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Introduction
Breast cancer (BC) represents the most prevalent malignancy 
among women, constituting approximately 30% of all cancer 
cases.1 The prognosis for individuals diagnosed with BC 
remains unfavorable, primarily due to the disease’s significant 
heterogeneity and propensity for early metastasis. Current 
therapeutic modalities, including surgical intervention, chemo-
therapy, radiotherapy, neoadjuvant therapy, targeted therapy, 
and immunotherapy, while effective in reducing mortality rates 
among BC patients, are insufficient in addressing the chal-
lenges posed by the high heterogeneity and early metastatic 
behavior of the disease.2,3 Furthermore, existing classification 
systems, such as the TNM staging and PAM50 classification, 
fall short in accurately predicting patient outcomes.4 
Consequently, the identification and development of novel 
biomarkers to facilitate the reclassification of BC subtypes and 
to inform treatment strategies is essential for enhancing patient 
prognosis.

The tumor microenvironment (TME) comprises the extra-
cellular matrix (ECM), stromal cells, and tumor-infiltrating 

immune cells (TIICs).5 The type and functional mechanisms 
of TIICs are critical, as they not only affect the efficacy of anti-
cancer immunotherapies such as immune checkpoint inhibi-
tors (ICIs), but also serve as key determinants in predicting the 
clinical Research has established a robust correlation between 
the prognosis of triple-negative BC and the extent of T cell 
infiltration within the TME.6-8 Additionally, there is increas-
ing evidence that various signaling pathways modulate the 
composition and behavior of TIICs in the TME, with the 
transforming growth factor beta (TGF-β) signaling pathway 
emerging as particularly significant.9,10

The TGF-β signaling pathway exhibits a complex dual role in 
cancer progression.11 In the early stages of cancer, TGF-β acts as a 
tumor suppressor by promoting cellular differentiation and inhib-
iting proliferation. Conversely, in advanced stages, TGF-β can 
function as a tumor promoter by facilitating epithelial-to-mesen-
chymal transition (EMT), thereby enhancing cancer initiation 
and enabling immune evasion.12 TGF-β also promotes ferropto-
sis, a form of regulated cell death that inhibits cancer cell prolifera-
tion. Specifically, TGF-β1 activates Smad3, which in turn 
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suppresses the expression of the cystine/glutamate antiporter sys-
tem Xc- (xCT), leading to decreased intracellular glutathione lev-
els and increased lipid peroxidation, ultimately triggering cellular 
ferroptosis.13 Moreover, excessive TGF-β activity within the 
TME can impair immune responses by inhibiting various immune 
cell types, including cytotoxic T cells and natural killer (NK) 
cells.12,14 The interplay between TGF-β and the programmed cell 
death-1 receptor/programmed cell death ligand 1 (PD-1/PD-L1) 
pathways has been shown to be both independent and comple-
mentary, suggesting that TGF-β may serve as a predictive marker 
for the therapeutic efficacy of ICIs targeting PD-1/PD-L1.15-17 
Although TGF-β has been proposed as a potential therapeutic 
target for BC treatment in recent years,18,19 further investigation 
into the intrinsic relationship between TGF-β and the TME is 
warranted to better assess the most effective treatment modalities 
for BC patients and to improve their overall prognosis.

This research established a predictive model for breast can-
cer that focuses on the TGF-β signaling pathway. A compre-
hensive analysis revealed a significant association between 
TGF-β and immune cells as well as cytokines within the tumor 
microenvironment (TME). The prognostic characteristics 
associated with TGF-β can be utilized to forecast and deline-
ate prognostic outcomes and immune response status in breast 
cancer patients, as demonstrated by survival and drug suscepti-
bility assessments. Additionally, cluster analysis based on five 
TGF-β signaling-related genes (TSRGs) enables the classifi-
cation of breast cancer patients into two distinct molecular 
subtypes, which may enhance future clinical patient stratifica-
tion and therapeutic strategies.

Materials and Methods
Data sets collection

The transcriptome expression matrix and clinical data from the 
TCGA-BRCA cohort, sourced from the Cancer Genome Atlas 
(TCGA) database, served as the training sets for this study. The 
TCGA-BRCA cohort comprised 1,113 BC samples alongside 
113 normal breast tissue samples. For validation purposes, data 
sets GSE20685, GSE42568, and GSE58812 were obtained from 
the Gene Expression Omnibus (GEO) database. All three vali-
dation sets included overall survival (OS) data, with GSE42568 
additionally providing recurrence-free survival (RFS) data and 
GSE58812 offering metastasis-free survival (MFS) data. 
Ultimately, a training set was established comprising 976 patients 
from the TCGA-BRCA cohort, while the validation sets 
included 327 patients from the GSE20685 cohort, 104 patients 
from the GSE42568 cohort, and 106 patients from the 
GSE58812 cohort. Furthermore, 225 TSRGs were extracted 
from a previously published article.20

Mutation analysis and immune cell infiltration 
analysis

Somatic mutation data for the TCGA-BRCA cohort were 
retrieved from UCSC Xena, and the somatic mutation 

frequencies of TSRGs were visualized using the R package 
“maftools” in the form of a waterfall plot.21 The single-sam-
ple Gene Set Enrichment Analysis (ssGSEA) method was 
employed to investigate variations in immune cell infiltration 
between normal breast tissue and BC tissue, with specific 
details regarding 28 immune cell types obtained from sup-
plementary materials in a published article.3 Additionally, 
differences in the TME between normal and BC groups 
were evaluated using the ESTIMATE algorithm to derive 
stromal and estimate scores.

Construction of TGF-β risk score model

Initially, prognostic genes associated with OS were identified 
through univariate Cox regression analysis, applying a signifi-
cance threshold of P < .05 within the TCGA-BRCA cohort. 
These OS-related genes were subsequently intersected with 
the 225 TSRGs, and the least absolute shrinkage and selection 
operator (LASSO) Cox regression analysis was utilized to 
minimize redundant genes and mitigate the risk of model 
overfitting.22 Ultimately, multivariate Cox regression analysis 
was conducted to select the most effective prognostic model 
and to calculate coefficients for each candidate gene. The 
TGF-β risk score was determined as the product of the expres-
sion levels of each candidate gene and their corresponding 
coefficients. Patients were categorized into high- or low-risk 
groups based on their median TGF-β risk score. Additionally, 
boxplots were employed to illustrate the differences in candi-
date gene expression between the two groups, while Kaplan-
Meier survival analysis was utilized to assess the impact of 
candidate gene expression on the prognosis of BC patients.

Validation of TGF-β risk score model

The three previously mentioned datasets were utilized for vali-
dation purposes to further evaluate the accuracy of the TGF-
risk score model. Patients were categorized into high- and 
low-risk groups based on the median risk scores within each 
validation set, with risk scores derived from the expression lev-
els of selected candidate genes. Subsequently, the survival out-
comes of patients in these risk categories were analyzed using 
Kaplan-Meier survival analysis. Given the constraints posed by 
variations in existing data, receiver operating characteristic 
(ROC) curves were employed in the GSE58812 validation set 
to assess the model's predictive accuracy for patient prognosis 
at 1, 3, and 5 years, while ROC curves from other training and 
validation sets were utilized to evaluate the model’s prognostic 
accuracy at 3, 5, and 10 years.

Construction and validation of the TGF-β risk 
score related-clinical nomogram

In the construction and validation of a TGF-β risk score-
related clinical nomogram, independent prognostic factors 
were identified by examining the clinicopathological 
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characteristics and TGF-β risk scores of the TCGA-BRCA 
cohort through univariate and multivariate Cox regression 
analyses. The “rms” and “regplot” R packages were subsequently 
employed to develop the nomogram based on these findings.23 
To validate the predictive capability of the nomogram, calibra-
tion curves for 1, 3, and 5 years, ROC curves for 1, 2, and 5 years, 
and decision curve analysis (DCA) were conducted.

Gene set enrichment analysis

Gene set enrichment analysis (GSEA) was performed using 
the R package “clusterProfiler,” which included gene ontology 
(GO) enrichment and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway analysis for patients categorized 
into high- and low-risk groups. The results were visually repre-
sented through bubble plots and mountain plots, respectively.

Immune landscape estimation in BRCA TME

Given the close association of emerging immunotherapies with 
immune checkpoints, the relationship between candidate genes 
and six immune checkpoints (PDCD1, CTLA4, IDO1, 
TIGIT, LAG3, and PVR) was assessed. Segmented violin plots 
illustrated the expression differences of these immune check-
points across various risk groups and datasets. Additionally, to 
explore the role of TSRGs in the TME of BC patients, the 
Tumor Immune Estimation Resource (TIMER) database was 
utilized to analyze the correlation between the expression of 
these genes and the aforementioned immune checkpoints. 
Furthermore, transcriptome data from 976 BC patients were 
uploaded to the tumor immune dysfunction and exclusion 
(TIDE) website to evaluate responses to immune checkpoint 
blockade (ICB) in high- and low-risk patients.

Predicting the clinical sensitivity of BC patients to 
ICIs and chemotherapy drugs

As the immunophenotype score (IPS, ranging from 0 to 10) 
from the Cancer Immunome Atlas database correlates with 
immunogenicity and can be used to predict sensitivity to ICIs 
treatment in patients with BC, IPS values from patients in the 
high- and low-risk groups were compared. Additionally, to 
forecast the responsiveness of BC patients to chemotherapeu-
tic agents, drug susceptibility data were sourced from the 
Genomics of Drug Sensitivity in Cancer (GDSC) database, 
and the 50% inhibitory concentrations (IC50) of various drugs 
were predicted using the R package oncoPredict.24

Prediction of BRCA molecular subtypes by cluster 
analysis

Clustering analysis was conducted utilizing the R package 
“ConsensusClusterPlus” to predict TGF-β related molecular 
subtypes in BC patients, based on candidate genes identified in 
previous studies.25 Subsequently, principal component analysis 

(PCA) was employed to validate the accuracy of the classifica-
tions, while Kaplan-Meier curves were utilized to evaluate the 
prognostic outcomes of the subgroups. Additionally, relevant 
immunoassays were performed to investigate the differences in 
the TME among the identified subgroups.

Single-cell RNA-seq data acquisition and 
processing

For the acquisition and processing of scRNA-seq data, the 
GSE161529 dataset from the GEO database was utilized to 
accurately assess the expression levels of five TSRGs at the cel-
lular level. The “Seurat” software was employed for quality con-
trol, excluding cells with “nFeature” values below 200 and 
“percent.mt” values exceeding 20%. The data normalization 
was achieved using the “LogNormalize” method. Following 
normalization, PCA was applied for dimensionality reduction, 
and uniform manifold approximation and projection (UMAP) 
was utilized for unsupervised cell clustering. Finally, cell anno-
tation was performed using the SingleR package.

Statistical analysis

Statistical analyses and data visualizations were executed using 
R software (version 4.2.0). Both univariate and multivariate 
Cox regression analyses were conducted to identify independ-
ent prognostic factors, with a two-tailed p-value of less than .05 
deemed statistically significant.

Results
Identif ication of TSRGs in BC patients

First, the proportion of 225 TSRGs with somatic mutations in 
the TCGA-BRCA cohort was assessed, and a waterfall plot 
was used to display the top 20 mutant genes, including TP53, 
CDH1, and others (Figure 1(a)). Furthermore, Figure 1(b) 
depicted the difference in TIICs in the TME between normal 
breast and BC tissue, with mast cells, eosinophils, natural killer 
T cells, and effector memory CD8 T cells being higher in nor-
mal tissues, while activated CD4 T cells and CD56 dim natural 
killer cells were higher in BC tissues. Lower stromal and 
ESTIMATE scores in BC tissues indicate a worse prognosis in 
BC patients (Figure 1(c)).

Construction of TGF-β risk score model for BC 
patients

An optimal prognostic model was established through the 
integration of univariate COX regression analysis, LASSO 
regression analysis, and multivariate COX regression analysis 
(Figure 1(d) and (e)). This model comprises five TSRGs: 
FUT8, IFNG, ID3, KLF10, and PARD6A. Among these, ID3 
and KLF10 are identified as adverse prognostic factors, indi-
cated by a hazard ratio (HR) greater than 1, while FUT8, 
IFNG, and PARD6A are classified as protective prognostic 
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factors, as evidenced by an HR less than 1 (Figure 2(a)). The 
risk score is calculated using the formula: Risk score = −0.20464 
* FUT8 - 0.65792 * IFNG + 0.21690 * ID3 + 0.37394 * 
KLF10 - 0.30315 * PARD6A. Based on the median risk score, 
subjects are categorized into high-risk and low-risk groups. 
Subsequent analysis revealed that ID3 and KLF10 exhibited 
higher expression levels in the high-risk group, whereas FUT8, 
IFNG, and PARD6A were more prominently expressed in the 
low-risk group (Figure 2(b)). The Kaplan-Meier survival curve 
analysis further assessed the independence of the five identified 
genes as predictive variables for BC. With the exception of 
FUT8 (P = .13), the other four genes were determined to be 
independent prognostic factors influencing BC outcomes 
(P < .05), as illustrated in Figure 2(c). Additionally, the differ-
ential expression of these five candidate genes in normal versus 
BC tissue is presented in Supplemental Figure S1 and S4.

Prognostic validation based on TGF-β risk score 
model

The same prognostic analysis was performed in the training 
(TCGA-BRCA) and three validation sets (GSE20685, 
GSE42568, and GSE58812) to further investigate the accu-
racy of the TGF-β risk score model in BC prediction. Initially, 
patients within each dataset were categorized into high- or 
low-risk groups based on their median risk scores (Figures 3(b) 
and 4(b)). The results aligned with expectations, indicating an 
increase in mortality among BC patients corresponding to 
elevated hazard scores (Figures 3(c) and 4(c)). Consequently, 

individuals classified in the high-risk group exhibited poorer 
prognoses compared to those in the low-risk group, with statis-
tical significance observed across various datasets (TCGA-
BRCA: P < .0001; GSE58812-OS: P = .003; GSE58812-MFS: 
P = .015; GSE20685: P = .0015; GSE42568-OS: P = .033; 
GSE42568-RFS: P = .033) (Figures 3(a) and (a)). Heat maps 
illustrating the distribution of the five TSRG genes across the 
high- and low-risk groups are presented in Figures 3(d) and 
4(d). Additionally, the predictive capability of the TGF-β risk 
score model was further assessed through ROC analysis,  
demonstrating satisfactory performance across all cohorts 
(Figures 3(e) and 4(e)).

Construction and validation of a nomogram for 
TGF-β risk score and clinical characteristics

The relationship between the TGF-β risk score and various clin-
icopathological factors within the TCGA-BRCA dataset is illus-
trated in Supplemental Figure S2. Initial assessments utilizing 
both univariate and multivariate Cox regression analyses aimed 
to determine whether the variables T, N, M, age, stage, and TGF-
β risk score functioned as independent prognostic indicators 
within the TCGA-BRCA cohort. The analysis revealed that age, 
M classification, and the TGF-β risk score were indeed inde-
pendent prognostic factors (Figures 5(a) and (b)). Consequently, 
a clinicopathological nomogram for BC was developed incorpo-
rating these three variables to predict OS for BC patients at 1, 3, 
and 5 years (Figure 5(c)). The calibration curves for 1, 3, and 
5 years demonstrated a strong concordance with the 45-degree 

Figure 1.  (a) Somatic mutation frequency of TGF-β in the TCGA-BRCA cohort, (b) Differences in the degree of invasion of 28 immune cells between 

normal and cancerous tissues in BC patients, (c) Variance of stromal score and ESTIMATE score in the different groups, (d) The LASSO Cox regression 

model was utilized to identify TSRGs, and (e) Select range of the optimal parameter (lambda) in the LASSO Cox regression model.
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Figure 2.  (a) The coefficient of the selected TSRGs, (b) Expression of 5 TSRGs in the high- and low-risk groups, and (c) The KM survival curves for 5 

selected TSRGs based on expression level and OS.

Figure 3.  Assessment and verification of the efficiency of the TGF-β risk score: (a) The KM analysis of the overall survival in the TCGA-BRCA, 

GSE58812-OS and GSE58812-MFS cohorts, (b-d) Risk scores, survival status, and expression distributions of TGF-β risk score in different cohorts, and 

(e) The ROC curves of the TGF-β risk score in predicting 3, 5, and 10-year survival state of BC patients.
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reference line, thereby affirming the reliability of the constructed 
nomogram (Figure 5(d)). Additionally, the area under the curve 
(AUC) for the ROC analyses at 1, 2, and 5 years for the TCGA 
cohort were recorded at 0.78, 0.72, and 0.75, respectively (Figure 
5(e)). These values surpassed the AUCs for the TGF-β risk score 
model alone, which were 0.66, 0.67, and 0.71 for the 3, 5, and 
10-year intervals (Figure 3(e)). Furthermore, the DCA indicated 
that the nomogram provided a superior net benefit in prognostic 
prediction for BC patients compared to the use of clinicopatho-
logical factors in isolation (Figure 5(f )).

Gene set enrichment analysis based on TGF-β risk 
score model

The results of the GSEA, conducted to elucidate the relation-
ship between TGF-β and biological signaling pathways, are 
presented in Figure 6(a) and (b). Subsequent GO analysis 
revealed that the pathways exhibiting significant upregulation 

included the immunoglobulin complex, cilium assembly, and 
cilium organization. Conversely, the pathways that demon-
strated significant downregulation encompassed the T cell 
receptor complex, plasma membrane signaling receptor com-
plex, regulation of cytosolic calcium ion concentration, and 
cellular calcium ion homeostasis, among others. Furthermore, 
the KEGG analysis indicated that the high-risk group was 
notably enriched in pathways related to Herpes simplex virus 
1 infection, chemokine signaling, neutrophil extracellular trap 
formation, neuroactive ligand-receptor interactions, cytokine-
cytokine receptor interactions, and natural killer cell-mediated 
cytotoxicity.

Immune landscape analysis in BRCA TME

The differences in TME between high-risk and low-risk 
groups were further explored. Firstly, except for PVR, the 
expression of immune checkpoints was higher in the 

Figure 4.  Additional validation set for the assessment and verification of the efficiency of the TGF-β risk score: (a) The KM analysis of the overall survival 

in the GSE20685-OS, GSE42568-OS and GSE42568-RFS cohorts, (b-d) Risk score, survival status, and expression distributions of TGF-β risk score in 

different cohorts, and (e) The ROC curves of the TGF-β risk score in predicting 3-, 5-, and 10-year OS in the GSE20685 cohort and 1,3,5 years survival 

state in the GSE42568 cohort.
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low-risk group (Figure 6(c)), which was also verified in the 
GEO dataset (Supplemental Figure S3). The chord plot 
showed that these six immune checkpoints are closely 
related to the patient’s risk score (Figure 6(d)). Furthermore, 
Figure 6(e) depicts the link of five TSRGs to six immuno-
logical checkpoints, with IFNG showing a substantial asso-
ciation, indicating that it plays a key role in the immune 
cells of the patient’s TME. Simultaneously, IFNG was 
found to have a substantial link with six immunoinfiltrating 
cells: CD4 T cells, B cells, CD8 T cells, neutrophils, mac-
rophages, and dendritic cells (Supplemental Figure S4(a)). 
The differences in 28 types of immune cell infiltration in 

patients in the high and low risk groups are shown in the 
Supplemental Figure S4(b). In addition, patients in the 
high-risk group had higher TIDE scores, suggesting that 
they were more likely to have immune escape, which was 
associated with a poor prognosis (Figure 6(f )).

Drug sensitivity analysis in BC patients

IPS values were used to predict how patients would respond to 
anti-CTLA-4 and anti-PD-1/PD-L1 treatments. The find-
ings are consistent with our immune checkpoint analysis, 
which found that the low-risk group had higher IPS values, 

Figure 5.  Establishment of a prognosis-related nomogram model based on TGF-β risk score: (a) Univariate Cox regression analysis of TGF-β risk score 

and clinicopathological characteristic, (b) Multivariate Cox regression analysis of TGF-β risk score and clinicopathological characteristic, (c) Development 

of the nomogram based on M, age and TGF-β risk score, (d) The Calibration plots for the nomogram, (e) The ROC curves and AUC values demonstrated 

favorable competence of the nomogram in predicting 1-, 2-, and 5-year OS of BC patients, and (f) The decision curve to evaluate the clinical decision 

effectiveness of the nomogram against other separate clinical parameters.
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indicating that they may be more sensitive to ICIs treatment 
(Figure 7(a) and (b)). Furthermore, IC50 was used to estimate 
the response of BC patients to 198 chemotherapy drugs. The 
lower the IC50 value, the better the drug’s effect. Chemotherapy 
drugs with a good treatment response in both high-risk and 
low-risk patients were chosen, and the results are shown in 
Figure 7(c) and (d). These medications include: Buparlisib, 
Dihydrorotenone, PD0325901, Rapamycin, Dactinomycin, 

AZD8055, CDK9.1, BMS.754807, Eg5, Epirubicin, 
GNE.317, Sabutoclax, BI.2536, and Rapamycin.

Description of TGF-β subtypes in BC

The R package “ConsensusClusterPlus” was used to create 
consistent clustering of five genes for the TGF-β risk score 
model. When BC patients were divided into two clusters, 

Figure 6.  (a-b) Results of GO and KEGG in TCGA-BRCA cohort, (c) Expression level of PDCD1, CTLA4, IDO1, TIGIT, LAG3 and PVR in TCGA-BRCA, 

(d) Correlation chord plot between immune checkpoints and riskscore, (e) Correlation of five TSRGs with six immune cells, and (f) Differences in TIDE and 

Exclusion scores between high and low risk groups.
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there was good consistency and stability within subgroups 
(Figure 8(a)-(d)). The PCA results revealed that the two 
clusters of patients were clustered separately, confirming the 
reliability of the clustering results (Figure 8(e)). The survival 
analysis revealed that cluster A had a better prognosis than 
cluster B (P = .0081) (Figure 8(f )). A heat map also depicted 
the expression of five TSRGs between the two clusters 
(Figure 9(a)).

The immunoinfiltration landscape in TME in two sub-
groups was also examined. Cluster B had higher matrix, immu-
nity, and ESTIMATE scores as determined by the ESTIMATE 
algorithm (Figure 9(b)). Furthermore, with the exception of 
CD56 dim natural killer cells, which were more abundant in 
cluster A, the majority of the remaining immune cells were 
expressed more strongly in cluster B (Figure 9(c)). In addition, 
the pathways that GSEA analysis showed differences between 
the two clusters were mainly antigen binding, immunoglobulin 
complex immunoglobulin complex,circulating (Figure 9(d)). 
Surprisingly, the expression of immune checkpoints was higher 
in Cluster B than in Cluster A, indicating that they may be 
more suitable for ICIs (Figure 9(e)).

Single-cell RNA-seq analysis

Following quality control, 40,467 cells were kept for further 
investigation. UMAP is further subdivided into 14 cell clusters 
consisting of six different cells: HSCs, Erythroid cells, CD8+T 
cells, CD4+T cells, Eosinophils, Monocytes (Figure 10(a) and 
(b)). IFNG is mainly distributed in CD8+T cells, while 
KLF10, ID3, PARD6A are mainly distributed in HSCs and 
Erythroid cells (Figure 10(c)).

Discussion
In recent years, the survival rates and prognoses of BC patients 
have significantly improved, largely due to the clinical imple-
mentation of ICIs. Nevertheless, it is important to note that 
not all patients exhibit favorable responses to ICIs, with a con-
siderable proportion demonstrating either resistance or insen-
sitivity to these therapies.26 Research indicates that the TGF-β 
signaling pathway within the TME plays a critical role in 
immune evasion and resistance to ICIs in cancer. Consequently, 
the inhibition of TGF-β has been proposed as a strategy to 
enhance the efficacy of ICIs.27,28 Furthermore, TGF-β is 

Figure 7.  (a) Relative probability of response to CTLA-4 treatment in low-risk and high-risk groups, (b) Relative probability of response to PD-1/PD-L2 

treatment in low-risk and high-risk groups, (c) A venn diagram of 14 drugs sensitive to BC patients, and (d) A bar plot of IC50 values for 14 drugs sensitive 

to BC patients.
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implicated in the promotion of BC metastasis through the 
induction of epithelial-mesenchymal transition (EMT), which 
is another significant factor contributing to poor prognoses in 
patients.29 In summary, the TGF-β signaling pathway is inte-
gral to the initiation, progression, and treatment of BC; how-
ever, its interactions with other elements within the TME and 
its implications for the prognosis of BC patients warrant fur-
ther exploration.

In this study, genes associated with prognostic OS were 
identified through univariate Cox regression analysis utilizing 
the TCGA-BRCA dataset. These prognostic OS-related genes 
were subsequently cross-referenced with 225 TSRGs. 
Following this, LASSO regression analysis and multivariate 
Cox regression analysis were conducted on the intersecting 
genes, ultimately leading to the identification of an optimal 
prognostic model comprising five genes: FUT8, IFNG, ID3, 
KLF10, and PARD6A.

Fucosyltransferase 8 (FUT8) is frequently upregulated in 
various cancers due to its role in promoting core fucosylation, a 
process that is crucial for cancer cell metastasis and immune 
evasion.30 Through core fucosylation, FUT8 not only facili-
tates the dissemination of BC cells but also enhances TGF-β 
signaling and EMT processes.31 Numerous studies have dem-
onstrated that the inhibition of FUT8 can decelerate the pro-
gression of BC and improve patient outcomes.32,33 Similarly, 

PARD6A is associated with EMT during the invasion of BC 
cells.34 The gene IFNG, which encodes interferon-gamma 
(IFN-γ), is vital for anti-tumor immunity, as it can be released 
by tumor-infiltrating immune cells (TIICs) to exert anti-tumor 
effects and can also induce the expression of PD-L1, thereby 
improving patient outcomes.35,36 KLF10, a Krüppel-like zinc 
finger transcription factor, has been shown to play a significant 
role in inducing apoptosis via the Smad signaling pathway in 
response to TGF-β.37 Additionally, ID3 has been implicated in 
promoting the proliferation and invasion of human MCF-7 
breast cancer cells.38 Notably, in our study, KLF10 was identi-
fied as a risk factor, while FUT8 and PARD6A were classified 
as protective factors. To further elucidate the underlying rea-
sons for these findings, the expression levels of these five genes 
were examined in both normal and BC tissues. The results cor-
roborate previous studies, indicating that FUT8 and PARD6A 
are more highly expressed in tumor tissues, whereas KLF10 
exhibits greater expression in normal tissues. Therefore, it can 
be concluded that the observed results across different BC risk 
groups may be influenced by the molecular subtypes of BC, 
leading to variations in outcomes.

This study examined the potential association between 
TGF-β risk scores and the TME of BC patients. Initially, it 
was observed that patients with low TGF-β risk scores exhib-
ited increased infiltration of gamma delta T cells (γδT cells) 

Figure 8.  (a) The CDF value of consensus index, (b) Relative change in area under CDF curve for k = 2–6, (c) The tracking plot for k = 2 to k = 6, (d) 

Consensus matrix for k = 2, (e) Principal component analysis of the total RNA expression profile, and (f) KM curve of the survival difference between 

cluster A and cluster B.
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and T follicular helper cells (Tfh cells) within the TME. This 
finding was consistent when comparing normal and tumor 
tissues. γδT cells play a pivotal role in both innate and adap-
tive immunity,39 as they can recognize tumor cells indepen-
dently of major histocompatibility complex (MHC) antigens 
and induce tumor cell death through potent anti-inflamma-
tory and cytotoxic mechanisms.40 Tfh cells enhance anti-
tumor immunity in a CD8+-dependent manner and are 
significant effector cells in anti-PD-1/PD-L1 therapies.41 
Subsequently, the study assessed the correlation between 
TGF-β risk scores and six immune checkpoints within the 
TME, revealing a negative correlation across all datasets ana-
lyzed. Consequently, patients classified in the low TGF-β risk 
group were more likely to experience favorable outcomes 

from ICI treatments, a finding corroborated by comparisons 
using TIDE and IPS between the two groups. Furthermore, 
the prevailing understanding of IFNG suggests that it can 
augment the efficacy of anti-PD-1 therapy.42 The study found 
a positive correlation between IFNG expression and several 
immune checkpoints, including It is important to note that 
IFNG, predominantly produced by CD8+ T cells, is integral 
to T cell immunity and cancer immunotherapy. The IFNγ 
produced by CD8+ T cells downregulates the expression of 
SLC3A2 and SLC7A11, leading to decreased cystine uptake 
by tumor cells, which in turn induces lipid peroxidation and 
ferroptosis.43

The analysis simulated the differential treatment responses 
to various drugs between high- and low-risk groups, 

Figure 9.  (a) Heatmap of the five genes between the two clusters, (b) Variance of immune score, stromal score, and ESTIMATE score in the two clusters, 

(c) Boxplots were used to depict the discrepancies in the infiltration extent of 28 immune cells between the two clusters, (d) GSEA analysis between 

Cluster A and Cluster B, and (e) Expression level of PDCD1, CTLA4, IDO1, TIGIT, LAG3 and PVR in the cluster A and cluster B groups.
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suggesting that low-risk patients exhibit greater sensitivity 
to ICIs. Additionally, it was predicted that targeted chemo-
therapy agents would be beneficial for both high- and low-
risk groups to enhance survival in BC. Bortezomib, a 
proteasome inhibitor that impedes myeloma proliferation 
and exerts anabolic effects on bone, is a critical treatment for 
BC bone metastases.44 Although the relationship between 
IFNG and bortezomib is unclear, bortezomib has been used 
in combination with other medicines in patients with amy-
loid light-chain (AL), and transcriptome analysis has 
revealed CD8 memory T cell activation and IFNG overex-
pression.45 Everolimus, a derivative of rapamycin, inhibits 
BC cell proliferation and aggressiveness through the PI3K/
AKT/mTOR signaling pathway.46 Specifically, IFNG 
released by natural killer cells is inhibited by mTOR inhibi-
tors.47 To address tamoxifen resistance, the mTORC1/2 dual 
inhibitor (AZD8055) can downregulate HSPB8.48 
BMS.754807, by blocking the insulin-like growth factor 1 
receptor (IGF1R), inhibits BC cell proliferation and 
enhances their sensitivity to the chemotherapeutic agent cis-
platin.49 Furthermore, sabutoclax effectively targets cancer 
stem cells in BC by inhibiting the IL-6/STAT3 signaling 
pathway.50 Currently, there is insufficient evidence to sup-
port the efficacy of other drugs, such as CDK9.1, BI.2536, 
and Dihydrorotenone, in the treatment of BC, necessitating 
further investigation into their relationship with the disease.

The present study acknowledges several limitations. Firstly, 
this study was based on public databases, and the expression 
levels of five TSRG genes were limited by the study's objective 
experimental conditions and were not clinically verified, despite 
the fact that FUT8, IFNG, ID3, and KLF10 were all con-
firmed in other clinical breast cancer sample studies. Secondly, 
due to variations in the data within the existing database, the 
receiver operating characteristic (ROC) curve analysis in the 
GSE42568 validation set was limited to evaluating the model's 
predictive capabilities at 1, 3, and 5 years, rather than at 3, 5, 
and 10 years. Thirdly, further research is warranted to refine the 
classification and typing criteria for BC.

Conclusion
In conclusion, this study presents a robust risk model for BC 
patients based on TSRGs. The model indicates that TGF-β 
risk scores can effectively characterize the TME in BC patients 
and align them with various sensitive therapeutic agents. 
Moreover, TGF-β has the potential to delineate molecular 
subtypes of BC, thereby paving the way for enhanced clinical 
patient classification and treatment strategies.
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