6.705 0.529 NCT04622865, NCT05047783

NFM >10 >10 0.241 NCT04352400, NCT04390594, NCT04483960, NCT04623021

TPV b 59.560 5.163 –

SN-38 b 4.784 0.143 –

IMT 6.601 27.250 2.723 NCT04394416, NCT04346147, NCT04422678

RDV 1.267 86.910 3.699 NCT04596839, NCT04292730, NCT04292899, NCT04315948

LPV b 24.210 19.561 NCT04381936, NCT04315948, NCT04276688, NCT04252885

RTV b 79.140 20.390

Absolute EC50 and CC50 were obtained from the dose-response curves for each drug individually constructed based on a CPE viral assay with Vero E6 cells. EC
curves were plotted after excluding %Inhibition values corresponding to drug concentrations resulting in %Cytotoxicity above 25%.
aDetails on Cmax selection for each drug are specified in Supplementary Note 2.
bEC50 was not achieved within the acceptable cytotoxicity level (below 25%).
Baricitinib (BRT), ebselen (EBS), selinexor (SEL), masitinib (MST), nafamostat mesylate (NFM), telaprevir (VX-950) (TPV), imatinib mesylate (IMT), remdesivir
(RDV), lopinavir (LPV), and ritonavir (RTV).

Table 2. Clinically actionable drug concentrations for the IDentif.AI-x
drug combination optimization.

Drug Level 0 (μM) Level 1 (μM) Level 2 (μM)

RDV 0 0.185 0.370

EBS 0 0.000068 0.000136

MST 0 0.026 0.053

IMT 0 0.136 0.272

BRT 0 0.007 0.014

EIDD-1931 0 0.315 0.458

Concentration Level 0 indicated a lack of the drug, concentration Level 1
and Level 2 were selected based on 5% and 10% Cmax for RDV, EBS, MST,
IMT, and BRT. Concentration Level 1 and Level 2 were selected based on
absolute EC10 and absolute EC20 for EIDD-1931.
Remdesivir (RDV), ebselen (EBS), masitinib (MST), imatinib mesylate (IMT),
baricitinib (BRT).
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The potentially synergistic or additive efficacy interaction
demonstrates that combining EIDD-1931 with either RDV or BRT
at the right ratio achieved a higher efficacy than each drug alone,
which highlights the potential of EIDD-1931 serving as a backbone
to combinational therapies against the SARS-CoV-2. However, as
the potential beneficial interactions were detected outside of the
actionable interaction space, additional dosing strategies may
need to be considered to optimize these interactions in a clinical
setting.

The efficacy of the pinpointed therapies against SARS-CoV-2
B.1.351 and B.1.617.2 variants
We retested the efficacy of the pinpointed monotherapies and
combination treatments against the SARS-CoV-2 B.1.351 and
B.1.617.2 variants (Fig. 4 and Supplementary Figs. 4B, C and 6).
When tested against B.1.351 variant, EIDD-1931 and RDV
monotherapies demonstrated an increased antiviral activity as
compared to the propagated, original strain (Supplementary Fig.
6). Accordingly, the EIDD-1931 interaction surfaces demonstrated
saturation regions at high concentrations of EIDD-1931 and RDV
(Fig. 4a). When tested against B.1.617.2 variant, EIDD-1931
retained its high antiviral activity, while RDV demonstrated an
increased antiviral activity as compared to the propagated,
original strain (Fig. 4; Supplementary Fig. 6). Similar to the
propagated, original strain, the effects of EIDD-1931 combinations
depended on the ratio in which the drugs were combined. Overall,
the experiments with SARS-CoV-2 B.1.351 and B.1.617.2 variants
confirmed EIDD-1931 for consideration as a monotherapy and as a
backbone of combinatory treatment against SARS-CoV-2. Dose
adjustments in combination therapy should be performed for
each specific variant.

Cytotoxicity of EIDD-1931 in the interactions
When %Cytotoxicity was tested in Vero E6, only a narrow range of
readings (−8.7 ± 4.9% to 9.6 ± 9.3%) was detected, which may
have contributed to a low goodness-of-fit of the quadratic model
(adjusted R2= 0.017) and the IDentif.AI analysis not detecting any
significant interactions between the drugs (Supplementary Fig. 7
and Supplementary Table 3) in the clinically actionable range.
Nevertheless, in the validation stage, we interrogated EIDD-1931/
RDV, EIDD-1931/BRT, EIDD-1931/MST interactions’ effects on %
Cytotoxicity (Supplementary Fig. 8). EIDD-1931/RDV and EIDD-
1931/BRT had a convex shape (Fig. 5a, b) while the EIDD-1931/
MST had a concave shape (Fig. 5c) indicating that %Cytotoxicity is

a result of an interaction between EIDD-1931 and the drugs.
However, %Cytotoxicity was not predicted to expand beyond 23%
for any of the drug combinations in the actionable range.
To gauge the potential cytotoxicity that may be observed in

clinical settings, we investigated cytotoxic effects of the EIDD-1931
drug combinations in cell lines of human origin: liver epithelial
cells (THLE-2) and cardiomyocytes (AC16) (Fig. 5d–i; Supplemen-
tary Fig. 8). The interaction surfaces had different shapes in
different cell lines, highlighting the target-specific cytotoxic
characteristics of the treatments. The regular shape of each
interaction surface with uniformly high %Cytotoxicity tested at
high EIDD-1931 concentration independent of the presence of the
other drugs indicates that cytotoxicity in THLE-2 was driven by
EIDD-1931 and it was not significantly affected by its interactions
with RDV, BRT and MST (Fig. 5d–f). In AC16 cells, MST did not
increase EIDD-1931-driven cytotoxicity; BRT mildly alleviated it in a
ratio-dependent fashion; and RDV demonstrated dose-dependent
cytotoxic increase, with predicted 29% maximum %Cytotoxicity in
the clinically actionable interaction space (Fig. 5g–i).

DISCUSSION
Our study pinpoints EIDD-1931 to be a promising therapeutic for
COVID-19, both as a monotherapy and as a backbone drug for
combination therapies. In addition to the specific combinations
containing EIDD-1931 that emerged from the study, this work also
points to the potential of classes of therapies that may be suitable
for administration in combination with EIDD-1931, such as
immunomodulatory agents or protease inhibitors, among others.
In line with previous reports of EIDD-2801 (molnupiravir; EIDD-
1931’s prodrug)46,47, our low toxicity results also suggest that
EIDD-1931 may be well tolerated. However, additional studies
addressing longer-term toxicity or suitability for specific patient
populations may need to be conducted. Furthermore, dose-
dependent interaction findings from our study indicate a potential
need to further explore suitable clinical dosing strategies for
combination regimens. Taken together with the fact that EIDD-
1931 can be administered orally47, our findings support the
potential of the drug as a rapidly deployable therapy. EIDD-1931 is
hypothesized to inhibit viral replication by inducing lethal
mutagenesis in coronaviruses4. EIDD-2801 was initially shown to
inhibit SARS-CoV-2 in primary human airway epithelial cell cultures
and in multiple animal models4,40,48,49, and recently in mild-to-
moderate COVID-19 patients50. The interim analysis of a Phase 2/3
trial MK-4482-002 (NCT04575597) reported that EIDD-2801
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Fig. 2 IDentif.AI-x interaction analysis. The analysis indicates that EIDD-1931 interacts differently with remdesivir (RDV) and baricitinib (BRT).
EIDD-1931/remdesivir interaction surface had a convex shape indicating a synergistic interaction, while EIDD-1931/baricitinib interaction
surface had a concave shape indicating a dose-dependent, mildly antagonistic interaction. L0, L1, and L2 correspond to concentration Level 0,
Level 1, and Level 2.
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reduced the risk of hospitalization or death in COVID-19 adult
patients by approximately 50%51, which prompted the drug to be
approved by the United Kingdom’s Medicines and Healthcare
products Regulatory Agency (MHRA)52. Upon completion, the trial
MK-4482-002 demonstrated that the EIDD-2801’s relative risk
reduction effect was 30%53. On December 23rd, 2021, the United
States Food and Drug Administration (US FDA) granted emer-
gency use authorization (EUA) of EIDD-2801 for individuals with
mild to moderate COVID-19 who are at high risk of becoming
severely ill54. However, current findings suggest that it may be
important to further explore the identification of optimal
parameters within which molnupiravir can be delivered in
combination with other classes of therapies and that they may
also be suitable for further preclinical and/or clinical evaluation
with careful dose adjustment and optimization strategies to
maximize synergistic efficacy at minimal toxicity. These findings
may also be applicable towards downstream combination regi-
mens containing other repurposed and/or novel therapies, as well
as clinical trial designs to evaluate these regimens.
Furthermore, it should be noted that IDentif.AI-x pinpointed

top-ranked EIDD-1931 independently from the aforementioned
clinical trial data as IDentif.AI-x does not require clinical data to
implement its optimization processes, which are conducted with
the live virus. This is also true for lower-ranked drug combinations

and monotherapies. In fact, similar to previous IDentif.AI
findings19, IDentif.AI-x independently replicated failed monothera-
pies and established drug-drug interactions reported in clinical
trials. For example, IDentif.AI-x identified limited efficacy of RDV
and IMT as monotherapy candidates against SARS-CoV-2, similar
to previously reported clinical findings55–57. Interestingly, IDentif.
AI-x revealed that adding BRT to RDV moderately improved the
therapy’s rank from 521/729 to 454/729 (Supplementary Data 2).
While our study focused on antiviral drug properties, and did not
capture immunomodulatory effects of BRT, this is in line with
findings from the Adaptive COVID-19 Treatment Trial 2 (ACTT-2)
report, in which BRT in combination with RDV was superior to RDV
alone in reducing recovery time and accelerating improvement in
clinical status in COVID-19 patients8. Furthermore, IDentif.AI-x also
revealed the unforeseen interaction between EIDD-1931 and RDV
without any clinical data using a lean, streamlined AI methodol-
ogy. Schultz and colleagues have recently and independently
identified an additive interaction between the EIDD-1931 and RDV
using traditional, large-scale screening methodologies58. Collec-
tively, these results demonstrate the potential actionability of
IDentif.AI-x as an effective go/no-go platform for prioritizing and
advancing combination therapies towards further preclinical or
widespread clinical deployment.

Fig. 3 Validation of EIDD-1931 drug interactions affecting %Inhibition in the propagated, original SARS-CoV-2 strain. a, b Surface plots of
EIDD-1931 interactions with remdesivir (RDV) and baricitinib (BRT) in the validation interaction space, clinically actionable interaction space
(black, solid line border) and the interaction space from the IDentif.AI-x analysis (black, dotted line border). The latter two are also shown as
two-dimensional maps. All experiments were performed with N = 3 to 4 replicates, which were independently included in the surface
construction. Black, round markers indicate an average %Inhibition of the replicates for each treatment. Adjusted R2 (Adj R2) indicates
goodness of the fit for each interaction surface. c, d Dose-response curves (D-R curves) of EIDD-1931 in monotherapy and in a combination
with RDV and BRT at two concentration ratios: the ratio tested in the IDentif.AI-x experimental set (OACD ratio) and the ratio dictated by the
Cmax values of the drugs (Cmax ratio). Half maximal absolute effective concentration (EC50) was derived from the D-R curves, which is the
concentration that resulted in 50% Inhibition. The vertical line marks the 10% Cmax of EIDD-1931. Please note that the EIDD-1931-only EC50
values (Green) were provided in both subfigures c and d to enable direct comparisons with both combinations (EIDD-1931/RDV and EIDD-
1931/BRT). The entire assay was completed in one experiment, realizing all data points in a single global study, and enabling comprehensive
derivation of combinations and direct comparisons between monotherapies and combinations. Error bars represent propagated standard
deviation (s.d.; N = 3 to 4 replicates). Of note, this propagated s.d. did not arise from the replicates’ spread, but from plate-to-plate variation (s.
d. of the controls). No statistically significant difference between the D-R curves was detected with sum of square F test.

A. Blasiak et al.

5

Published in partnership with Seoul National University Bundang Hospital npj Digital Medicine (2022)    83 



Fig. 4 Validation of EIDD-1931 drug interactions affecting %Inhibition in SARS-CoV-2 B.1.351 and B.1.617.2 variants. a–d Surface plots of
EIDD-1931 interactions with remdesivir (RDV) and baricitinib (BRT) in the validation interaction space, clinically actionable interaction space
(black, solid line border) and the interaction space from the IDentif.AI-x analysis (black, dotted line border). All experiments were performed
with N = 3 replicates, which were independently included in the surface construction. Black, round markers indicate an average %Inhibition of
the replicates for each treatment. Adjusted R2 (Adj R2) indicates goodness of the fit for each interaction surface. The experiments with SARS-
CoV-2 B.1.351 variant (a, b), and B.1.617.2 variant (c, d) were performed in two independent sets. e %Inhibition against the propagated,
original SARS-CoV-2 strain (bars with block filling), B.1.351 variant (bars with line filling) and B.1.617.2 variant (bars with cross lines filling) of
10% Cmax EIDD-1931 in monotherapy (green) and in a combination with RDV and BRT at two concentration ratios: the ratio dictated by the
Cmax values of the drugs (Cmax ratio; pink) and the ratio tested in the IDentif.AI-x experimental set (OACD ratio; purple). Black markers indicate
individual data points. Error bars represent propagated standard deviation (s.d). Of note, this propagated s.d. did not arise from the replicates’
spread, but from plate-to-plate variation (s.d. of the controls). No statistically significant difference was detected with Kruskal–Wallis test when
followed by Dunn’s post hoc test.
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Overall, this work demonstrates IDentif.AI-x’s potential as a
pandemic readiness platform to rapidly prioritize drug combina-
tions for further consideration based on high efficacy, and de-
prioritize combinations that may be avoided due to lack of efficacy
as optimized to a specific SARS-CoV-2 variant. A key technical
attribute of IDentif.AI-x is that its combination design workflow
efficiently investigated the interaction space of six drugs at three
concentration levels (mounting to 729 drug-dose combination)
using only 50-drug combinations. The whole workflow was
completed within three weeks—a staggering speed—while also
optimizing resource utilization, which are important considera-
tions given the time criticality of a pandemic and the inevitable
resource constraints following the onset of a pandemic. Another
advantage of IDentif.AI-x is that it relies on experimentally
procured data of phenotypic response—%Inhibition or %Cyto-
toxicity. The data collection process does not require extensive
domain knowledge of drugs, host, and disease mechanisms while
it allows to ensure control over the quality and completeness of
the data inputs into the algorithm. This technical feature allows
IDentif.AI-x to often yield efficacious drug combinations with
unforeseen drug-drug interactions for further testing with a high
technical reliability. Furthermore, the simplicity and low resource
requirements facilitate IDentif.AI-x workflow to be readjusted and

reapplied with a new drug pool as the high-potential drugs
emerge over time. A platform that can rapidly identify treatments
for prioritized testing will also be beneficial in the emergence of
new viral variants such as B.1.351 (Beta) and B.1.617.2 (Delta)
variants, which potentially affect vaccination and therapeutic
efficacies, and also for the treatment of patients that could not be
vaccinated, including those who remain ill with evidence of
sustained viral replication.
A crucial component of the IDentif.AI-x as a pandemic readiness

platform was the involvement of stakeholders’ expertise in the
workflow: from initial clinician consultation for the drug pool
selection, to understanding how clinicians prioritize combination
regimens for rapid clinical deployment. The restriction of the
drugs in the pool from 12 to six drugs was also driven by an
alignment with the regulations minimizing the operator’s
exposure to the virus and minimizing experimental variation.
The 12-drug pool was narrowed down according to the drugs’
clinical acceptability, accessibility in the local context, as well as
toxicities and efficacies demonstrated as monotherapies. In
addition, the drug doses for testing were selected with
consideration of each drug’s Cmax/ECx ratio to avoid pinpointing
drug combinations outside clinically actionable concentrations,
thereby improving the clinical acceptability of IDentif.AI-x findings.

Fig. 5 Validation of EIDD-1931 drug interactions affecting %Cytotoxicity. Surface plots of EIDD-1931 interactions with remdesivir (RDV),
baricitinib (BRT) and masitinib (MST), in the validation interaction space, clinically actionable interaction space (black, solid line border) and
the interaction space from the IDentif.AI-x analysis (black, dotted line border), based on the experimentation in Vero E6 cells (a–c), THLE-2 (d–f)
and AC16 (g–i). a–i All experiments were performed with N= 3 to 4 replicates, which were independently included in the surface
construction. Black, round markers indicate an average %Cytotoxicity of the replicates for each data point. Adjusted R2 (Adj R2) indicates
goodness of the fit for each interaction surface.
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Another key technical consideration added to the IDentif.AI-x
workflow to improve its clinical acceptability was the use of
higher-resolution OACD to generate a ranked list, with high
estimation efficiency of the second-order drug-dose interaction
space and drug-drug interactions, including those of lower-ranked
combinations. Drug combinations of comparable efficacy with
fewer drugs or lower drug concentrations are more clinically
actionable, in terms of streamlined market access, regulatory
clearance and potential to prevent drug resistance from develop-
ing. Additionally, IDentif.AI-x can be tailored to generate
combinations that address supply chain considerations and local
regulations to make the most out of what is available in the
geographical and economic feasibility context for a pandemic
readiness program that is inclusive of low-and middle-income
countries (LMICs).
It is important to note that this study was conducted in an

in vitro live virus model. While the in vitro model may be a
limitation in interpreting the result for clinical decision-making,
in vitro findings are crucial first steps in exploring the potential
efficacy, safety, and unforeseen drug interactions of any proposed
repurposed drug combinations, especially with a novel virus. It is
critical for the pinpointed combinations from this in vitro study to
be further evaluated in subsequent in vivo and clinical dose
optimization studies prior to broad clinical deployment. This study
evaluated a pre-specified drug pool, and further studies with
additional drug candidates are warranted. Additionally, although
derived from the input of local infectious disease clinicians, in this
study we interrogated a small pool of handpicked drugs.
Developing a set of drug selection criteria such as drug class,
administration route, prior evidence of interaction with other
drugs, clinical relevance and accessibility may streamline the
selection of the drug pool. Furthermore, while the current study
only examined the effects detectable in our specific experimental
model and, for example, did not incorporate the immunomodu-
latory effects of the anti-inflammatories (SN-38, BRT), future work
using applicable assays towards combination therapy develop-
ment with immunomodulators and drugs targeting other specific
infection pathways/mechanisms is warranted as IDentif.AI-x can
be implemented in virtually all assays, provided quantifiable
efficacy and toxicity readouts are available. Including immuno-
modulation will potentially create viable therapeutic options for
severe patients as shown by recent clinical progress7.
The IDentif.AI-x workflow also has some technical limitations. It

is developed for rapid optimization and clinical actionability, and
complementary strategies can be integrated to address them.
First, the IDentif.AI-x interaction space interrogation assumes a
quadratic relationship with the efficacy/cytotoxicity responses. The
optimized combinations presented here are largely limited to two-
drug combinations, rapidly identifying the most significant drugs
and their partners from a large drug combination search set.
Further development of more complex combinatorial therapy
strategies, such as four- or five-drug combinations would likely
require some reconciliation of higher-order interactions, similar to
previous studies9. Second, only limited dosage ratios were tested.
The observation that the same drug combination at two different
ratios can potentially exhibit the opposite interactions points out
the importance of optimizing drug doses at the same time as their
combinations. Nevertheless, the current results suggest that
further preclinical and clinical dosing optimization may reveal
the full potential of the pinpointed combination therapies in terms
of their synergistic potency (i.e., beneficial dose reduction) and
synergistic efficacy interactions (i.e., beneficial increase in max-
imum efficacy). Additional correlation studies with clinical trial
outcomes, when available, will also further determine the
applicability of IDentif.AI-x towards go/no-go decisions on
combination regimens pinpointed by IDentif.AI-x. The IDentif.AI-
x process in its current form has resulted in promising outcomes,
further development of IDentif.AI-x and its potential integration

with other methodologies may further enhance its clinical
relevance.
Clinical decision making in response to the COVID-19 pandemic

has been dynamically adapting to new information59,60. With new
evidence emerging, Infectious Diseases Society of America (IDSA)
COVID-19 treatment guidelines provide updated recommenda-
tions for certain monotherapies and combinations depending on
severity and setting61. Dose optimization has been increasingly
recognized as a key therapy optimization element for maximizing
public health benefits from the therapeutic solutions of limited
supply62. Interestingly, a wide range of AI-based applications have
been deployed since the onset of the pandemic, that have
significantly accelerated drug development and identified several
monotherapy candidates that have entered clinical trials or even
have been approved for use against COVID-19. These include the
BenevolentAI knowledge graph that identified BRT (FDA EUA for
use alone or with remdesivir)63; AI-based network analysis by Gysi
and co-authors that suggested nelfinavir (ongoing clinical trial,
JPRN-jRCT2071200023) and dexamethasone (EMA approval)64;
and AI-based Molecular Transformer-Drug Target Interaction
(MT-DTI) model that suggested RDV (FDA EUA)65; among others.
In addition to single-agent therapy development, it is also
important to pinpoint combination regimens that are clinically
actionable, both in composition and dosing parameters based on
available recommendations. Drug combinations could be more
efficacious, safer, less toxic and may even be readily available than
new single-agent therapies. The IDentif.AI-x platform reported
here could provide key insights and address gaps regarding how
to optimally combine the therapies.
This work reports the application of IDentif.AI-x towards the

rapid optimization and prioritization of combination therapy
regimens against COVID-19. The IDentif.AI-x optimization process
pinpointed EIDD-1931/RDV, EIDD-1931/BRT and EIDD-1931/MST as
regimens that may be suitable for further evaluation and
development. IDentif.AI-x did not rely on detailed scientific
literature networks, pre-existing databases, or in silico modeling
to design these combinations. Instead, it harnessed data from
carefully designed drug-dose permutations and prospectively
executed studies to drive the optimization process to complement
existing strategies in the fight against the COVID-19 pandemic.
The promising findings from this work support the expansion of
IDentif.AI-x towards a broad range of applications in addressing
antimicrobial resistance as well as optimizing intervention using
antiviral, antibiotic, and antifungal therapies.

METHODS
Starting drug pool
We selected 12 drugs based on their antiviral potential, actionability and
technical factors. Efficacy potential was based on evidence emerging from
existing literature and clinical trials. The actionability was judged by the
drug potential—on its own and in combination—to be deployed in a
clinical setting, considering its accessibility, safety profile, administration
route, current clinical practice, among others. Technical factors included
assessing if the experimental model was compatible with the hypothesized
action mechanism of the drug reported in the literature. The 12 candidate
drugs had hypothesized mechanisms of either inhibiting SARS-CoV-2 entry
into the host cell—BRT, NFM, IMT—or inhibiting SARS-CoV-2 replication—
EIDD-1931, EBS, SEL, MST, TPV, SN-38, RDV, LPV, and RTV4,35–37,41–45.
EIDD-1931 (Selleck Chemicals, Cat#S0833), nafamostat mesylate (NFM;

Selleck Chemicals, Cat#S1386) and imatinib mesylate (IMT; Selleck
Chemicals, Cat#S1026) were dissolved in sterile-filtered water. Baricitinib
(BRT; Selleck Chemicals, Cat#S2851), ebselen (EBS; Selleck Chemicals,
Cat#S6676), selinexor (SEL; Selleck Chemicals, Cat#S7252), masitinib (MST;
Selleck Chemicals, Cat#S1064), telaprevir (TPV; Selleck Chemicals,
Cat#S1538), SN-38 (Selleck Chemicals, Cat#S4908), remdesivir (RDV; Selleck
Chemicals, Cat#S8932), lopinavir (LPV; Selleck Chemicals, Cat#S1380) and
ritonavir (RTV; Selleck Chemicals, Cat#S1185) were dissolved in DMSO (MP
Biomedicals, Cat#0219605590).
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SARS-CoV-2
All experiments with a live virus were conducted in a biosafety level-3 (BSL-
3) laboratory. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-
2) was previously isolated from a nasopharyngeal swab in early 2020 in
Singapore66 and has undergone several rounds of propagation to form
SARS-CoV-2 original, propagated variant used in this study (virus source:
Biological Defense Program, DSO National Laboratories). This propagated
variant was identified to have genetic mutations as compared to the
original strain. The second viral strain—the B.1.351 (Beta) variant—was
isolated from a nasopharyngeal swab in early 2021 in Singapore and was
registered in GISAID EpiFlu™ Database under hCoV-19/Singapore/239/2021
(virus source: National Public Health Laboratory, NCID). The third viral strain
—the B.1.617.2. (Delta) variant—was isolated from a nasopharyngeal swab
in 2021 in Singapore (virus source: National Public Health Laboratory,
NCID). Each viral strain was propagated in Vero E6 C1008 cells in
maintenance medium containing minimum Eagle’s medium (MEM; Gibco,
Cat#11095-080) with 2% heat-inactivated fetal bovine serum (HI-FBS;
Gibco, Cat#10082147), Penicillin/Streptomycin (Gibco, Cat#15140-122),
Sodium pyruvate (Gibco, Cat#11360-070), Sodium bicarbonate (Gibco,
Cat#25080-094) and non-essential amino acid (Gibco Cat#11140-050). Viral
ToxGlo™ Assay (Promega, Cat#G8943) was used to determine the virus titer
by a standard tissue culture infectious dose (TCID50) endpoint dilution
assay and luminescence readout with a microplate reader (BioTek).

Cell cultures
African green monkey kidney Vero E6 C1008 cells were cultured in MEM
supplemented with 10% HI-FBS prior to use for the infection assay and
were subsequently added in 96-well white plates (Greiner Bio-One,
Cat#655074) at a density of 2 × 104 cells/well.
The cultivation of the human liver epithelial THLE-2 cells (ATCC, Cat#CRL-

2706) required a coating medium consisting of bronchial epithelial basal
medium (BEGM Bullet Kit, Cat#CC-3170) with human fibronectin (0.01mg/
mL; Biological Industries, Cat#03-090-1), bovine collagen Type I (0.03mg/
mL; Stem Cell Technologies, Cat#07001) and bovine serum albumin
(0.01mg/mL; Sigma-Aldrich). THLE-2 cells were plated in pre-coated 96-
well plates at 3 × 103 cells/well density and cultured in bronchial epithelial
cell growth medium (BEGM Bullet kit; Lonza, Cat#CC-3170) excluding
gentamicin/amphotecirin and epinephrine, but supplemented with 10%
FBS (Biowest, Cat#S1300), human epidermal growth factor (5 ng/mL,
Peprotech, Cat#AF-100-15) and phosphoethanolamine (70 ng/mL, Sigma,
Cat#P0503).
AC16 human cardiomyocytes (Millipore, Cat#SCC-09) were plated in 96-

well plates at 2 × 103 cells/well density and cultured in DMEM/F12 (Life
Technologies, Cat# 11320033) mixed with 12.5% FBS (Biowest, Cat# S1300),
and 1% penicillin-streptomycin (Life Technologies, Cat# 15140122). All cell
cultures were incubated at 37 °C in a humidified atmosphere containing
5% CO2.

Viral inhibition and cell cytotoxicity of drugs
All experiments with the live SARS-CoV-2 (the propagated, original strain,
B.1.351 and B.1.617.2 variants) were performed in a BSL-3 laboratory. Each
treatment was prepared in the culture media and pipetted into the wells of
the white 96-well plate in triplicate. 2 × 104 Vero E6 C1008 cells were added
into each well with and without SARS-CoV-2 (100 TCID50) to obtain %
Inhibition of the virus-induced cytopathic effect (CPE) and the drug
toxicity-induced CPE (%Cytotoxicity), respectively. The maximum DMSO
concentration used in each experimental step and media only served as
vehicle controls. Plates were incubated for 72 h before measuring the cell
viability via Viral ToxGlo™ per the manufacturer’s instructions. Drug
cytotoxicity and viral CPE inhibition were calculated, as described
previously19. The %Inhibition and %Cytotoxicity were derived in indepen-
dent biological replicates based on different activity ranges, so their effect
sizes are not directly comparable. In case no difference was detected
between the vehicle and media only controls, the results from these
treatments in each plate were pooled together and served as plate-specific
control used in the calculations. The calculations used in the validation
experimental step used an average of pooled measurements from the
control treatments from all plates. GraphPad Prism 9 software (GraphPad
Software) was used to plot D-R curves and to derive absolute effective
concentrations EC10, EC20 and EC50 of %Inhibition and absolute cytotoxic
concentrations CC50 of %Cytotoxicity.
%Cytotoxicity in the validation experimental step was calculated in

THLE-2 human liver and AC16 human cardiomyocyte cell lines. The drugs

were added to the wells after the cells were allowed to adhere to the
surface for 24 h. The plates were incubated for 72 h before measuring the
cell viability via CellTiter-GLO (Promega, Cat#G7570) per the manufac-
turer’s instructions. %Cytotoxicity calculations in THLE-2 and AC16 were
performed using an average of pooled measurements from the control
treatments from all plates.

Drugs as monotherapy candidates
The concentration range for each drug in the first experimental step was
prepared by a serial dilution with a dilution factor of three: 1.9 × 10−6 µM to
10 µM for EIDD-1931, BRT, EBS, NFM and SN-38; 1.9 × 10−5 µM to 100 µM for
SEL, MST, TPV, IMT, and RDV; 1.1 × 10−3 µM to 200 µM for LPV and RTV.
Vero E6 cells were exposed with and without the live virus to an

increasing concentration of each drug on its own, constructed dose-
response (D-R) curves and calculated EC50—the drug concentration at
which half of the viral-induced CPE is inhibited. An analogical process was
performed to understand at what concentration each drug became
cytotoxic.
Importantly, to ensure the clinical acceptability of the findings, the

concentration range tested for each drug was selected with consideration
of their Cmax achieved in the human body (Table 1) to capture the efficacy
in a concentration range of interest—clinically actionable concentrations
with potential human efficacy. A high Cmax/EC50 ratio indicates a drug’s
capability to reach the concentrations in the human blood plasma that is
sufficient to provide antiviral efficacy67. The specifics of the Cmax selection
for each drug are presented in the Supplementary Note 2.

Drug interaction analysis in the IDentif.AI-x experimental step
In the IDentif.AI-x experimental step, a set of curated drug combinations
consisting of three concentration levels (Level 0, Level 1, and Level 2) for a
six-drug library was designed in accordance with the OACD as described
by Xu et al.68. Specifically, Level 0 indicated the absence of the drug and
Level 1 and Level 2 corresponded to two clinically actionable concentra-
tions of each drug, selected based on the D-R curves and Cmax values. This
six-drug OACD was generated by combining a resolution VI 32-run two-
level fractional factorial and an 18-run three-level orthogonal array. These
50 runs formulated the minimum amount of experimental drug combina-
tions required to screen each drug’s effects through their linear, bilinear
(drug-drug interactions), and quadratic parameters. The resolution VI six-
drug OACD is tabulated in Supplementary Table 1.
IDentif.AI-x analysis correlated the six-drug in vitro experimental data

into a quadratic series to elicit optimized drug combinations and drug-
drug interactions. The analysis was performed in MATLAB R2020a
(Mathworks, Inc.)19. IDentif.AI-x analysis derived two quadratic series—%
Inhibition, %Cytotoxicity—by including all experimental replicates as
inputs and performing bidirectional elimination in which the P value from
the F-statistic served as the removal criterion. Box-Cox transformation
determined appropriate transformations to improve the residual distribu-
tions and the goodness of the fit represented by adjusted R2.
Computational validation tests including residual analysis and outlier
analysis were performed for each of the two IDentif.AI-x-derived series.

Drug interaction analyses in the validation experimental step
The combinations for further evaluation were selected not only based on
their antiviral efficacy, but also on the predicted implementation capability
and clinical acceptability. Drug combinations with fewer drugs are more
actionable due to more streamlined market access, regulatory clearance,
administration, and minimal interactions with concomitant drugs, among
others. Additionally, it has been demonstrated that the patients are more
likely to adhere to drug regimens that have a smaller number of pills.
Given the above, 2-drug combinations were prioritized. Interaction
surfaces were constructed using drug combinations selected via
D-optimal experimental design (N= 9 treatments for EIDD-1931/RDV and
EIDD-1931/BRT; N= 6 treatments for EIDD-1931/MST; 3–4 replicates per
treatment) performed in MATLAB R2020a (MathWorks, Inc.). The concen-
tration ranges for constructing interaction surfaces were set as: 0—
1.719 μM for EIDD-1931; 0—1.10 μM for RDV; 0—0.084 μM for BRT and 0—
0.079 μM for MST to include the concentration ratios explored in the
IDentif.AI-x experimental step at the high EIDD-1931 concentrations. We
assumed a quadratic model of the drug interactions. All replicates were
included in the construction of the surfaces.
GraphPad Prism 9 software (GraphPad Software) was used to plot D-R

curves and derive EC50 of %Inhibition and CC50 of %Cytotoxicity of the
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validation set treatments (monotherapies and combinations). Drug
combinations were tested at two fixed ratios: (i) Level 2/Level 2 ratio for
EIDD-1931/RDV, and Level 1/Level 2 ratio for EIDD-1931/BRT from IDentif.
AI-x experimental set (OACD ratio); and (ii) Cmax/Cmax ratio (Cmax ratio). %
Cytotoxicity was evaluated in terms of its effects on the %Inhibition assay.

Statistical analyses
All in vitro experiments were performed in at least three biological
replicates. %Inhibition and %Cytotoxicity are presented as mean ±
propagated standard deviation (s.d.):

σ2I ¼
∂I
∂E�

� �2

σ2E� þ ∂I
∂c�

� �2

σ2c þ
∂I
∂cþ

� �2

σ2cþ (1)

σ2T ¼ ∂T
∂cþ

� �2

σ2cþ þ ∂T
∂Eþ

� �2

σ2Eþ (2)

In Eqs. 1 and 2, σT and σI represent the propagated s.d. for the mean
value of %Cytotoxicity and %Inhibition, respectively. The equations
consider the spread of the raw luminescence signals of the positive control
(control cells), negative control (cells + virus control), and the experimental
triplicates with and without virus (cell + drugs + virus and cells + drugs),
which are represented by σc+, σc−, σE+, and σE− respectively69.
D-R curves were compared using a sum of squares F test. The IDentif.AI-

x-estimated coefficients were analyzed using sum of squares F-test and P-
values for each individual coefficient obtained from stepwise regression.
Sample distribution was tested with Shapiro–Wilk normality test. The
Kruskal–Wallis test by ranks was used for multiple comparisons, followed
by Dunn’s post hoc test for pairwise comparisons. For two-group
comparisons, Student’s two-tailed t-test and Wilcoxon rank-sum test were
used for normally and non-normally distributed populations, respectively.
Bonferroni correction was used in multiple comparisons. Alongside the P-
values, the results were interpreted in the light of logic, background
knowledge and the specifics of the experimental design70.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
All data generated and analyzed during this study are included in this published
article and its supplementary information. The %Inhibition and %Cytotoxicity data
together with the code for the six-drug IDentif.AI-x drug combination optimization
step, can be found in the Supplementary Data 1. All %Inhibition and %Cytotoxicity
predictions generated in IDentif.AI analysis can be found in Supplementary Data 2.
The experimental data underlying the monotherapy and validation analyses can be
found in Supplementary Data 3 and 4, respectively.

CODE AVAILABILITY
Data processing and IDentif.AI-x analyses in this study were conducted using basic
functions written in Python programming language and in Matlab R2020a (Math-
works, Inc.). IDentif.AI-x analyses were conducted using the built-in “stepwiselm”
function in Matlab R2020a as provided in Supplementary Data 1. The custom codes
can be shared on reasonable request to the corresponding authors.

Received: 17 December 2021; Accepted: 1 June 2022;

REFERENCES
1. Riva, L. et al. Discovery of SARS-CoV-2 antiviral drugs through large-scale com-

pound repurposing. Nature 586, 113–119 (2020).
2. Mirabelli, C. et al. Morphological cell profiling of SARS-CoV-2 infection identifies drug

repurposing candidates for COVID-19. Proc. Natl Acad. Sci. 118, e2105815118 (2021).
3. White, K. M. et al. Plitidepsin has potent preclinical efficacy against SARS-CoV-2 by

targeting the host protein eEF1A. Science 371, 926–931 (2021).
4. Sheahan, T. P. et al. An orally bioavailable broad-spectrum antiviral inhibits SARS-

CoV-2 in human airway epithelial cell cultures and multiple coronaviruses in
mice. Sci. Transl. Med. 12, (2020).

5. Erlanson, D. A. Many small steps towards a COVID-19 drug. Nat. Commun. 11,
(2020).

6. PRINCIPLE Trial Collaborative Group et al. Azithromycin for community treatment
of suspected COVID-19 in people at increased risk of an adverse clinical course in
the UK (PRINCIPLE): a randomised, controlled, open-label, adaptive platform trial.
Lancet 397, 1063–1074 (2021).

7. RECOVERY Collaborative Group et al. Dexamethasone in Hospitalized Patients
with Covid-19. N. Engl. J. Med 384, 693–704 (2021).

8. Kalil, A. C. et al. Baricitinib plus Remdesivir for Hospitalized Adults with Covid-19.
N. Engl. J. Med. 384, 795–807 (2021).

9. Tekin, E. et al. Prevalence and patterns of higher-order drug interactions in
Escherichia coli. npj Syst. Biol. Appl. 4, 31 (2018).

10. Galindez, G. et al. Lessons from the COVID-19 pandemic for advancing compu-
tational drug repurposing strategies. Nat. Comput. Sci. 1, 33–41 (2021).

11. Mohapatra, S. et al. Repurposing therapeutics for COVID-19: Rapid prediction of
commercially available drugs through machine learning and docking. PLoS One
15, e0241543 (2020).

12. Mongia, A., Saha, S. K., Chouzenoux, E. & Majumdar, A. A computational approach
to aid clinicians in selecting anti-viral drugs for COVID-19 trials. Sci. Rep. 11, 9047
(2021).

13. Zimmer, A., Katzir, I., Dekel, E., Mayo, A. E. & Alon, U. Prediction of multi-
dimensional drug dose responses based on measurements of drug pairs. Proc.
Natl Acad. Sci. USA 113, 10442–10447 (2016).

14. Abdulla, A. et al. Project IDentif.AI: Harnessing Artificial Intelligence to Rapidly
Optimize Combination Therapy Development for Infectious Disease Intervention.
Adv. Ther. 3, 2000034 (2020).

15. Al-Shyoukh, I. et al. Systematic quantitative characterization of cellular responses
induced by multiple signals. BMC Syst. Biol. 5, 88 (2011).

16. Wang, H. et al. Mechanism-independent optimization of combinatorial nano-
diamond and unmodified drug delivery using a phenotypically driven platform
technology. ACS Nano 9, 3332–3344 (2015).

17. Mohd Abdul Rashid, M. B. et al. Identification and Optimization of Combinatorial
Glucose Metabolism Inhibitors in Hepatocellular Carcinomas. J. Lab. Autom. 20,
423–437 (2015).

18. Wong, P. K. et al. Closed-loop control of cellular functions using combinatory
drugs guided by a stochastic search algorithm. Proc. Natl Acad. Sci. USA 105,
5105–5110 (2008).

19. Blasiak, A. et al. IDentif.AI: Rapidly optimizing combination therapy design against
severe Acute Respiratory Syndrome Coronavirus 2 (SARS-Cov-2) with digital drug
development. Bioeng. Transl. Med. 6, e10196 (2021).

20. Clemens, D. L. et al. Artificial intelligence enabled parabolic response surface
platform identifies ultra-rapid near-universal TB drug treatment regimens com-
prising approved drugs. PLoS One 14, e0215607 (2019).

21. Ho, D. Artificial intelligence in cancer therapy. Science 367, 982–983 (2020).
22. Ho, D. et al. Enabling Technologies for Personalized and Precision Medicine.

Trends Biotechnol. 38, 497–518 (2020).
23. Lee, B. Y. et al. Drug regimens identified and optimized by output-driven platform

markedly reduce tuberculosis treatment time. Nat. Commun. 8, 14183 (2017).
24. Lim, J. J., Goh, J., Rashid, M. B. M. A. & Chow, E. K. Maximizing Efficiency of Artificial

Intelligence-Driven Drug Combination Optimization through Minimal Resolution
Experimental Design. Adv. Ther. 3, 1900122 (2020).

25. Rashid, M. B. M. A. et al. Optimizing drug combinations against multiple myeloma
using a quadratic phenotypic optimization platform (QPOP). Sci. Transl. Med. 10,
(2018).

26. Silva, A. et al. Output-driven feedback system control platform optimizes com-
binatorial therapy of tuberculosis using a macrophage cell culture model. Proc.
Natl Acad. Sci. USA 113, E2172–E2179 (2016).

27. Zarrinpar, A. et al. Individualizing liver transplant immunosuppression using a
phenotypic personalized medicine platform. Sci. Transl. Med. 8, (2016).

28. Tan, B. K. J. et al. Personalised, Rational, Efficacy-Driven Cancer Drug Dosing via
an Artificial Intelligence SystEm (PRECISE): A Protocol for the PRECISE CURATE.AI
Pilot Clinical Trial. Front. Digit. Heal. 3, (2021).

29. Shen, Y. et al. Harnessing Artificial Intelligence to Optimize Long-Term Main-
tenance Dosing for Antiretroviral-Naive Adults with HIV-1 Infection. Adv. Ther. 3,
1900114 (2020).

30. Pantuck, A. J. et al. Modulating BET Bromodomain Inhibitor ZEN-3694 and
Enzalutamide Combination Dosing in a Metastatic Prostate Cancer Patient Using
CURATE.AI, an Artificial Intelligence Platform. Adv. Ther. 1, 1800104 (2018).

31. Kee, T. et al. Harnessing CURATE.AI as a Digital Therapeutics Platform by Iden-
tifying N-of-1 Learning Trajectory Profiles. Adv. Ther. 2, (2019).

32. de Mel, S. et al. Application of an ex-vivo drug sensitivity platform towards
achieving complete remission in a refractory T-cell lymphoma. Blood Cancer J. 10,
9 (2020).

33. Blasiak, A., Khong, J. & Kee, T. CURATE.AI: Optimizing Personalized Medicine with.
Artif. Intell. SLAS Technol. 25, 95–105 (2020).

A. Blasiak et al.

10

npj Digital Medicine (2022)    83 Published in partnership with Seoul National University Bundang Hospital



34. Beigel, J. H. et al. Remdesivir for the Treatment of Covid-19 — Final Report. N.
Engl. J. Med. 383, 1813–1826 (2020).

35. Stebbing, J. et al. Mechanism of baricitinib supports artificial intelligence-
predicted testing in COVID -19 patients. EMBO Mol. Med. 12, e12697 (2020).

36. Xiu, S. et al. Inhibitors of SARS-CoV-2 Entry: Current and Future Opportunities. J.
Med. Chem. 63, 12256–12274 (2020).

37. Drayman, N. et al. Masitinib is a broad coronavirus 3CL inhibitor that blocks
replication of SARS-CoV-2. Science 373, 931–936 (2021).

38. Goldman, J. D. et al. Remdesivir for 5 or 10 Days in Patients with Severe Covid-19.
N. Engl. J. Med. 383, 1827–1837 (2020).

39. Richardson, P. et al. Baricitinib as potential treatment for 2019-nCoV acute
respiratory disease. Lancet 395, e30–e31 (2020).

40. Cox, R. M., Wolf, J. D. & Plemper, R. K. Therapeutically administered ribonucleoside
analogue MK-4482/EIDD-2801 blocks SARS-CoV-2 transmission in ferrets. Nat.
Microbiol. 6, 11–18 (2021).

41. El Bairi, K. et al. Repurposing anticancer drugs for the management of COVID-19.
Eur. J. Cancer 141, 40–61 (2020).

42. Haritha, C. V., Sharun, K. & Jose, B. Ebselen, a new candidate therapeutic against
SARS-CoV-2. Int. J. Surg. 84, 53–56 (2020).

43. Kneller, D. W. et al. Malleability of the SARS-CoV-2 3CL Mpro Active-Site Cavity
Facilitates Binding of Clinical Antivirals. Structure 28, 1313–1320 (2020). e3.

44. Lovetrue, B. The AI-discovered aetiology of COVID-19 and rationale of the iri-
notecan+ etoposide combination therapy for critically ill COVID-19 patients. Med.
Hypotheses 144, 110180 (2020).

45. Sanders, J. M., Monogue, M. L., Jodlowski, T. Z. & Cutrell, J. B. Pharmacologic
Treatments for Coronavirus Disease 2019 (COVID-19): A Review. JAMA - J. Am.
Med. Assoc. 323, 1824–1836 (2020).

46. Khoo, S. H. et al. Optimal dose and safety of molnupiravir in patients with early
SARS-CoV-2: a Phase I, open-label, dose-escalating, randomized controlled study.
J. Antimicrob. Chemother. (2021). https://doi.org/10.1093/jac/dkab318

47. Painter, W. P. et al. Human safety, tolerability, and pharmacokinetics of molnu-
piravir, a novel broad-spectrum oral antiviral agent with activity against SARS-
CoV-2. Antimicrob. Agents Chemother. 65, (2021).

48. Rosenke, K. et al. Orally delivered MK-4482 inhibits SARS-CoV-2 replication in the
Syrian hamster model. Nat. Commun. 12, 2295 (2021).

49. Wahl, A. et al. SARS-CoV-2 infection is effectively treated and prevented by EIDD-
2801. Nature 591, 451–457 (2021).

50. Fischer, W. A. 2nd et al. A phase 2a clinical trial of molnupiravir in patients with
COVID-19 shows accelerated SARS-CoV-2 RNA clearance and elimination of
infectious virus. Sci. Transl. Med. 14, eabl7430 (2022). https://doi.org/10.1126/
scitranslmed.abl7430.

51. Mahase, E. Covid-19: Molnupiravir reduces risk of hospital admission or death by
50% in patients at risk, MSD reports. BMJ 375, n2422 (2021).

52. Medicines and Healthcare products Regulatory Agency. First oral antiviral for
COVID-19, Lagevrio (molnupiravir), approved by MHRA - GOV.UK. https://www.
gov.uk/government/news/first-oral-antiviral-for-covid-19-lagevrio-molnupiravir-
approved-by-mhra. (Accessed: 11th November 2021)

53. Merck & Co. Inc. Merck and Ridgeback Biotherapeutics Provide Update on Results
from MOVe-OUT Study of Molnupiravir, an Investigational Oral Antiviral Medicine,
in At Risk Adults With Mild-to-Moderate COVID-19. https://www.merck.com/
news/merck-and-ridgeback-biotherapeutics-provide-update-on-results-from-
move-out-study-of-molnupiravir-an-investigational-oral-antiviral-medicine-in-at-
risk-adults-with-mild-to-moderate-covid-19/ (Accessed: 1st December 2021)

54. FDA. Coronavirus (COVID-19) update: FDA authorizes first oral antiviral for
treatment of COVID-19. Food and Drug Administration 1 (2021). Available at:
https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-
update-fda-authorizes-additional-oral-antiviral-treatment-covid-19-certain.
(Accessed: 15th March 2022)

55. WHO Solidarity Trial Consortium. Repurposed Antiviral Drugs for Covid-19 —
Interim WHO Solidarity Trial Results. N. Engl. J. Med. 384, 497–511 (2021).

56. Barratt-Due, A. et al. Evaluation of the effects of remdesivir and hydroxy-
chloroquine on viral clearance in covid-19: A randomized trial. Ann. Intern. Med.
174, 1261–1269 (2021).

57. Aman, J. et al. Imatinib in patients with severe COVID-19: a randomised, double-
blind, placebo-controlled, clinical trial. Lancet Respir. Med. 9, 957–968 (2021).

58. Schultz, D. C. et al. Pyrimidine inhibitors synergize with nucleoside analogues to
block SARS-CoV-2. Nature 1–9 (2022).

59. Martínez-Sanz, J., Pérez-Molina, J. A., Moreno, S., Zamora, J. & Serrano-Villar, S.
Understanding clinical decision-making during the COVID-19 pandemic: A cross-
sectional worldwide survey. EClinicalMedicine 27, 100539 (2020).

60. Metlay, J. P. & Armstrong, K. A. Clinical Decision Making During the COVID-19
Pandemic. Ann. Intern. Med. 174, 691–693 (2021).

61. Bhimraj, A. et al. Infectious Diseases Society of America Guidelines on the
Treatment and Management of Patients with COVID-19. Clin Infect Dis. 2021,
(2020).

62. Strohbehn, G. W., Parker, W. F., Reid, P. D. & Gellad, W. F. Socially optimal pan-
demic drug dosing. Lancet Glob. Heal 9, e1049–e1050 (2021).

63. Stebbing, J. et al. COVID-19: combining antiviral and anti-inflammatory treat-
ments. Lancet Infect. Dis. 20, 400–402 (2020).

64. Gysi, D. M. et al. Network medicine framework for identifying drug-repurposing
opportunities for COVID-19. Proc. Natl. Acad. Sci. USA 118, (2021).

65. Beck, B. R., Shin, B., Choi, Y., Park, S. & Kang, K. Predicting commercially available
antiviral drugs that may act on the novel coronavirus (SARS-CoV-2) through a
drug-target interaction deep learning model. Comput. Struct. Biotechnol. J. 18,
784–790 (2020).

66. Young, B. E. et al. Epidemiologic Features and Clinical Course of Patients Infected
With SARS-CoV-2 in Singapore. JAMA 323, 1488–1494 (2020).

67. Arshad, U. et al. Prioritization of Anti-SARS-Cov-2 Drug Repurposing Opportu-
nities Based on Plasma and Target Site Concentrations Derived from their
Established Human Pharmacokinetics. Clin. Pharmacol. Ther. 108, 775–790 (2020).

68. Xu, H., Jaynes, J. & Ding, X. Combining two-level and three-level orthogonal
arrays for factor screening and response surface exploration. Stat Sin 269–289,
https://doi.org/10.5705/ss.2012.210. (2014).

69. Farrance, I. & Frenkel, R. Uncertainty of Measurement: A Review of the Rules for
Calculating Uncertainty Components through Functional Relationships. Clin.
Biochem Rev. 33, 49–75 (2012).

70. Wasserstein, R. L., Schirm, A. L. & Lazar, N. A. Moving to a World Beyond “p < 0.05”.
Am. Stat. 73, 1–19 (2019).

ACKNOWLEDGEMENTS
D.H. gratefully acknowledges support from the Office of the President, Office of the
Senior Deputy President and Provost, and Office of the Deputy President for Research
and Technology at the National University of Singapore. D.H. also gratefully
acknowledges funding from the Institute for Digital Medicine (WisDM) Translational
Research Program [grant number R-719-000-037-733] at the Yong Loo Lin School of
Medicine, National University of Singapore, Ministry of Education Tier 1 FRC Grant
[grant number R-397-000-333-114], Micron Foundation, and Sun Life Singapore. D.H.
and E.K.-H.C. gratefully acknowledge the National Research Foundation Singapore
under its AI Singapore Program [Award Number: AISG-GC-2019-002], and Singapore
Ministry of Health’s National Medical Research Council under its Open Fund- Large
Collaborative Grant (“OF-LCG”) [grant number MOH-OFLCG18May-0028]. E.K.-H.C. is
supported by the National Research Foundation Singapore and the Singapore
Ministry of Education under its Research Centers of Excellence Initiative (Cancer
Science Institute of Singapore RCE Main Grant), Ministry of Education Academic
Research Fund (MOE AcRF Tier 2 [grant number MOE2019-T2-1-115]), Singapore
Ministry of Health’s National Medical Research Council under its Open Fund- Large
Collaborative Grant (“OF-LCG”) [grant numbers MOH-OFLCG18May-0023 and MOH-
OFLCG18May-0028] and National Research Foundation Competitive Proton Research
Program [grant number NRF-CRP-2017-05]. S.G.K.S., D.H.C., A.P.C.L., G.-Y.G.T. and C.E.Z.
C. gratefully acknowledge funding support from Future Systems and Technology
Directorate, Singapore Ministry of Defense. Any opinions, findings and conclusions or
recommendations expressed in this material are those of the author(s) and do not
reflect the views of National Research Foundation, Singapore. Study funding sources
did not have any role in any of the following: study design; collection, analysis, and
interpretation of data; writing of the report; decision to submit the paper for
publication. The authors gratefully acknowledge the National Public Health Library,
National Center for Infectious Diseases; as well as Associate Professor Justin Jang
Hann Chu and Theodore Kee for helpful discussions.

AUTHOR CONTRIBUTIONS
A.B., D.M.A., L.Y.A.C., W.J.C., D.C.B.L., J.E.-L.W., E.K.-H.C., and D.H. conceived the study.
A.B, A.T.L.T, A.R., L.H., S.G.K.S., P.W., G.-Y.G.T., C.E.Z.C., E.K.-H.C., and D.H. designed the
study. L.H., S.G.K.S., D.H.C., A.P.C.L, and R.T.P.L. performed the experiments. A.B., A.T.L.
T, A.R., and P.W. analyzed the experimental data. A.B, A.T.L.T, A.R., P.W., and D.H. wrote
early drafts. All authors contributed to scientific discussion, data interpretation,
critical review, and approval of the final manuscript. A.B., A.T.L.T., A.R., L.H., and S.G.K.
S. are considered co-first authors.

COMPETING INTERESTS
A.B., E.K-.H.C., and D.H. are co-inventors or previously filed pending patents on
artificial intelligence-based therapy development. E.K.-H.C., and D.H. are shareholders
of KYAN Therapeutics, which has licensed intellectual property pertaining to AI-based
oncology drug development. The findings from this study are being made available
for public benefit, and no intellectual property rights arising from the work reported
here are being pursued. The remaining authors declare no competing interests.

A. Blasiak et al.

11

Published in partnership with Seoul National University Bundang Hospital npj Digital Medicine (2022)    83 

https://doi.org/10.1093/jac/dkab318
https://doi.org/10.1126/scitranslmed.abl7430
https://doi.org/10.1126/scitranslmed.abl7430
https://www.gov.uk/government/news/first-oral-antiviral-for-covid-19-lagevrio-molnupiravir-approved-by-mhra
https://www.gov.uk/government/news/first-oral-antiviral-for-covid-19-lagevrio-molnupiravir-approved-by-mhra
https://www.gov.uk/government/news/first-oral-antiviral-for-covid-19-lagevrio-molnupiravir-approved-by-mhra
https://www.merck.com/news/merck-and-ridgeback-biotherapeutics-provide-update-on-results-from-move-out-study-of-molnupiravir-an-investigational-oral-antiviral-medicine-in-at-risk-adults-with-mild-to-moderate-covid-19/
https://www.merck.com/news/merck-and-ridgeback-biotherapeutics-provide-update-on-results-from-move-out-study-of-molnupiravir-an-investigational-oral-antiviral-medicine-in-at-risk-adults-with-mild-to-moderate-covid-19/
https://www.merck.com/news/merck-and-ridgeback-biotherapeutics-provide-update-on-results-from-move-out-study-of-molnupiravir-an-investigational-oral-antiviral-medicine-in-at-risk-adults-with-mild-to-moderate-covid-19/
https://www.merck.com/news/merck-and-ridgeback-biotherapeutics-provide-update-on-results-from-move-out-study-of-molnupiravir-an-investigational-oral-antiviral-medicine-in-at-risk-adults-with-mild-to-moderate-covid-19/
https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-authorizes-additional-oral-antiviral-treatment-covid-19-certain
https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-authorizes-additional-oral-antiviral-treatment-covid-19-certain
https://doi.org/10.5705/ss.2012.210.


ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41746-022-00627-4.

Correspondence and requests for materials should be addressed to Agata Blasiak,
Conrad En Zuo Chan, Edward Kai-Hua Chow or Dean Ho.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2022

A. Blasiak et al.

12

npj Digital Medicine (2022)    83 Published in partnership with Seoul National University Bundang Hospital

https://doi.org/10.1038/s41746-022-00627-4
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	The IDentif.AI-x pandemic readiness platform: Rapid prioritization of optimized COVID-19 combination therapy regimens
	Introduction
	Results
	Monotherapies were broadly not sufficiently efficacious in the actionable dosing range
	IDentif.AI-x drug combination optimization
	Experimental validation of the IDentif.AI-x analysis
	Dose-response curves revealed additional information for the EIDD-1931 interactions with RDV and BRT
	The efficacy of the pinpointed therapies against SARS-CoV-2 B.1.351 and B.1.617.2 variants
	Cytotoxicity of EIDD-1931 in the interactions

	Discussion
	Methods
	Starting drug pool
	SARS-CoV-2
	Cell cultures
	Viral inhibition and cell cytotoxicity of drugs
	Drugs as monotherapy candidates
	Drug interaction analysis in the IDentif.AI-x experimental step
	Drug interaction analyses in the validation experimental step
	Statistical analyses
	Reporting summary

	DATA AVAILABILITY
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION




