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Abstract: With the continuing efforts to explore alternatives to petrochemical-based polymers and the
escalating demand to minimize environmental impact, bio-based polymers have gained a massive
amount of attention over the last few decades. The potential uses of these bio-based polymers are
varied, from household goods to high end and advanced applications. To some extent, they can solve
the depletion and sustainability issues of conventional polymers. As such, this article reviews the
trends and developments of bio-based polymers for the preparation of polymer electrolytes that are
intended for use in electrochemical device applications. A range of bio-based polymers are presented
by focusing on the source, the general method of preparation, and the properties of the polymer
electrolyte system, specifically with reference to the ionic conductivity. Some major applications
of bio-based polymer electrolytes are discussed. This review examines the past studies and future
prospects of these materials in the polymer electrolyte field.
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1. Introduction to Bio-Based Polymers

Bio-based polymers are growing in importance over the past few decades due to their potential
as replacements or alternatives to conventional polymers. They are the key feature to solve many
international issues such as global warming, price fluctuations, the shortage of petroleum resources,
pollution, and other economic and ecological issues. In general, bio-based polymers refer to a type of
polymer that is produced naturally by living organisms [1]. In other words, it is also called a natural
polymer. This type of polymer has the following characteristics: Using natural raw materials as base
materials, non-toxic, biodegradable, and sustainable.

Bio-based polymers can be classified into three main categories based on their synthesis and origin
of source. The first refers to polymers directly extracted from biomass, such as starch, cellulose, chitosan,
and alginates. They are the most abundant and a major resource of bio-based polymers. The second
category concerns polymers synthesized from bio-derived monomers, and the third includes polymers
synthesized by microorganisms/bacteria. Figure 1 illustrates the classification of bio-based polymers
with examples [2].
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The development and innovation of said materials are important, as they hold great potential 
for research studies and industrial applications. Table 1 presents the most common bio-based 
polymers, their sources, and related industrial applications. Many studies and development 
strategies have been devised to discover and to optimize the potential uses of this type of polymer 
for commercial applications, including the food packaging industry, agricultural purposes, 
cosmetics, the medical industry, and the pharmaceutical industry. This review offers an overview of 
bio-based polymers and their applications within the polymer electrolyte field. 

 
Figure 1. Classification of bio-based polymer (adapted from Malhotra et al. [2]). 

Table 1. Various types of bio-based polymers, their sources, and uses [3]. 

Bio-Based Polymer Source Uses 

Starch Sago, corn, tapioca, potato, rice 
Adhesives, thickener and stabilizer 

in foods, and bio-plastics 

Cellulose Plants, bacterial Paper, textile, and wood 
manufacturing 

Chitin/chitosan Shrimp, crab, lobster, shell fish Cosmetics, foods,pharmaceutics 
Oils  Palm oil, castor oil, soybean oil, canola oil Resins, coatings, and adhesives 

Pectin Citrus fruits  Additives in food industry, 
pharmaceutics 

Latex Rubber tree, guayule shrubs Medical, adhesives 

2. Insights to the Polymer Electrolyte 

An electrolyte is a significant element in developing electrochemical devices. In general, an 
electrolyte functions as a medium that allows the flow of ions between a cathode and an anode. An 
electrolyte also functions as an electronic insulator when the devices fail to work. It is essential to 
have an electrolyte with a sufficiently high value of ionic conductivity, preferably much higher than 
10−4 S/cm [4]. The electrolyte can be a liquid, a gel, or in a solid form. Although the liquid electrolyte 
still dominates in many applications, it has several limitations such as flammability issues, leaking, 
reaction with the electrodes, and corrosion. A polymer electrolyte (PE) offers desirable properties to 
overcome the problems due to the all solid state condition. It is also inherently safer, as there is no 
flow and corrosion after damage, it has a wider electrochemical and thermal stability range, it is light 
weight, and has ease of application to electrochemical devices [5]. In fact, continuous efforts are 
being taken on polymer electrolytes as they have a great potential to be applied in a wide range of 
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The development and innovation of said materials are important, as they hold great potential for
research studies and industrial applications. Table 1 presents the most common bio-based polymers,
their sources, and related industrial applications. Many studies and development strategies have
been devised to discover and to optimize the potential uses of this type of polymer for commercial
applications, including the food packaging industry, agricultural purposes, cosmetics, the medical
industry, and the pharmaceutical industry. This review offers an overview of bio-based polymers and
their applications within the polymer electrolyte field.

Table 1. Various types of bio-based polymers, their sources, and uses [3].

Bio-Based Polymer Source Uses

Starch Sago, corn, tapioca, potato, rice Adhesives, thickener and stabilizer in foods,
and bio-plastics

Cellulose Plants, bacterial Paper, textile, and wood manufacturing
Chitin/chitosan Shrimp, crab, lobster, shell fish Cosmetics, foods, pharmaceutics

Oils Palm oil, castor oil, soybean oil, canola oil Resins, coatings, and adhesives
Pectin Citrus fruits Additives in food industry, pharmaceutics
Latex Rubber tree, guayule shrubs Medical, adhesives

2. Insights to the Polymer Electrolyte

An electrolyte is a significant element in developing electrochemical devices. In general,
an electrolyte functions as a medium that allows the flow of ions between a cathode and an anode.
An electrolyte also functions as an electronic insulator when the devices fail to work. It is essential to
have an electrolyte with a sufficiently high value of ionic conductivity, preferably much higher than
10−4 S/cm [4]. The electrolyte can be a liquid, a gel, or in a solid form. Although the liquid electrolyte
still dominates in many applications, it has several limitations such as flammability issues, leaking,
reaction with the electrodes, and corrosion. A polymer electrolyte (PE) offers desirable properties
to overcome the problems due to the all solid state condition. It is also inherently safer, as there is
no flow and corrosion after damage, it has a wider electrochemical and thermal stability range, it is
light weight, and has ease of application to electrochemical devices [5]. In fact, continuous efforts are
being taken on polymer electrolytes as they have a great potential to be applied in a wide range of
electrochemical devices. Figure 2 shows the use of a conventional electrolyte and polymer electrolyte
in a typical electrochemical cell [6].
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Figure 2. Diagram of a typical electrochemical cell.

Polymer electrolytes (PEs) are a highly specialized multidisciplinary field that cuts across
the disciplines of electrochemistry, polymer science, organic chemistry, and inorganic chemistry.
In principle, a PE is made up of inorganic salt(s) dispersed in a polymer matrix forming a conducting
solid system. The inorganic salt dissociates into ions and contributes to the conductivity. The first
discovery of a polymer electrolyte was reported on poly(ethylene oxide) as the polymer host doped
with alkali metal ions back in 1973 [7]. The results of the extensive characterization of electrolytes
based on poly(ethylene oxide) (PEO), or hosts with similar chemical structures and a great variety
of guest salt species, confirmed that many factors, including the choice of electrolyte components,
preparative conditions, and thermal history, determine the electrochemical, thermal, and mechanical
properties of the electrolyte system. The performance of polymer electrolytes is primarily evaluated
based on their ionic conductivity and ion transport properties, which depend on many factors such
as the mobility of the polymer chains, the dielectric constant of the polymer host, the degree of salt
dissociation and its concentration, as well as the degree of ion aggregation [6].

As for the construction of polymer electrolytes, several factors should be taken into consideration,
including the choice of polymer host, the salts/acid dopants (the source of ions), the solvents,
and other additives. The polymer host should possess certain characteristics such as good chemical,
electrochemical, and photochemical stability, as well as good thermal and mechanical properties.
Further, host polymers with a high concentration of polar groups (containing electron donors: O, NH,
CN, F) are preferred. It is important to develop host polymers which have few crystalline phases and a
relatively low glass transition temperature. In the amorphous state, greater ionic diffusivity may occur,
as ions can move freely due to the low energy barrier. In addition, an amorphous polymer exhibits a
flexible backbone that can increase local chain mobility. As a result, the segmental motion of a polymer
can enhance the transportation property of the electrolyte [8]. Figure 3 shows the chemical structure of
some polar polymers that are widely used as polymer hosts [9].
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Another crucial aspect is the selection of salts. Salts provide the charge carriers for transportation
that generate the conductivity [10]. The most commonly used salts are the salts of alkali metals,
alkaline earth metals, and transition metals. The metal cations coordinate with the polar group from
the polymer host. The segmental motion of the polymer chains creates free volume into which the
ions will migrate and hence create the conductivity. The salts affect the ionic conductivity via several
aspects, including complex formation, intramolecular cross-linking of the polymer chains, and the
degree of salt dissociation. Apart from a polymer doped with metal salts, several studies of proton
conducting electrolytes have been reported. Typically, a polymer is swollen with a solution of proton
donors in a polar solvent containing redox sites [11]. As for the electrolyte solvent, it should first satisfy
certain criteria. An ideal solvent should be able to dissolve salts to a sufficient concentration, with a
high dielectric constant, low vapor pressure, low viscosity so that ion transport can occur, and to be
inert to the electrodes.

More than two decades after the introduction of the polymer electrolyte concept, researchers
have begun exploring alternatives to conventional polymer hosts derived from petroleum by utilizing
bio-based materials as the polymer host. Even though most of the polymer electrolyte theories
developed to date are based on synthetic materials, they hold true for bio-based polymers as well.
Different types of bio-based polymers, thus, have been explored, such as chitosan, starch, carrageenan,
gum, gelatin, natural rubber, and vegetable oil-based polymers. In addition, various electrolyte systems
have been investigated with different types of salts, plasticizers, fillers, and ionic liquids. The priority
remains the same, which is to produce a polymer electrolyte with a high conductivity, along with good
thermal and mechanical properties. The types and characteristics of bio-based polymers, along with
the outcomes, are discussed and summarized in the following section.

3. Bio-Based Polymers Used as Electrolytes

3.1. Polymers Extracted from Biomass

The first category of bio-based polymers is those directly extracted from biomass resources,
including polysaccharides, proteins, lipids, and natural rubber. Based on the literature, polymers
belonging to the polysaccharide group are the most studied in the polymer electrolyte field. They
are easily accessible, widely available, and abundant. It is a fact that plants are the most important
producers of polysaccharides. This section discusses the polysaccharides, proteins, and natural
rubber-based polymer electrolytes.

3.1.1. Starch

Extensive studies have probed starch on account of its rich variety, biodegradability, availability,
and abundance in nature. Starch is the end-product of photosynthesis in plants. It is a natural
carbohydrate-based polymer that is mainly harvested from corn, potato, wheat, tapioca, and
rice [10]. The application of starch does not stop in major food products, but has been extended
to various diversified areas. Starch is used in other applications as binders, adhesives, absorbents,
and encapsulants [12]. Natural starch is a mixture of linear amylose or poly(α-1,4-d-glucopyranose)
and α-1,6-branched amylopectin, wherein their components might varied depending on the plant
sources [12,13]. Figure 4 illustrates the structures of amylose and amylopectin. Since these two
compounds contain hydroxyl groups, the starch-based polymer emerges as a viable option to be used
as a polymer host for electrolyte purposes.

Various types of starch have been investigated for polymer electrolyte studies, such as corn
starch, cassava starch, arrowroot starch, sago starch, potato starch, rice starch, and tapioca starch.
The starch has also been blended with other polymers such as PEO, chitosan, poly(styrene sulphonic
acid), PVA, and methyl cellulose. The initial study concerning starch-based electrolyte was reported by
Pawlicka et al. in 2002 for a corn starch/LiClO4/glycerol system [14]. Aside from glycerol, other types of
plasticizers have been used, such as glucose, sorbitol, urea, formamide, glutaraldehyde, and ethylene
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carbonate. Additionally, various types of salts have been used as well. The effect of ionic liquid
inclusion on the ionic conductivity of a polymer electrolyte has also been investigated. Inorganic fillers,
such as silicon dioxide, barium titanate, and graphene oxide, have been studied.Materials 2020, 13, x FOR PEER REVIEW 5 of 49 
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3.1.2. Cellulose and Cellulose Derivatives

Cellulose is by far the most abundant and highly important renewable material on earth. It is the
basic component of plant cell walls that has structural and skeletal functions. Cellulose has a high
molecular weight and contains a linear homopolysaccharide polymer that consists ofβ-d-glucopyranose
units in the 4C1 confirmation joined by (1→4) glycosidic linkage. The repeating element is made up by
two anhydroglucose units. Cellulose exists in the form of microfibrils with a helical organization that
contains crystalline and amorphous regions. The proportion of these regions varies depending on
the microscopic level of the fiber assembly [15]. Cellulose derivatives can be formed by partially or
totally reacting the three hydroxyl groups present in the anhydroglucose unit with various reagents.
In fact, many types of cellulose derivatives have been studied, such as methyl cellulose, ethyl cellulose,
hydroxyethyl cellulose, hydroxypropyl cellulose, cellulose acetate, cellulose triacetate, cellulose acetate
butyrate, hydroxypropyl methyl cellulose, and carboxymethyl cellulose. Figure 5 shows the structures
of general cellulose and cellulose derivatives.

Cellulose and cellulose derivatives have been widely applied in numerous applications. They
are used as membranes for separation, as binders for drugs, a film coating agent, barrier films, textile
applications, and many others [2]. The function of cellulose and cellulose derivatives as hosts in a
polymer electrolyte system has been reported by many researchers. By far, cellulose and its derivatives,
as presented in Figure 5, have been studied with respect to polymer electrolyte. The initial study
was reported in 2001 for hydroxyethyl cellulose. Following that, research was actively conducted by
incorporating various types of cellulose derivatives, along with the addition of salts, ionic liquids,
plasticizers, and inorganic fillers.
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3.1.3. Chitosan

Chitosan has received considerable attention in the polymer field. It shows many interesting
properties, such as being non-toxic, biodegradable, and biocompatible. Chitosan consists of 1,4
linked-2-deoxy-2-aminoglucose, which is generated from the deacetylation reaction of chitin. Chitin
refers to a natural polysaccharide that can be found in various fungi and the exoskeleton of
arthropods [16] such as shrimps, crabs, and lobsters. Figure 6 shows the molecular structure
segment of chitin and chitin deacetylation to generate chitosan [17].
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The application of chitosan has been investigated in the medical field [18], water treatment
studies [19], and in food packaging materials [20], to name a few. Interestingly, this polymer can also
be applied in polymer electrolyte applications. Chitosan has several polar groups, such as hydroxyl
and amino groups, that can act as donors and form complexes with inorganic salts [16]. Chitosan is an
amorphous polymer and its glass transition temperature is reported to be ~200 ◦C [21]. Owing to these
criteria, chitosan may serve as a polymer host for salt solvation. In fact, chitosan is the first biopolymer
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that has been studied for polymer electrolyte applications, reported in 1995. By far, chitosan is also the
most widely studied biopolymer for this purpose. The literature portrays that the conductivity of native
chitosan without salt is obtained at approximately 10−9 S/cm [22]. Other types of modified chitosan that
have been studied are acetylated chitosan, chitosan acetate, oxipropylated chitosan, hexanoyl chitosan,
carboxymethyl chitosan, N-phthaloyl chitosan, sulfonated chitosan, lauroyl chitosan, phosphorylated
chitosan, and N-Succinyl chitosan. A wide variety of salts and acid dopants have been applied to
improvise the ionic conductivity of the electrolyte system. The incorporation of ionic liquids began in
2010 and many more following that. Several studies have investigated the conductivity of chitosan
doped with different types of salts, ionic liquids, plasticizers, and fillers.

3.1.4. Gum

Gums are materials classified under polysaccharides with high commercial importance. They
are present in many plant, animal, marine, and microbial sources [23]. Gums are available as raw
powders. Table 2 lists the sources of common gums and their overall structure. The physiochemical
properties of gums are determined by the chemical nature and the molecule shapes. All gums have one
common similarity, which is the ability to thicken water and aqueous systems, though the rheological
properties of the systems might vary depending on the types of gums being used [24]. Gums have
gained many applications in various fields. For instance, in the food industry, gums are used as
thickening, emulsifying, and gelling agents. In addition, they have also been applied as adhesives,
binders, flocculants, and clarification aids [3]. In this section, gums that originate from marine algae
and higher plants are discussed, while gums obtained from microorganisms are described in the latter
part of this review.

Table 2. Sources of common gums and their overall structure.

Source Gum Structure

Marine algae Agar, alginates, carrageenan Linear, un-branched molecules

Higher plants
Extracts Pectin Linear, un-branched molecules
Seeds Guar gum Linear molecules with short branches
Exudates Gum Arabic Branch-on-branch molecules

Microorganism Gellan, Xanthan Linear molecules with short branches

Agar

Agar is a hydrocolloid material that is naturally obtained from the extraction of red seaweed,
made up of a mixture of two polysaccharides, which are agarose and agaropectin. Agarose is a
linear polymer and the predominant component of agar that makes up 70% of the mixture composed
of the agarobiose repeating unit. Agarobiose refers to a disaccharide made up of D-galactose and
3,6-anhydro-L-galactopyranose [25]. Although both compounds share a similar galactose-based
backbone, agaropectin contains acidic side groups, such as sulphate and pyruvate, whereas agarose
has a neutral charge [26]. Figure 7 shows the representative structures of agarose and agaropectin [25].
The presence of numerous oxygen atoms in the agar structure satisfies the requirement of being a
polymer host for an electrolyte, as it can be the possible site for complexation to take place.
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marine algae and higher plants are discussed, while gums obtained from microorganisms are 
described in the latter part of this review. 
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Marine algae Agar, alginates, carrageenan Linear, un-branched molecules 

Higher plants 
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Agar 

Agar is a hydrocolloid material that is naturally obtained from the extraction of red seaweed, 
made up of a mixture of two polysaccharides, which are agarose and agaropectin. Agarose is a linear 
polymer and the predominant component of agar that makes up 70% of the mixture composed of the 
agarobiose repeating unit. Agarobiose refers to a disaccharide made up of D-galactose and 
3,6-anhydro-L-galactopyranose [25]. Although both compounds share a similar galactose-based 
backbone, agaropectin contains acidic side groups, such as sulphate and pyruvate, whereas agarose 
has a neutral charge [26]. Figure 7 shows the representative structures of agarose and agaropectin 
[25]. The presence of numerous oxygen atoms in the agar structure satisfies the requirement of being 
a polymer host for an electrolyte, as it can be the possible site for complexation to take place. 
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The early use of agar in electrochemical studies was limited to the preparation of salt bridges in
developing a reference electrode. In 2005, Kasem et al. looked into the suitability of agar as a polymer
electrolyte host. The study investigated the electrochemical behavior of the electron redox system by
using an agar/KCl gel electrolyte [27]. Since then, a few studies have examined agar-based electrolytes,
which were prepared either in solid or gel form. Although agar is not as extensively studied as
compared to cellulose or chitosan, various types of salts as an ion conductor and weak acids as a proton
conductor have been investigated. The inclusion of ionic liquids, plasticizers, and nanoparticle fillers
has been evaluated as well. So far, the highest room temperature ionic conductivity was achieved at
10−3 S/cm for an agar-based electrolyte, which is comparable to a liquid electrolyte. The performance
of the agar-based electrolyte has been tested for DSSC, ECD, and fuel cell applications.

Carrageenan

Carrageenan is a linear sulphated polysaccharide polymer extracted from a type of marine red
seaweed called Rhodophyceae. It can be classified into three main types: (a) Kappa (κ)-carrageenan that
possesses one sulphate per disaccharide, (b) iota (ι)-carrageenan with two sulphates per disaccharide,
and (c) lambda (λ)-carrageenan with three sulphates per disaccharide. It has galactose repeating
units and 3,6-anhydrogalactose, both sulphated and non-sulphated, amalgamated by alternating
α-(1,3) and β-(1,4) glycosidic links. Figure 8 portrays the representative units of carrageenan [28].
This polymer has been used extensively in the food, cosmetic, and pharmaceutical industries [22].
Studies pertaining to PE have, so far, looked into kappa and iota carrageenan, while none have
researched lambda carrageenan.
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The initial study concerning the potential of carrageenan in the polymer electrolyte field was
reported by Mobarak et al. in 2012 [29]. The team prepared κ-carrageenan and a carboxymethyl (CMC)
κ-carrageenan-based electrolyte via a solution casting method with a 1% (v/v) aqueous acetic acid
solution. The room temperature ionic conductivity of 5.34 × 10−7 S/cm was achieved for κ-carrageenan.
Interestingly, upon the modification to CMCκ-carrageenan, the conductivity increased three magnitudes
to 2.02 × 10−4 S/cm. This enhancement was attributed to the fact that modification increased the
amount of oxygen in the system, hence providing greater vacancies for protons or cations to coordinate.
Another study was conducted by the same team utilizing CMC κ-carrageenan and ι-carrageenan with
different ratios of lithium nitrate (LiNO3) salts (5–30 wt%). The highest ionic conductivity for CMC
κ-carrageenan was obtained at 30 wt% LiNO3 salt with 5.85 × 10−3 S/cm, while the best conductivity
of ι-carrageenan was recorded at 5.51 × 10−3 S/cm at 20 wt% of salt [22]. Another study concerning
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κ-carrageenan was conducted by Rudziah et al. In their study, carboxymethyl κ-carrageenan (CMKC)
was blended with carboxymethyl cellulose (CMC). The cellulose was extracted from kenaf fiber and
modified to produce CMC. The films of CMKC/CMC blend were prepared via the solution casting
method with various ratios. They explained that the increase in conductivity was related with the
increase in segmental motion and the fraction of the amorphous region [30]. The carrageenan-based
electrolyte has been tested for various applications, such as DSSC, ECD, super-capacitors, and fuel cells.

Pectin

Pectin is one type of polymer that is not widely explored in the polymer electrolyte field. It is a
natural polymer, present naturally in the cell walls of terrestrial plants, and is abundant in vegetables
and fruits. Citrus fruits, such as oranges and limes, contain substantial amounts of pectin. At present,
the major sources are citrus peels and apple pomace, which are the by-products from the extraction
of citrus and apple juices [31]. Typically, pectin is used in food products as it has beneficial effects
upon the health of the consumer. Commercial pectin exists as a white to light brown powder. Pectin is
usually applied as a gelling agent for food production. Chemically, pectin is a complex polysaccharide
that is composed mainly of D-galacturonic acid resides in α-(1-4) chain (65 wt%). Pectin is also a group
of substances which forms gel when dissolved in water under suitable conditions [32]. Figure 9 shows
the representative unit of pectin [33].
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The study of pectin-based polymer electrolytes was initiated in 2009 by Andrande et al. Pectin
was doped with a fixed amount of LiClO4 and plasticized with glycerol for 0–70 wt%. The outcome
reflected a good transparency feature with the pectin-based electrolyte film, which would be hardly
achievable by a solid electrolyte. The best ionic conductivity value of 4.7 × 10−4 S/cm was obtained for
the sample plasticized with 68 wt% of glycerol [33].

Guar gum and Gum Arabic

Guar gum is processed from the endosperm of seeds from the cluster bean, Cyamopsis tetragonolobus,
which belongs to the Leguminosae family. It contains a complex of polysaccharides called
galactomannan, which is made up of D-galactose and D-mannose [34]. Figure 10 illustrates the
representative unit of Guar gum [35]. This polymer contains an abundance of hydroxyl groups
and tends to form hydrogen bonds when added to water. It is mainly used as an additive in food,
pharmaceuticals, paper, textiles, and the cosmetics industry [36]. The application of guar gum as a
polymer electrolyte began in 2014 initiated by Sudhakar et al. They prepared a solid polymer electrolyte
of Guar gum/LiClO4/glycerol system and obtained a high room temperature ionic conductivity of
2.2 × 10−3 S/cm [37]. Meanwhile, the effects of the addition of ionic liquid and filler were studied by
other researchers [35,38].

Gum Arabic, which is also known as Acacia gum, refers to the tree gum exudate of the Acacia
tree. It is a highly branched polysaccharide and contains glycoprotein components. Gum Arabic is
abundantly available and primarily used as an emulsifier, stabilizer, and thickening agent. The study of
gum Arabic was performed by Khalid and Hartono for a supercapacitor application. They prepared a
gel-like electrolyte by mixing gum Arabic with ortho-phosphoric acid. The gel electrolyte demonstrated
excellent conductivity and supercapacitive performance.
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3.1.5. Gelatin

Gelatin is a soluble protein substance derived from collagen, a natural protein present in bonds,
cartilage, and skin. The main source of gelatin is from bovine and porcine animals, but it also can be
extracted from fish and poultry. Gelatin properties are influenced by several factors, such as the source,
animal age, and collagen type. It has widespread applications, for example, emulsifiers, foaming
agents, biodegradable packaging materials, and colloid stabilizers [39]. Gelatin is a polydisperse
protein that is composed of a mixture of different chain types with varying molecular weights [40].
Figure 11 shows a representative unit of gelatin [41]. The study of gelatin-based polymer electrolytes
started way back in 2007 by Diogo F et al [42]. The solid polymer electrolyte system was made up of
gelatin/glycerol/acetic acid with the best room temperature ionic conductivity achieved at 10−5 S/cm.
Subsequently, various types of salts have been investigated. The electrolyte system has also been tested
for EDC and DSSC.
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3.1.6. Natural Rubber

Natural rubber is an elastic polymer obtained from the latex of rubber trees, made up of thousands
of repeating isoprene units (C5H8)n. Natural rubber is produced from thousands of different plant
species. In industrial applications, the most important source of natural rubber derives from the
Hevea brasiliensis tree, which is mostly planted in the South-East Asia and Western Africa regions.
Natural rubber has several distinctive properties, such as a low glass transition temperature, as well as
good elasticity and adhesion characteristics. It has been widely applied in various applications, from
household goods to the high end automotive industries [43]. Nonetheless, in a polymer electrolyte
system, the natural rubber itself does not have any polar group in the structure to facilitate the ion
mobility. Thus, modified natural rubber such as epoxidized natural rubber (ENR), ENR-25 and ENR-50
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(where 25 and 50 represent the epoxy groups), as well as poly(methyl methacrylate)-grafted natural
rubber (MG), MG-30 and MG-49 (where 30 and 49 indicate the percentages of methyl methacrylate
grafted to the natural rubber), as shown in Figure 12, have been introduced to overcome the shortcoming.
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The study of natural rubber-based polymer electrolytes was initiated by Yoshizawa et al. [44] in
the year 2000. They blended natural rubber with polyethylene oxide via a solution casting method to
produce a solid film electrolyte. The room temperature ionic conductivity obtained was 10−6 S/cm.
Consequently, the focus shifted to natural rubber derivatives such as MG-30, MG-49, ENR-25, and
ENR-50. Derivatives MG-30 and MG-49 were prepared by polymerizing a methyl methacrylate
monomer in latex so that the polymer chains become attached to the rubber molecules. Meanwhile,
ENR can be chemically modified from natural rubber, wherein some of the unsaturated group is
converted into epoxide groups and randomly distributed [45]. Apart from being used as a single
polymer host, natural rubber and its derivatives are blended with other polymers to enhance the
properties of the electrolyte system.

3.2. Polymers Chemically Synthesized from Bio-Derived Monomers

The second type of bio-based polymer refers to polymers that are chemically synthesized from
naturally-derived monomers. It is practically possible to produce tailor-made polymers with highly
versatile properties using monomers. Nevertheless, studies pertaining to this type of polymer are only
limited to poly(lactic acid) and some vegetable oil-based polyurethanes.

3.2.1. Poly(lactic acid)

Poly(lactic acid) (PLA) is a linear aliphatic thermoplastic biodegradable polyester derived from
two major pathways, namely, ring opening of lactide or direct polycondensation of lactic acid, a
monomeric precursor obtained from renewable resources. The monomer is produced by a fermentation
process of sugar feedstock, such as dextrose or chemical synthesis. Sugar feedstock can be obtained
either directly from sources (sugar cane, sugar beet) or through conversion of starch from corn, potato,
wheat, rice, or agricultural wastes. Figure 13 presents the general structure of poly (lactic acid).Materials 2020, 13, x FOR PEER REVIEW 12 of 49 
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Several studies have elaborately reported on PLA electrolytes. In a study, a PLA-based electrolyte
was prepared via the solution casting method [46]. The outcomes showed that the conductivity
of pure PLA at room temperature was 9.46 × 10−12 S/cm. Ethylene carbonate was added as the
plasticizing agent. The incorporation of LiClO4 salt as the main ion carrier into the PLA/EC system
enhanced the conductivity to 1.44 × 10−6 S/cm. The addition of SiO2 as a ceramic filler further
enhanced the conductivity of the PLA electrolyte system to 1.29 × 10−5 S/cm. Subsequently, Chew [47]
improvised a PLA-based electrolyte by incorporating aluminum oxide (Al2O3) as another type of
ceramic filler. A similar composition was prepared as the previous PLA/EC/LiClO4 system and looked
into various fillers. Based on the output, the inclusion of 4% Al2O3 displayed the highest conductivity
at 2.07 × 10−5 S/cm. Osinska-Broniarz et al. [48] investigated the performance of PLA blended with poly
3-hydroxybutyrate (PHB) as a gel polymer electrolyte. The PLA/PHB blend polymer was prepared via
the electrospinning method. The PLA/PHB membrane was then soaked in an electrolyte that consisted
of lithium hexafluorophosphate (LiPF6) in a mixture of ethylene carbonate and dimethyl carbonate.
A maximum room temperature ionic conductivity of 1.5 × 10−5 S/cm was obtained at a 70:30 weight
ratio of PLA to PHB. In another study, a ternary polymer electrolyte based on PLA, an ionic liquid
(Pyr14TFSI), and LiTFSI salt was prepared by Osada et al. [49] The materials were mixed by using the
hot-pressed technique and melted together without including any solvents. The PLA/Pyr14TFSI/LiTFSI
system achieved a conductivity of 2.1 × 10−4 S/cm at 60 ◦C.

3.2.2. Vegetable Oil-Based Polyurethane

Vegetable oils are an excellent alternative to petrochemical feedstock. They can be used as a
reliable starting material to produce new polymers. Vegetable oils are derived from plant sources,
thus they are natural, abundant, and renewable. They can be classified into edible and non-edible oils.
The most common vegetable oils include soybean oil, palm oil, sunflower oil, rapeseed oil, jatropha
oil, and castor oil, to name a few. Vegetable oils are made up of long carbon chains and the main
constituent is known as triglycerides. Some oils contain carbon-to-carbon double bonds (unsaturation
site) that can be converted into the desired functional groups through chemical synthesis. For the
polymer electrolyte purpose, palm oil, jatropha oil, and castor oil have been used as the raw material
to prepare polyurethane (PU). Figure 14 shows the reaction of a vegetable oil-based polyol with the
isocyanate group to produce polyurethane [50].
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Su’ait et al. prepared palm oil-based polyurethane as a solid polymer electrolyte. In their study,
palm kernel oil polyol (PKO-p) was reacted with 2,4′-methylene diphenyl diisocyanate (2,4′MDI) to
produce PU. The electrolyte was prepared via the solution casting method with the inclusion of lithium
iodide as the dopant salt at 10–30 wt% concentration, with ethylene carbonate as the plasticizing
agent at a fixed amount of 20 wt%. The best room temperature ionic conductivity of 7.6 × 10−4 S/cm
was obtained at 25 wt% LiI salt [51]. Another study of palm-based PU electrolyte was conducted by
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Daud et al., in which PKO-p was mixed with 2,4′-MDI in acetone at room temperature. The effect of
various concentrations of LiCF3SO3 salt was evaluated. The highest room temperature conductivity
was 1.6 × 10−5 S/cm obtained at 30 wt% LiCF3SO3 [8].

Castor oil-based polyurethane was synthesized by Salmiah et al. Castor oil is a great alternative
to be used in generating PU as it is a non-edible oil. In their study, castor oil polyol was reacted with
4,4’-diphenylmethane diisocyanate (MDI) to produce PU. The electrolyte was prepared by mixing PU
with lithium iodide (LiI) and sodium iodide (NaI) salt from 0–40 wt% salt concentration. The maximum
ionic conductivity at room temperature was recorded at 30 wt% for both salts, with values 1.78 × 10−6

and 4.28 × 10−7 S/cm for LiI and NaI, respectively. They suggested that the PU/LiI system exhibited
higher conductivity, when compared to PU/NaI due to the smaller cation size of Li+ than Na+. The sizes
of Li+ and Na+ cations were 0.76 and 1.02 Å, respectively. Theoretically, a smaller cation size generates
higher conductivity due to the higher mobility of the cation [52].

Jatropha oil is another example of a non-edible oil that has been used to prepare polyol for
polyurethane production. Mustapa et al. prepared a solid polymer electrolyte from jatropha oil-based
polyurethane doped with LiClO4 and ethylene carbonate. The highest conductivity of 1.29 × 10−4 S/cm
was achieved at 25 wt% of LiClO4 salt.

3.3. Polymers Produced by Microorganisms

The direct production of bio-based polymers can be achieved by using microorganisms or
genetically modified bacteria. In fact, a wide range of bio-based polymers with material properties
suitable for industrial applications can and have been synthesized. This section will discuss some of
the polymers that have been investigated as a host polymer electrolyte.

3.3.1. Bacterial Cellulose

Bacterial cellulose is mainly used in the food industry, as well as in biomedical and cosmeceutical
applications. It is produced by acetic acid bacteria in synthetic and non-synthetic media via oxidative
fermentation [53]. Some cellulose-producing bacteria are Acetobacter, Rhizobium, Agrobacterium,
and Sarcina. One important cellulose-producing bacterium is Acetobacter xylinum, which is the most
efficient synthesizer of bacterial cellulose. The chemical structure of bacterial cellulose is similar to that
of plant cellulose, except for the physical and chemical properties [54]. Bacteria cellulose possesses
unique characteristics over plant cellulose, such as (1) absence of lignin and hemicellulose, (2) high
degree of polymerization, and (3) extremely high water-holding capacity and excellent biodegradability.
Despite this, the current price of this bacterial cellulose is still considered as too high for certain
applications. The study of bacterial cellulose polymer electrolytes only started in 2015, and since then,
only two studies have been reported [55,56]. Both studies successfully recorded high ionic conductivity
similar to that of liquid electrolytes.

3.3.2. Gellan Gum and Xanthan Gum

Gellan gum is an extracellular, anionic polysaccharide made up of tetrasaccharides that consist of
two glucoses, namely, one glucuronic acid and one rhamnose ring. It is produced from the fermentation
of Sphingomonas elodea (ATCC 31461) by inoculating a fermentation medium with the microorganism.
It is available in two forms, specifically high acyl (native gellan) and low acyl [57]. While the low acyl
gellan is a firm, brittle, and non-elastic gel, the high acyl gellan on the other hand is a soft, elastic,
and non-brittle gel. The gellan gum is mainly studied in the ophthalmology field for lenses with
drug delivery properties [58]. One important property of gellan gum is the high thermal stability
that can reach up to 120 ◦C and its thermal reversibility [59]. Figure 15 illustrates the representative
units of gellan gum [58]. Gellan gum has been investigated as a polymer host doped with various
types of salts and acid dopants. The initial study, undertaken in 2012, looked into applications for
electrochemical devices.
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Xanthan gum is a high molecular weight polysaccharide produced via the microbiological
fermentation of sugar cane/corn by the microorganism Xanthomonas campestris. Xanthan gum has
excellent thermal stability, as well as good solubility and stability, thus it is suitable for use in the food,
cosmetic, and pharmaceutical industries. Xanthan is an acidic polymer with the shape of a five-fold
helix, made up of pentasaccharide subunits to form a cellulose backbone with trisaccharide side-chains
composed of mannose (β-1,4) glucuronic acid, (β-1,2) mannose attached to alternate glucose residues in
the backbone by α-1,3 linkages [23,60]. Figure 16 portrays the representative units of xanthan gum [61].
Only two studies have been reported regarding xanthan gum-based electrolytes. This particular
electrolyte system displayed exceptional conductivity after being tested for dye sensitized solar cell
and supercapacitor applications [23,61].
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3.4. Development of Bio-Based Polymer Electrolyte

The use of bio-based polymers in the polymer electrolyte field is not a new concept. In fact, they
have been used for a long time; however, only in the past three decades have they been extensively
investigated in this field. Generally, each of the bio-based polymer hosts studied has its advantages
and limitations. The advantages of these polymers are obvious, including the renewability, availability,
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and environmentally friendly nature. In spite of that, they have some shortcomings in terms of
economic and technical aspects. The cost of said materials are relatively higher than the conventional
petroleum-based polymers. Some technical issues like hydrophilic character and poor mechanical
properties have hampered their applications. Thus, the properties must be improved in order for
such electrolytes to be applied commercially. The main challenge is to produce an electrolyte system
with high conductivity, whilst maintaining the electrochemical, thermal, and mechanical properties.
Efforts have been taken to achieve this objective via several approaches, such as blending the polymer
with other compatible polymers, the incorporation of fillers and the addition of plasticizers. Blending
techniques aim to obtain new and unique materials with additional properties without sacrificing
their original properties [62]. In general, polymer blend refers to mixture of at least two substances,
polymers or copolymers, where the ingredient content is above 2 wt%. This method is applied because
of its simple preparation and its ease of control over physical properties by compositional change [63].

Meanwhile, the addition of a plasticizer could improve the conductivity of a polymer electrolyte
by reducing the glass transition temperature that facilitates the mobility of ions within the medium
and dissociating ion aggregates [16]. Further, a high value of the dielectric constant of a plasticizer
could solvate more salt, thereby increasing the number of free mobile ions [64]. The incorporation
of organic/inorganic fillers could reduce the crystallinity and enhance both the mechanical and
electrochemical properties. It has been discovered that the conductivity is strongly dependent on
the particle size and concentration of the filler. Small-sized particles at low quantities are favorable
and promote an enhanced conductivity [65]. In addition, room temperature ionic liquids (RTIL) have
garnered interest as a substitute to organic solvents. RTIL is a molten salt containing bulky and
asymmetric organic cations and contains highly delocalized charge inorganic anions. RTIL has some
interesting features, such as excellent thermal and chemical stabilities, relatively high ionic conductivity,
non-volatile, non-flammable, and wider electrochemical potential window [10].

The collective data of prior finding on bio-based polymer electrolytes using different types of
bio-based polymer are shown in Table 3. The result was classified based on their source, origin,
application, physical, and electrochemical properties. Various systems have been investigated by
introducing different types of polymer hosts, salts, plasticizers, fillers, and ionic liquids. By far, starch,
cellulose, and chitosan are the most widely studied and reported bio-based material in the polymer
electrolyte field. The trend shows that the choice of salt used commonly depends on the intended end-use
application. Different types of plasticizer have been used to enhance the ionic conductivity, such as
glycerol, glucose, sorbitol, urea, formamide, glutaraldehyde, ethylene carbonate, propylene carbonate,
and so on. Nano-oxide materials are a common choice to be used as fillers. Meanwhile, a wide variety
of ionic liquids has been explored. From the findings, it is possible for the bio-based polymer electrolyte
to achieve a room temperature ionic conductivity of 10−2 to 10−3 S cm−1, which is similar to the
conductivity of the liquid electrolyte. Besides, gel electrolytes show better performance in comparison
to the solid type. For a deep understanding, a complete test on electrochemical, thermal, and physical
properties of the electrolyte is necessary to conduct in order to improve their performance in actual
applications. Therefore, for the purpose of reliable electrochemical device applications, the bio-based
polymer electrolytes should possess these characteristics: (1) Ionic conductivity (≥10−4 S cm−1); (2) high
ionic transference number (tion ~1); (3) high chemical, thermal, and electrochemical stability; (4) good
mechanical strength; and (5) good compatibility with the electrodes.
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Table 3. Summary of prior study on bio-based polymer electrolytes.

Polymer Electrolyte System State
Electrochemical Properties Physical Properties

Device Ref.
σ (s/cm) I-TN Stability (V) Ea Tg (◦C) Structural

Starch

Corn starch–LiClO4–glycerol Solid 7.9 × 10−5 – – – −58 Amorph – [14]
Corn starch–LiClO4–glycerol Solid 5.0 × 10−5 – – – – – – [66]
Corn starch–LiClO4–glycerol Gel 10−4 – – 0.35 eV – – – [67]
Corn starch–NaCl–glucose

Solid

- – – – – – –

[68]
Corn starch–NaCl–glycerol - – – – – – –
Corn starch–NaCl–sorbitol - – – – – – –
Corn starch–NaCl–urea - – – – – – –
Corn starch–NaCl–formamide 10−3 – – – – – –
Corn starch–LiClO4–glycerol

Solid
6.1 × 10−5 – – – – – – [69]

Cassava starch–LiClO4–glycerol 8.4 × 10−5 – – – – – –
Starch–NH4NO3 Solid 2.8 × 10−5 – – 0.41 eV – – – [12]
Corn starch–LiClO4–glycerol Solid 1.1 × 10−4 – – – −75 – – [70]
Corn starch–LiTFSI–AmIm][Cl] Solid 4.2 × 10−4 – – – – – – [71]
Corn starch–LiPF6–[BmIm][PF6] Solid 1.5 × 10−4 – – – – – – [72]
Arrowroot starch–NaI–glutaraldehyde Solid 6.7 × 10−4 0.95 – – – – – [73]
Tapioca starch/PEO–NH4NO3 Solid 2.8 × 10−7 – – – – Semi-cr – [63]
Corn starch–LiPF6–[BmIm][Tf] Solid 6.0 × 10−4 – – 0.01 eV −29 Amorph – [74]
Sago starch–NH4Br Solid 6.9 × 10−9 – – 0.07 eV - – – [75]
Corn starch–LiClO4–SiO2 Solid 1.2 × 10−4 – – – 87.1 – – [76]
Corn starch–LiTFSI–[AmIm][Cl] Gel 5.7 × 10−2 – – 4.8 kJ/mol – – – [77]
Corn starch–LiTFSI–DES Solid 1.0 × 10−3 – – – – – – [78]
Potato starch–NH4I Solid 2.4 × 10−4 0.95 – – – – – [13]
Starch/chitosan–LiClO4–glycerol Solid 3.7 × 10−4 – – 0.52 eV – – – [79]
Corn starch–AgNO3 Solid - – – 0.71 eV – Amorph – [80]
Corn starch–LiI–glycerol Solid 9.6 × 10−4 – – 0.16 eV – Amorph – [81]
Corn starch–AgNO3 Solid 1.0 × 10−9 – – – – – – [82]
Rice starch–LiI Solid 4.7 × 10−5 – – 0.41 eV – – – [83]
Poly(styrene sulphonic acid)/starch–LiClO4–glycerol Solid 5.7 × 10−3 – – – – – – [84]
Potato starch–NaI–glutaraldehyde–PEG Solid 1.8 × 10−4 0.99 – – 75 – – [85]
Corn starch–LiOAc–glycerol Solid 1.0 × 10−3 – 2.1 0.14 eV – Amorph – [86]
Sago starch–KI–I2 Solid 3.4 × 10−4 – – – – – – [87]
Rice starch–LiI–MPII–TiO2 Solid 3.6 × 10−4 – – 0.22 eV – Amorph DSSC [88]
Corn starch–LiPF6–[BmIm][PF6]

Solid
1.5 × 10−4 – 2.9 – – – Super-capacitor [89]

Corn starch–LiPF6–[BmIm][Tf] 3.2 × 10−4 – 3.1 – – –
Corn starch–LiClO4 Solid 1.6 × 10−6 – – 0.64 eV 64 – – [90]
Corn starch/chitosan–NH4I–glycerol Solid 1.3 × 10−3 0.99 1.9 0.18 eV – – – [91]
Starch/chitosan–NH4I Solid 3.0 × 10−4 – – 0.20 eV – Amorph – [92]
Starch/chitosan–NH4Cl–glycerol Solid 5.1 × 10−4 – – 0.19 eV −0.37 – – [93]
Starch/chitosan–NH4Br–EC Solid 1.4 × 10−3 0.92 1.8 0.17 eV – Amorph EDLC [94]
Corn starch–LiClO4–SiO2 Solid 1.2 × 10−4 – 3.0 0.25 eV – – EDLC [95]
Rice starch–LiI

Solid
4.7 × 10−5 – – – −12 Amorph

DSSC [96]Rice starch–NH4I 1.4 × 10−4 – – – −38 Amorph
Rice starch–NaI 4.8 × 10−4 – – – −42 Amorph
Rice starch–NaI–MPII Solid 1.2 × 10−3 – – – −58 Amorph DSSC [97]
Corn starch–NH4Br–glycerol Solid 1.8 × 10−3 0.98 1.6 0.11 eV – Amorph – [98]
Corn starch–LiPF6–[BmIm][PF6] Solid 2.0 × 10−4 – 2.9 – – Amorph – [99]
Potato starch/PVA–KCl–glycerol Solid 5.4 × 10−5 0.97 – 0.12 eV – Amorph – [100]
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Table 3. Cont.

Polymer Electrolyte System State
Electrochemical Properties Physical Properties

Device Ref.
σ (s/cm) I-TN Stability (V) Ea Tg (◦C) Structural

Potato starch/chitosan–LiCF3SO3 Solid 7.1 × 10−7 – – – – – – [101]
Potato starch/chitosan–LiCF3SO3–glycerol Solid 1.3 × 10−3 – – 0.11 eV – Amorph – [102]
Corn starch–LiClO4–BaTiO3 Solid 1.8 × 10−4 – 3.1 – 17.2 – EDLC [103]
Corn starch–LiTFSI Solid 3.4 × 10−4 – – – – – Battery [104]
Potato starch–Mg(C2H3O2)2–[BmIm][Cl]–glycerol Solid 1.1 × 10−5 0.92 – – – – – [105]
Potato starch/Poly(vinyl alcohol)–LiBr–glycerol Solid 10−3 – – – – – – [106]
Potato starch/methylcellulose–LiClO4–glycerol Solid 4.3 × 10−4 – – – – Amorph – [107]
Starch/PVA-NH4SCN Solid 1.3 × 10−4 – – – – Amorph – [108]
Tapioca starch/chitosan–NH4NO3–[EmIm][NO3] Solid 7.4 × 10−5 – – – – – – [109]
Starch–NaCl Gel 6.2 × 10−2 – – – – – – [110]
Corn starch–LiClO4–glycerol Solid 9.0 × 10−3 – – – – Amorph – [111]
Potato starch–LiCF3SO3–[BmIm][Cl]–GO Solid 4.8 × 10−4 – – – – Amorph – [112]
Corn starch–NaClO4–glutaraldehyde Solid 10−2 – 2.4 – – - Super-capacitor [113]
Potato starch–NADES Solid 2.9 × 10−3 – – – – Amorph – [114]
Potato starch/methyl cellulose–NH4NO3–glycerol Solid 1.3 × 10−3 0.98 1.8 – −27.5 Amorph EDLC [115,116]

Cellulose

HEC/DPEO–LiClO4 Solid 2.1 × 10−5 – – 0.17 eV – – – [117,118]
HEC–LiClO4–glycerol Solid 9.5 × 10−5 – – – −60 Amorph – [14]
Cellulose/PEO–LiCF3SO3 Solid 10−7 – – 53 kJ/mol – – – [119]
HPC/PEO–LiCF3SO3–PC Gel 10−3 – – 16 kJ/mol – – – [120]
EO-EPI/nano-cellulose–LiClO4 Solid 1.6 × 10−4 – – – – – – [121]
POE/nano-cellulose–LiTFSI–TEGDME Solid 10−6 – – – – – – [122]
HPC/Jeffamine–LiClO4 Solid 1.3 × 10−5 – – – – – – [123]
POE/nano-cellulose–LiTFSI Solid 10−7 – – – – – – [124,125]
Cellulose acetate–LiClO4 Solid 4.9 × 10−3 – – – – – Super-capacitor [126]
Ethyl cellulose–LiClO4-PC Gel 6.5 × 10−3 – – 0.18 eV – – – [127]
PVDF–HPF/cellulose–LiPF6–EC/DMC Solid 4.4 × 10−3 – 4.8 – – Semi-cr – [128]
Cellulose acetate–NH4BF4–SiO2 Gel 7.9 × 10−3 – – – – – Battery [129]
Cellulose triacetate–LiTFSI–Pyr1,3TFSI Gel 10−4 – – – – – – [130]
Cellulose–acrylic acid–[BmIm][I] Gel 7.3 × 10−3 – – – – – DSSC [131]
Cellulose acetate–NH4I–PC Solid 1.2 × 10−4 – – – – – – [132]
Cellulose acetate–NH4BF4–TiO2 Gel 1.4 × 10−2 – – – – – Battery [133]
Cellulose acetate–NH4BF4–PEG Solid 1.4 × 10−5 – – – – – – [134–136]
CMC–DTAB Solid 7.7 × 10−4 0.92 – 0.09 eV – Amorph – [137]
PEG/network cellulose–LiClO4 Gel 10−4 – 4.7 – – Amorph – [138]
CN-HPC–LiI–I2–MHII Gel 2.5 × 10−3 – – – – Amorph DSSC [139]
Cellulose acetate–LiTFSI–DES Gel 2.6 × 10−3 – – 4.23 kJ/mol – Amorph – [140,141]
Cellulose acetate–LiTFSI–[AmIm][Cl] Solid 1.8 × 10−3 – – – – Amorph – [142]
Methyl cellulose–LiCF3SO3 Solid 2.1 × 10−5 – – – – Amorph – [143]
Methyl cellulose–PEG–NH4NO3 Solid 10−6 – 2.4 – – Amorph EDLC [144]
Methyl cellulose–KOH–DMC Solid 10−5 – – – – – – [145]
PE/PVDF/Cellulose acetate butyrate–LiPF6–EC/EMC Gel 2.5 × 10−3 – – – – – Battery [146]
PEO/CMC–NaI–I2–MPII Gel – – – – – – DSSC [147]
Cellulose acetate–LiBOB–GBL Gel 5.4 × 10−3 – 4.7 – – – – [148]
PEO/Network cellulose–LiClO4 Solid 8.0 × 10−7 – 5.0 – – Semi-cr – [149]
PVDF–HFP/HPMC–LiPF6 Gel 3.8 × 10−4 – 5.0 – – Amorph – [150]
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Table 3. Cont.

Polymer Electrolyte System State
Electrochemical Properties Physical Properties

Device Ref.
σ (s/cm) I-TN Stability (V) Ea Tg (◦C) Structural

Cellulose acetate–LiTFSI–[Amim][Cl] Solid 4.7 × 10−2 – – 1.25 kJ/mol – – - [151]
CMC–LiClO4–PC Gel – – – – – – ECD [152]
MC–LiBOB Solid – – – – – – – [153]
MFC/BEMA/PEGMA–NaI–I2 Gel – – – – – Amorph DSSC [154]
PVDF/Methyl cellulose–LiPF6–EC/EMC Gel 2.0 × 10−4 – – – – – Battery [155]
CMC–Citric acid Solid 4.4 × 10−7 0.89 – – – – – [156]
MG-49/CMC–LiCF3SO3 Solid 3.3 × 10−7 – – – – Amorph – [157]
Methyl cellulose–NaI Solid 2.7 × 10−5 – – – – – – [158,159]
MC–NWF–LiPF6–EC/DMC/EMC Gel 2.9 × 10−4 – – – – – Battery [160]
Cellulose acetate/PVDF–HFP–LiTFSI–TEGDME Gel 5.5 × 10−4 – 4.7 – – – Battery [161]
PEO/CMC–NaClO4 Solid – – – – – – Battery [162]
Cellulose acetate–LiTFSI Solid 5.6 × 10−4 – – – – Amorph – [163]
HEC–H3PO4 Solid 4.1 × 10−3 – – 0.12 eV – – Super-capacitor [164]
CMC–LiPF6–EC/DMC/DEC Gel 4.8 × 10−4 – – 25.5 kJ/mol – – Battery [165]
HPC–Bu4NBF4–PEG Gel 3.5 × 10−5 – – – −37 – ECD [166]
Cellulose acetate–NH4I Solid 10−4 – – – – – DSSC [167]
CMC–CH3COONH4–BMATFSI Solid 2.2 × 10−3 – – 0.06 eV – – - [168]
HEC–LiPF6–EC/DMC/DEC Gel 1.8 × 10−4 – – 3.57 kJ/mol – – Battery [169]
CMC–NH4Cl Solid 1.4 × 10−3 – – – – – – [170]
CMC–(NH4)2CO3 Solid 7.7 × 10−6 – – – – Amorph – [171]
CMC–NH4F Solid – – – – – Semi-cr – [172]
HPMC–Mg(CF3SO3)2–[BmIm][Tf] Solid 2.4 × 10−4 – – 1.28 eV 27.5 Amorph – [173]
CMC–Oleic acid–glycerol Solid 1.6 × 10−4 – – – – – – [174]
Cellulose acetate–LiClO4–PC Gel 5.3 × 10−3 – – – – – ECD [175]
Cellulose acetate–NH4I–EC Solid 10−3 – – – – Amorph – [176]
PVDF/cellulose acetate
butyrate/PE–LiPF6–EC/DMC/EMC–SiO2

Gel 2.9 × 10−3 – 5.2 – – – Battery [177]

Cellulose acetate–LiNO3 Solid 1.9 × 10−3 – 4.1 0.16 eV – Amorph ECD [178]
Cellulose acetate–NH4SCN Solid 3.3 × 10−3 0.99 – 0.15 eV 113.7 Amorph Battery [179]
Cellulose acetate–LiTFSI-BDG Gel 2.9 × 10−3 – 3.8 – – Amorph – [180]
Lignocellulose/potato starch–LiPF6–EC/DMC/EMC Gel 1.3 × 10−3 – – 12.7 kJ/mol – – Battery [181]
Lignocellulose–PEG Gel 3.2 × 10−3 – – – – – Battery [182]
PVA/chitosan/CNC–Acetic acid Solid 6.4 × 10−4 – – – – Amorph Fuel cell [183]
HEC–Li2B4O7–glycerol Solid 4.6 × 10−3 – – – – Amorph – [184]
Cellulose acetate–NH4NO3 Solid 1.0 × 10−3 0.97 4.3 0.05 eV 111.6 Amorph ECD [185]
CMC–(NH4)2CO3 Solid 7.7 × 10−6 0.98 – 0.21 eV - - – [186]

Chitosan

Acetylated chitosan–LiNO3 Solid 10−4 – – – – Amorph Battery [187]
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Chitosan acetate–NaI Solid 4.9 × 10−5 – – – – – Battery [188]
Chitosan–NaClO4 Solid 4.6 × 10−2 – – – – – Battery [189]
Oxipropylated chitosan/polyether–LiTFSI Solid – – – – – – – [190]
Chitosan acetate–LiCF3SO3–EC Solid 10−5 – – – – – – [21,191]
Chitosan–KCl Solid – – – – – – – [192]
Chitosan acetate–LiCF3SO3–EC Solid 1.3 × 10−5 – – – – – Battery [193]
Chitosan acetate–LiOAc–palmitic acid Solid 5.5 × 10−6 – – – – – – [194]
Chitosan–LiCF3SO3–EC Solid 5.5 × 10−6 – – 0.44 eV – Amorph – [195]
Chitosan–LiOAc–oleic acid Solid 10−5 – – – – Amorph – [16]
Chitosan–LiOAc–EC Solid 7.6 × 10−6 – – – – – – [196]
Chitosan acetate–LiN(CF3SO2)2–oleic acid Solid 3.4 × 10−6 – – – – Amorph – [197]
Chitosan–KOH Solid 10−2 – – – – – Fuel cell [198]
Chitosan acetate–NH4NO3 Solid 2.5 × 10−5 – – 0.45 eV – Amorph – [17]
Chitosan acetate–NH4NO3–Al2SiO3 Solid 2.1 × 10−5 – – – – – – [199]
Hexanoyl chitosan–LiCF3SO3–EC/PC Solid 1.1 × 10−4 – – – – – Battery [200,201]
Chitosan acetate–NH4CF3SO3–DMC Solid 10−6 – – 0.60 eV – – – [202]
Chitosan–LiOAc–oleic acid

Solid
1.1 × 10−5 – – 0.29 eV – – – [203]

Chitosan–LiOAc–palmitic acid 5.5 × 10−6 – – 0.45 eV – –
Chitosan acetate–LiCF3SO3 Solid – – – 0.38 eV – – Super-capacitor [204]
Chitosan acetate–H3PO4 – – 0.49 eV – –
Chitosan/glutaraldehyde–KOH Solid 10−2 – – – – – Fuel cell [205]
Chitosan acetate–NH4NO3–EC Solid 9.9 × 10−3 – – – – – Battery [206]
Hexanoyl chitosan–LiCF3SO3–EC Gel 2.8 × 10−5 – – – – – – [207]
Chitosan/PEO–LiTFSI Solid 1.4 × 10−6 – – 0.64 eV – – – [208]
Chitosan acetate–NH4NO3–o-H3PO4 Solid – – – – – – – [209]
Chitosan/PEO–NH4I–I2 Solid 4.3 × 10−6 – – – – – DSSC [210]
Chitosan/PEO/pAPS–LiClO4 Solid 1.7 × 10−5 – – – – – – [211]
Chitosan–HCl–glycerol Solid 2.2 × 10−5 – – 16.6 kJ/mol −87 Amorph – [212]
Chitosan–PVPA Solid – – – 0.32 eV – Amorph – [213]
Chitosan acetate–NH4NO3–EC Solid 10−5 – 1.8 0.10 eV – – – [214]
Chitosan acetate–apidic acid Solid 1.4 × 10−9 – – 0.52 eV – – – [215]
Chitosan acetate–NH4NO3–H3PO4–Al2SiO3 Solid 1.8 × 10−4 – – – – Amorph Fuel cell [216]
Chitosan acetate/PEO–NH4NO3–ES Solid 10−4 – – 0.02 eV – – – [217]
Chitosan acetate–CH3COONH4 Solid 2.9 × 10−4 – – 0.19 eV – Amorph – [218]
Hexanoyl chitosan–LiCF3SO3–EC–Al2O3 Solid 1.0 × 10−4 – – – – – – [219]
Hexanoyl chitosan–LiClO4–TiO2 Solid 3.1 × 10−4 – – – – Amorph – [220,221]
Hexanoyl chitosan–LiCF3SO3–DEC/EC Solid 4.3 × 10−5 – – 0.11 eV – Semi-cr – [222]
Chitosan acetate–NH4I–EC Solid 7.6 × 10−6 – – 0.21 eV – – – [18]
Chitosan–LiClO4–EC/PC Gel 5.5 × 10−3 – – – – – Super-capacitor [223]
Chitosan acetate–NH4I–[BmIm][I] Solid 3.4 × 10−5 – – – – – DSSC [224,225]
Chitosan acetate–NH4Cl Solid 5.4 × 10−3 – – 0.1 eV – Semi-cr – [226]
Chitosan acetate–AgCF3SO3 Solid – – – 1.16 eV – – – [227]
Chitosan acetate–NaI-I2–[EmIm][SCN] Solid 2.6 × 10−4 – – – – Amorph DSSC [228]
PVA/chitosan acetate–NH4NO3 Solid 1.6 × 10−3 – – 0.14 eV – Amorph Battery [229]
Chitosan-g-PMMA–LiCF3SO3 Solid 4.1 × 10−5 – – – 110 – – [230]
Chitosan/PEO–NH4I–I2–[BmIm][I] gel 5.5 × 10−4 – – – – – DSSC [231]
Chitosan acetate–NH4SCN–Al2O3 Solid 5.9 × 10−4 – – – 190 Semi-cr – [232]
Hexanoyl chitosan–LiClO4–TiO2 Solid – – – – – – – [233]
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Chitosan acetate/PEO–NH4NO3 Solid 1.0 × 10−4 – – – – Semi-cr – [234]
PVA/Chitosan–NH4NO3–EC Solid 1.6 × 10−3 – 1.7 – – – EDLC [235]
Chitosan–LiCF3SO3–EC/PC–SiO2 Solid 4.4 × 10−5 – – 0.26 eV – – – [236]
Chitosan/PVA–NH4I Solid 1.8 × 10−6 – – 0.38 eV – Amorph – [237]
Chitosan acetate–glycerol Solid 1.1 × 10−5 – – – −70 – – [238]
Phthaloyl chitosan–NH4SCN Solid 2.4 × 10−5 – 2.1 0.08 eV – Amorph – [239]
Chitosan–[CBIm][Cl]–I2 Solid 9.1 × 10−3 – – – – – – [240]
Hexanoyl chitosan–LiClO4 Solid

4.2 × 10−7
– – – – – – [241]

Hexanoyl chitosan–LiCF3SO3 4.1 × 10−6

Chitosan/PEO–NH4NO3 Solid – – – 0.29 eV – – – [242,243]
Nano-chitosan/PEO–LiCF3SO3 Solid 10−3 – – – – Semi-cr – [244]
PEO/Chitosan–NH4I–I2 Solid 1.2 × 10−5 – – – – – DSSC [245]
CMCh–ClCH2COOH Solid 2 × 10−7 – – – – – – [246,247]
Chitosan/PEO–LiClO4–EC/PC Solid 1.1 × 10−4 – – 0.12 eV – – Super-capacitor [248]
Hexanoyl chitosan–LiCF3SO3–EC–Al2O3 Solid – – – – – – – [249]
Chitosan–NH4Br–glycerol Solid 2.2 × 10−4 – – 0.20 eV – Amorph – [250]
Chitosan–NH4SCN–Al2TiO5 Solid 2.1 × 10−4 – – – – Amorph – [251]
Chitosan/PEO–NH4NO3–EC Solid 2.1 × 10−3 – 1.75 0.18 eV – Amorph EDLC [64]
Methyl cellulose/chitosan–NH4CF3SO3 Solid 5.0 × 10−6 – – – – – – [252]
CMCh–NH4CF3SO3 Solid 8.9 × 10−6 – 0.8 – – – – [253]
Chitosan–[EmIm][C1SO3]–glycerol

Solid
7.8 × 10−4 – – 12.1 kJ/mol – –

– [254]Chitosan–[EmIm][C2SO3]–glycerol 4.2 × 10−4 – – 14.3 kJ/mol – –
Chitosan–[EmIm][C4SO3]–glycerol 1.5 × 10−4 – – 16.7 kJ/mol – –
Hexanoyl chitosan–LiClO4–TiO2 Solid

3.1 × 10−4 – – 0.08 eV – – – [255]
Hexanoyl chitosan–LiClO4–SiO2 2.0 × 10−4 – – 0.12 eV – –
Chitosan-g-PMMA–LiCF3SO3–EC Solid 2.2 × 10−4 – – – – – – [256]
Chitosan–LiTFSI–succinonitrile Solid 0.4 ×10−3 – 4.7 – – Amorph Battery [257]
CMC/chitosan–NH4Br Solid 1.2 × 10−5 – – – – – – [258]
Hexanoyl chitosan/polystyrene–LiCF3SO3–TiO2 Solid 2.8 × 10−4 – – – – Amorph – [259–261]
PVA/chitosan–NH4Br Solid 7.7 × 10−4 – 1.6 0.15 eV – Amorph – [262]
Corn starch/chitosan–NH4I Solid 3.0 × 10−4 – – 0.20 eV – Amorph – [92]
Chitosan/gold–LiClO4 Solid 7.2 × 10−7 – – – – Amorph – [263]
Phosphorylated chitosan–LiClO4 Solid 1.4 × 10−3 – – – – – – [264]
Chitosan–Oxalic acid Solid 5.0 × 10−7 – – 0.61 eV – Amorph – [265,266]
N-Succinyl chitosan–LiClO4 Solid 8.0 × 10−3 – – – – – – [267,268]
Hexanoyl chitosan–LiClO4–DMC Solid 10−4 – – 0.06 eV – – – [269]
Hexanoyl chitosan–LiClO4–DMC–TiO2 Solid 4.1 × 10−4 – – – – Amorph – [270]
Lauroyl chitosan/PMMA–LiCF3SO3–EC Solid 7.6 × 10−4 – – – – Amorph – [271]
NSB–Chitosan–NMPS–GO Solid 8.9 × 10−2 – – 4.57 kJ/mol – – – [272]
Methyl cellulose/chitosan–NH4CF3SO3–[BmIm][TFSI] Solid 4.0 × 10−4 – – – – – – [273]
Starch/chitosan–NH4Cl–glycerol Solid 5.1 × 10−4 0.97 1.65 – – Amorph Battery [274]
Chitosan acetate–LiCl Gel 2.9 × 10−3 – – 0.20 eV – – – [275]
Chitosan–[BmIm][OAc] Solid 2.4 × 10−3 0.75 3.4 0.29 eV 35 Amorph – [276]
Hexanoyl chitosan–LiClO4/TiO2 Solid 3.0 × 10−4 – – – – – – [277]
PVA/chitosan–[BmIm][Br]

Solid
4.2 × 10−2 0.65 – – – – – [278]

PVA/chitosan–[EmIm][Cl] 5.5 × 10−2 0.70 – – – –
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Chitosan–NaCF3SO3–Al2O3 Solid – – – – – Amorph – [279]
CMCh–DTAB Solid 1.9 × 10−6 – – – – – – [280]
Chitosan/PEO–NH4I Solid 3.7 × 10−6 0.85 – – – Amorph DSSC [281]
Chitosan–LiClO4–ZrO2 Solid 3.6 × 10−4 0.55 – – – Amorph – [282]
Chitosan–perchloric acid Solid 5.9 × 10−4 – – – – – – [283]
N-phthaloyl chitosan–TPAI–I2–EC Solid 5.5 × 10−3 – – 0.11 eV – Amorph DSSC [284]
Chitosan–oxalic acid Solid 4.1 × 10−5 – – – – – – [285]
Sulfonated chitosan–sulfonated GO Solid 7.2 × 10−3 – – – – – – [286]
Chitosan–LiCF3SO3–Al2O3 Solid 10−6 – – – – Amorph – [287]
Chitosan–Ce(CF3SO3)3–glycerol Solid 1.7 × 10−5 – – – – Amorph – [288]
Chitosan–Eu(CF3SO3)3–glycerol Solid 1.5 × 10−6 – – – – Amorph – [289]
Chitosan–NaCF3SO3 Solid 2.4 × 10−4 – – 0.3 eV – Amorph – [290]
Chitosan/pectin–HCl Solid 2.4 × 10−3 – – – – – – [291]
Chitosan–Mg(CF3SO3)2–[EmIm][CF3SO3] Solid 3.6 × 10−5 0.98 4.15 0.72 eV – – – [292]
Hexanoyl chitosan–NaI

Solid
1.3 × 10−6 – – – −24 Amorph – [293]

Lauroyl chitosan–NaI 1.1 × 10−8 – – – −10 Amorph
Chitosan–AgCF3SO3–Al2O3 Solid – – – – – – – [294]
Chitosan–Tm(CF3SO3)3–glycerol Solid 10−5 – – – – Amorph ECD [295]
Chitosan–[EmIm][Eu(SCN)4] Solid 1.3 × 10−5 – – – – Semi-cr – [296]
Chitosan–[EmIm][SCN] Solid 1.6 × 10−3 – 4.0 – – Amorph – [297,298]

Agar

Agar–Acetic acid Solid 1.1 × 10−4 – – 33.5 kJ/mol – Amorph – [11]
Agar–LiI–I2–TiO2 Gel 5.1 × 10−4 – – – – – DSSC [299]
Agar–LiI–I2–TiO2 Gel 4.0 × 10−4 – – – – – DSSC [300]
Agar–Eu(pic)3–glycerol Solid 1.6 × 10−5 – – – – Amorph ECD [301]
Agar–LiClO4–glycerol Gel 6.5 × 10−5 – – – – Amorph ECD [26]
Agar–[EmIm][C2SO4]–glycerol

Solid
– – – – – Amorph

ECD [302]Agar–[EmIm][OAc]–glycerol 2.4 × 10−5 – – 24.3 kJ/mol – Amorph
Agar–[Ch][OAc]–glycerol – – – – – Amorph
Agar–LiI–I2–NiO Gel – – – – – – DSSC [303]
Agar–LiI–I2–Fe3O4–PEG Gel 2.9 × 10−3 – – – – – DSSC [304]
Agar–LiI–I2–Fe3O4–SDS

Gel
– – – – – –

DSSC [305]Agar–LiI–I2–Fe3O4–PVP – – – – – –
Agar–LiI–I2–Fe3O4–TW-80 3.0 × 10−3 – – – – –
Bacto agar–NaI–I2 Gel 1.2 × 10−3 – 2.0 – – Amorph – [306]
Agar–Mg(CF3SO3)2–glycerol Solid 1.0 × 10−6 – – – – Amorph ECD [307]
Agar–LiI–I2–TiO2

Gel
2.7 × 10−3 – – – – –

DSSC [308]Agar–LiI–I2–Co3O4 4.4 × 10−3 – – – – –
Agar–LiI–I2–NiO 3.3 × 10−3 – – – – –
Agar–NiO–glycerol–acetic acid Solid 5.2 × 10−5 – – – – Amorph – [65]
Agar–LiClO4–glycerol

Solid

6.5 × 10−8 – – 0.1 eV – Amorph

– [25]Agar–KClO4–glycerol 9.1 × 10−8 – – 0.1 eV- – Amorph
Agar–Acetic acid–glycerol 3.5 × 10−8 – – 0.1 eV – Amorph
Agar–Lactic acid–glycerol 2.2 × 10−8 – – 0.1 eV – Amorph
Agar–NH4NO3 Solid 6.6 × 10−4 0.99 – 0.12 eV – Amorph Fuel cell [309]
Agar–Na2S/S–glycerol Gel 1.8 × 10−3 – – – – – DSSC [310]
Agar–NH4SCN Solid 1.0 × 10−3 0.97 – 0.25 eV 55 Amorph – [311]
Agar–NH4I Solid 1.1 × 10−4 – – 0.43 eV – Amorph – [312]
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Agar–KI–MPII Gel 1.5 × 10−3 – – – – Amorph DSSC [313]

Carrageenan

Carboxymethyl κ-carrageenan–acetic acid Solid 2.0 × 10−4 – – – – – – [29]
κ-carrageenan–[Bmim]Cl Solid 2.4 × 10−3 – – – – Amorph – [314]
Carboxymethyl ι-carrageenan–acetic acid Solid 4.9 × 10−6 – – – – Amorph – [315]
Carboxymethyl κ-carrageenan/CMC–NH4I Solid 2.4 × 10−3 0.99 2.0 0.01 eV – – DSSC [316]
κ-carrageenan–TBAI–I2–TiO2

Solid
- – - – – –

DSSC [317]κ-carrageenan–TBAI–I2–Fe2O3 - – - – – –
κ-carrageenan–TBAI–I2–halloysite clay - – - – – –
Carboxymethyl κ-carrageenan/CMC–acetic acid Solid 3.3 × 10−4 – 2.75 – −13.5 – – [30]
Carboxymethyl κ-carrageenan–LiNO3 Solid

5.9 × 10−3 – 3.1 0.18 eV – – – [22]
Carboxymethyl ι-carrageenan–LiNO3 5.5 × 10−3 – 3.0 0.38 eV – –
Carboxymethyl κ-carrageenan/CMC–LiI–I2 Solid 3.9 × 10−3 – - 0.01 eV −43.0 – DSSC [318]
ι-carrageenan–NH4Br Solid 1.1 × 10−3 – 2.1 0.18 eV - Amorph Fuel cell [319]
k-carrageenan/PEDOT–PANI Gel – – – – – – Super-capacitor [320]
ι-carrageenan–NH4NO3 Solid 1.5 × 10−3 0.95 2.46 0.14 eV 64 – ECD [321]

Pectin

Pectin–LiClO4 Solid 4.7 × 10−4 – – – – Amorph – [33]
Pectin–HCl–glutaraldehyde Solid 2.5 × 10−2 – – – – Amorph – [322]
Pectin–KCl–glycerol

Solid
1.5 × 10−3 – – – – Amorph – [323]

Pectin–KCl–Ir(III)–glycerol 5.4 × 10−5 – – – – Amorph
Pectin–NH4Cl

Solid
4.5 × 10−4 – – – – Amorph – [324]

Pectin–NH4Br 1.1 × 10−3 – – – – Amorph
Pectin–[N1112(OH)][NTf2]–glycerol Solid 1.4 × 10−6 – – – – Amorph – [325]

Guar gum and gum arabic

Guar gum–LiClO4–glycerol Solid 2.2 × 10−3 – – 0.18 eV – – – [37]
Guar gum–[BmIm][Cl]–PEDOT Gel 10−2 – – – – – – [35]
Guar gum–[BmIm][Cl]–P(AEMIBr) Gel 10−4 – – – – – – [38]
Gum Arabic–o-H3PO4 Gel 1.8 × 10−2 – – – – – Super-capacitor [326]

Gelatin

Gelatin–glycerol–formaldehyde–acetic acid Solid 4.5 × 10−5 – – 32.6 kJ/mol – – – [42]
Gelatin–LiClO4–glycerol Solid 10−4 – – 0.35 eV – – – [327]
Gelatin–LiBF4–glycerol Gel 2.3 × 10−5 – – – – –

– [41]Gelatin–LiClO4–glycerol Gel 3.2 × 10−5 – – – – –
Gelatin–HCl–glycerol Gel 5.4 × 10−5 – – – – –
Gelatin–Acetic acid–glycerol Gel 8.7 × 10−4 – – – – –
Gelatin–LiClO4–EC/PC Solid 2.0 × 10−9 – – – – – – [328]
Gelatin–LiClO4 Solid – – – – – – ECD [329]
Poly(acrylic acid-g-gelatin)/polypyrrole–KI–I2 Gel 1.4 × 10−2 – – 10.3 kJ/mol – – DSSC [330]
Gelatin–Acetic acid–glycerol Solid 2 × 10−5 – – 0.22 eV – – – [331]
Gelatin–LiBF4–glycerol Gel 1.5 × 10−5 – – 43.1 kJ/mol – Amorph – [332]
Gelatin–[Eu(pic)3]–glycerol Solid – – – – – Amorph ECD [333]
Gelatin–HCl–glycerol Solid 4.0 × 10−5 – – 23 kJ/mol – – – [334]
Gelatin–[EmIm][OAc] Solid 1.2 × 10−4 – – 16.7 kJ/mol – Amorph ECD [335]
Gelatin–LiI–I2 Solid 5 × 10−5 – – 8 kJ/mol −76 Amorph ECD [336]
Gelatin–LiClO4–glycerol Solid 10−4 – – – – – – [337,338]
Gelatin–Glycerol Solid 9.1 × 10−3 – – – – Amorph – [339]
Gelatin–Zn(CF3SO3 )2 Solid 3.1 × 10−10 – – – – Amorph – [340]
Gelatin–LiClO4–glycerol

Solid
1.1 × 10−4 – – 9.37 kJ/mol – Amorph – [341]
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Gelatin–LiCl–glycerol 2.0 × 10−4 – – 6.31 kJ/mol – Amorph
Gelatin–Mg(CF3SO3)2–glycerol Solid 3.8 × 10−10 – – 49.0 kJ/mol – Amorph – [39]
Gelatin/Au–LiI–I2 Gel 2.2 × 10−2 – – – 77 – DSSC [342]
Gelatin–[EmIm][N(CN)2]–glycerol Solid 2.4 × 10−3 – – – – Amorph ECD [343]
Gelatin–NaCl Gel 8.5 × 10−2 – – – – – – [110]

Natural rubber

NR/PEO–LiBs-PEO1000 Solid 10−6 – – – – – – [44]
ENR-25–LiCF3SO3–EC/PC

Solid
2.9 × 10−4 – – – −43 –

– [344]ENR-50–LiCF3SO3–EC/PC 1.3 × 10−4 – – – −35 –
MG-49–LiCF3SO3–EC/PC 4.3 × 10−4 – – – – –
ENR-25/PEO–LiCF3SO3–EC/PC

Solid
10−4 – – – – – – [345]

ENR-50/PEO–LiCF3SO3–EC/PC 10−4 – – – – –
MG-30–LiCF3SO3–EC–Al2SiO5 Solid – – – – −41 – – [346]
PVC/ENR-50–LiCF3SO3 Solid

3.6 × 10−5 – – – – – – [347]
PMMA/ENR-50–LiCF3SO3 5.1 × 10−5 – – – – –
MG-30–LiCF3SO3

Gel
8.4 × 10−4 – 4.3 – – –

– [348]MG-30–LiCF3SO3–EC – – – – – –
MG-30–LiCF3SO3–PC – – – – – –
PMMA/ENR-50–LiCF3SO3–EC Solid – – – – – – – [349]
MG-49–NH4CF3SO3–PC Gel 3.3 × 10−2 – – – – – Battery [350]
MG-49–LiBF4 Solid

2.3 × 10−7 – – – – Amorph – [351]
MG-49–LiClO4 4.0 × 10−8 – – – – Amorph
MG-49–LiClO4–EC–TiO2 Solid 1.1 × 10−3 – – – – – – [352]
MG-49–NH4CF3SO3–SiO3 Gel 7.6 × 10−3 – – – – – – [353]
PMMA/MG-49–LiBF4 Solid 8.3 × 10−6 – – – – Amorph – [354]
MG-49–NH4CF3SO3–PC Gel 2.9 × 10−2 – – – – – – [355]
MG-30–NH4CF3SO3–EC Solid 10−4 – – – – Amorph – [356]
PVC/LENR-50–LiClO4 Solid 2.3 × 10−8 – – – – Amorph – [357]
ENR-50–Li2NH Solid 3.5 × 10−5 – – – – – – [358]
MG-49/Cellulose–LiCF3SO3 Solid 5.3 × 10−7 – – – – Amorph – [359]
MG-30–LiCF3SO3–EC Gel 9.0 × 10−3 – 4.2 0.14 eV −77.2 – Battery [360]
PVDF–HFP/MG-49–LiCF3SO3 Solid 2.0 × 10−4 – 3.0 0.14 eV – Semi-cr – [361–363]
ENR-50–LiN(SO2CF3)2–EC/PC Solid 2.6 × 10−4 – – – −46.8 – – [364]
PVDF/MG-49–NH4CF3SO3 Solid 6.3 × 10−4 – 4.0 – – Semi-cr – [365]
MG-49/CMC–LiCF3SO3 Solid 3.3 × 10−7 – 2.7 – – – – [366]
MG-49–LiCF3SO3–ZrO2/TiO2 Solid 1.2 × 10−5 – – 0.10 eV – Amorph Battery [367]
MG-30–LiCF3SO3 Solid 5.6 × 10−3 – – – −43.9 – – [368]
ENR-50–LiClO4 Solid 10−5 – – – −22 – – [369]
ENR-25/hexanoyl chitosan–LiN(CF3SO2)2–[EmIm][TFSI] Solid 1.3 × 10−6 – – – −31 – – [370]
ENR-25–LiClO4 Solid – – – – −42 – – [371]

Poly(lactic acid)

PLA–LiClO4–EC–Al2O3 Solid 2.1 × 10−5 – – – – Amorph Battery [47]
PLA–LiClO4–EC–SiO2 Solid 1.3 × 10−5 – – – – Amorph – [46]
PLA/PHB/PC–LiPF6–EC Gel 1.5 × 10−2 – 4.4 – 69 Semi-cr Battery [48]
PLGA/SY–TBABF4 Solid 10−10 – – – – – LEC [372]
PLA–LiTFSI–Pyr14TFSI Solid – – – – 0.1 Amorph Battery [49]
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Vegetable oil-based
polyurethane

Palm-based PU–LiCF3SO3 Solid 1.6 × 10−5 – – – – Amorph – [8]
Palm-based PU–LiI–I2–EC Solid 7.6 × 10−4 – – 0.11 eV – Amorph DSSC [51]
Castor oil-based PU–LiI

Solid
1.4 × 10−6 0.99 2.0 0.13 eV −27.5 – – [52]

Castor oil-based PU–NaI 4.3 × 10−7 0.98 1.8 0.22 eV −26.1 –
Jatropha oil-based PU–LiClO4–EC Solid 1.3 × 10−4 0.83 4.8 2.8 meV – Amorph – [50]

Bacterial cellulose
Bacterial cellulose–Nafion Solid 5.6 × 10−2 – – – – – Fuel cell [55]
Bacterial cellulose/PSSA–HCl Solid 10−3 – – – – – Fuel cell [56]

Gellan and Xanthan gum

Gellan–LiCF3SO3 Solid 5.4 × 10−4 – 5.4 14.6 kJ/mol – Semi-cr – [58]
Gellan–LiI–Glycerol Solid 1.5 × 10−3 – – 2.4 kJ/mol – – – [59]
Gellan–[N1112(OH)][NTf2]–Er(CF3SO3)3 Solid 5.2 × 10−6 – 3.5 – – Semi-cr ECD [373]
Gellan–KI–I2 Solid 2.5 × 10−2 – – 0.24 eV – Amorph DSSC [374]
Gellan–o-H3PO4

Gel
5.1 × 10−3 – – 0.14 meV – –

EDLC [375]Gellan–H2SO4 1.5 × 10−3 – – 0.17 meV – –
Gellan–HCl 3.7 × 10−4 – – 0.19 meV – –
Xanthan–PMII–I2–TBP–GSCN Gel – – – – – – DSSC [61]
Xanthan–LiClO4–glycerol

Gel
2.6 × 10−3 – – – – – Super-capacitor [23]

Xanthan–Li2B4O7–glycerol 2.7 × 10−2 – – – – –

(I-TN: Ionic transference number; Ea: Activation energy, Tg: Glass transition temperature; Amorph: Amorphous; Semi-cr: Semi-crystalline).
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3.5. Application of Bio-Based Polymer Electrolytes

Bio-based polymer electrolytes have been tested in various electrochemical devices. This review
focuses on the use of these electrolytes in batteries and DSSCs applications. Batteries have been widely
used as energy supplies for portable devices, wearable electronics, and electric vehicles. Conventional
batteries are made up of a cathode and anode, a separator to prevent physical contact between the
two electrodes, and an electrolyte system. The most common anode materials used in batteries
are titanium oxide, graphite, alloys, metal oxides, pure metal foils, etc. Meanwhile, the cathode
materials used are vanadium oxide, molybdenum oxide, manganese oxide, silicates, LiCoO2, LiFePO4,
LiMn2O4, etc. [376]. The electrolyte used in batteries’ construction is typically organic liquid electrolytes.
The electrolyte is one of the key components that determine the battery’s performance which is related
to the charging/discharging capacity, cycling performance, and current density [48]. In principle, when
a battery is being charged, the ion moves from the cathode to the anode through the electrolyte, and
during discharge, the ion will move back from the anode to the cathode. As discussed in the previous
section, liquid electrolytes have a fundamental limitation for long-term operation due to their safety
issues on evaporation and leakage, environmental concern, and restricted battery design. Hence,
the best path is by replacing the conventional liquid electrolyte with all solid-state polymer electrolytes.
Based on the literature, several studies on bio-based polymer electrolytes for lithium-ion batteries
have been documented. The polymer systems include cellulose [146,155,160,161,165,169,177,181,182],
chitosan [200,257], and natural rubber [360,367]. Despite the excellent performance, lithium-ion batteries
rely on ultimately scarce and expensive resources. A sodium-ion battery is rather an interesting
alternative as it is available abundantly at a very cheap cost. However, the use of bio-based polymer
electrolytes in sodium-ion batteries is still in the early stage compared to lithium-ion batteries. A study on
cellulose-based electrolyte on sodium-ion batteries was conducted by Colò and co-workers. The system
shows good thermal stability and a wide electrochemical stability window [162]. Proton battery is
another alternative to the lithium-ion battery that has been progressively studied. The electrochemical
window for a proton battery is generally low, within the range of 1 to 2 V. Despite that, the availability
of low-cost proton conductors has made proton batteries a good alternative. Some studies on
bio-based polymer electrolytes for proton batteries have been reported on cellulose [129,133,179],
chitosan [206,229,275], and natural rubber-based systems [350].

DSSC is the third generation of solar cells invented in 1991 by a team led by Gratzel [377].
Similarly to the previous generation of solar cells, DSSC converts sunlight energy directly into electrical
energy through photovoltaic effects. DSSCs are interesting in regard to their remarkable advantages,
such as low-cost production, robustness, colorful appearance, and possible flexibility. A typical
DSSC consists of four components, which are a photoanode, a dye sensitizer, an electrolyte, and a
counter electrode. The photoanode consists of a dye-coated nanocrystalline semiconductor oxide on a
conducting substrate. It acts as a roadway for the electrons coursing through the cell. The counter
electrode is usually a film of graphite or platinum. An electrolyte containing a redox couple fills the gap
between the electrodes. The redox mediator is usually an organic solvent containing a redox system,
such as an iodide/triiodide (I−/I3−) couple [378,379]. The use of a bio-based polymer electrolyte in place
of the conventional organic solvent electrolyte could solve the leakage, corrosion, and stability issues
often caused by the liquid-type electrolyte. Based on the literature, the I−/I3− is the most efficient and
widely used redox couple for bio-based polymer electrolyte in DSSC. Various iodide salts have been
tested, such as LiI, NaI, KI, NH4I, etc. Some past study of bio-based polymer on DSSC is tabulated in
Table 4. By far, the highest power conversion efficiency was achieved for cellulose-based electrolyte
at 7.55% [139]. Despite this achievement, there are still some gaps that hinder the commercialization
of bio-based polymer electrolytes in commercial application. Challenges that need to be addressed
include the stability performance of the electrolyte overtime usage and the suitability of said materials
in the selected application.
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Table 4. The photovoltaic performance of DSSC observed in bio-based polymers–salt matrix.

Polymer Electrolyte System State σ (s/cm) JSC (mA/cm2) VOC (V) FF η (%) Ref.

Starch

Rice starch–LiI–MPII–TiO2 Solid 3.6 × 10−4 0.49 0.45 0.75 0.17 [88]
Rice starch–LiI

Solid
4.7 × 10−5 – – – –

[96]Rice starch–NH4I 1.4 × 10−4 – – – –
Rice starch–NaI 4.5 × 10−4 2.40 0.48 0.67 0.78
Rice starch–NaI–MPII Solid 1.2 × 10−3 4.78 0.57 0.76 2.09 [97]

Cellulose

Cellulose-g-acrylic acid–[BmIm][I] Gel 7.3 × 10−3 12.65 0.71 0.611 5.51 [131]
CN–HPC–LiI–I2–MHII Gel 2.5 × 10−3 14.40 0.76 0.70 7.55 [139]
PEO/CMC–NaI–I2–MPII Gel - 10.03 0.75 0.69 5.18 [147]
MFC/BEMA/PEGMA–NaI–I2 Gel - 15.20 0.76 0.61 7.03 [154]

Chitosan
Chitosan/PEO–NH4I Solid 3.7 × 10−6 2.71 0.58 0.50 0.78 [281]
N-phthaloyl chitosan–TPAI–I2–EC Solid 5.5 × 10−3 12.72 0.60 0.66 5.00 [284]

Agar

Agar–LiI–I2–TiO2 Gel - 10.96 0.54 0.57 4.74 [299]
Agar–NH4I–I2–Glycerol Gel 4.9 × 10−3 0.007 0.29 – – [380]
Agar–LiI–I2–NiO Gel – – – – 2.95 [303]
Agar–MPII–PC–GuSCN–NMBI–I2

Gel –

11.73 0.70 0.64 5.25

[381]Agar–AEII–PC–GuSCN–NMBI–I2 11.71 0.72 0.65 5.45
Agar–DAII–PC–GuSCN–NMBI–I2 11.53 0.70 0.62 4.97
Agar–APII–PC–GuSCN–NMBI–I2 11.84 0.70 0.60 4.96
Agar–LiI–I2–Fe3O4–SDS

Gel
– 3.18 0.66 0.62 1.29

[305]Agar–LiI–I2–Fe3O4–PVP – 3.00 0.67 0.59 1.19
Agar–LiI–I2–Fe3O4–TW-80 3.0 × 10−3 5.00 0.70 0.53 1.83
Agar–KI–I2 Gel 9.0 × 10−3 3.27 0.67 0.24 0.54 [382]
Agar–LiI–I2–TiO2

Gel
2.7 × 10−3 5.28 0.61 0.55 1.71

[308]Agar–LiI–I2–Co3O4 4.4 × 10−3 7.24 0.63 0.46 2.11
Agar–LiI–I2–NiO 3.3 × 10−3 6.20 0.62 0.52 2.02
Agar–Na2S/S–glycerol Gel – 10.75 0.58 0.47 2.97 [310]
Agar–KI–MPII Gel 1.5 × 10−3 9.28 0.46 0.50 2.16 [313]

Carrageenan

Carboxymethyl κ-carrageenan/CMC–NH4I Solid 2.4 × 10−3 0.49 0.60 0.64 0.13 [316]
κ-carrageenan–TBAI–I2–TiO2

Solid
– 1.83 0.75 0.55 0.76

[317]κ-carrageenan–TBAI–I2–Fe2O3 – 3.96 0.68 0.07 0.20
κ-carrageenan–TBAI–I2–halloysite clay – 1.39 0.74 0.50 0.51
Carboxymethyl κ-carrageenan/CMC–LiI–I2 Solid 3.9 × 10−3 0.40 0.49 0.57 0.11 [318]

Gelatine
Poly(acrylic
acid-g-gelatine)/polypyrrole–KI–I2

Gel 1.4 × 10−2 2.76 0.66 0.70 1.28 [330]

Gelatine/Au–LiI–I2 Gel 2.2 × 10−2 4.94 0.65 0.60 1.97 [342]

Vegetable
oil-based

polyurethane

Palm-based PU–LiI–I2–EC Solid 7.6 × 10−4 0.06 0.14 - - [51]
Castor oil-based PU–NaI Solid 4.3 × 10−7 3.60 0.49 0.46 0.80 [383]
Palm-based PU–MPII Gel 9.1 × 10−4 3.30 0.71 0.36 1.00 [384]

Gellan and
Xanthan gum

Gellan–KI–I2 Solid 2.5 × 10−2 3.20 0.57 0.90 1.47 [374]
Xanthan–PMII–I2–TBP–GSCN Gel – – – – 4.78 [61]

(σ: Conductivity; JSC: Short-circuit current density; Voc: Open circuit potential; FF: Fill factor; η: Efficiency)
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4. Summary and Outlook

Based on the literature available to date, a variety of bio-polymers have been explored by
researchers, and the number of studies keeps on expanding, particularly over the last few decades.
Similar to conventional petrochemical-based polymer electrolytes, bio-based polymers also suffer from
low ionic conductivity when compared to liquid electrolytes. In fact, many studies have attempted to
address this limitation. Researchers have suggested a number of ways to tackle this shortcoming by
introducing fillers, plasticizers, and polymer blending methods. Nevertheless, the literature is still
lacking in terms of the evaluation of the shelf life performance of bio-based electrolytes. This is another
point of view that demands further investigation. As for applications, some of the bio-based polymer
electrolytes have been tested in dye-sensitized solar cells, super-capacitors, and batteries. Despite the
various types of bio-based materials that have been investigated as polymer electrolytes, they have yet
to attain the status of commercial viability. Hence, extensive studies are still required to develop a
system to achieve a level of performance that is comparable to the conventional liquid electrolytes. One
interesting approach is to use computational and molecular modeling to understand the fundamental
aspects of the materials. Such tools will provide important information, especially on the conduction
mechanism, and can be used to assist and support the interpretation of experiments. Future work in
this area will be very interesting as it will provide an in-depth understanding of the theoretical principle
of the polymer electrolyte. From the preceding review, proper designs based on carefully selected
materials and methods are expected to improve the bio-based polymer electrolytes performance.
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Abbreviations

AEII 1-allyl-3-ethylimidadolium iodide
AgNO3 Silver nitrate
Al2O3 Aluminium oxide
Al2SiO5 Aluminium silicate
[AmIm][Cl] 1-allyl-3-methylimidazolium chloride
APII 1-allyl-3-propylimidazolium iodide
BaTiO3 Barium titanate
BDG Diethylene glycol dibutylether
BEMA Bisphenol A ethoxylate dimethacrylate
BMATFSI Butyl-trimethyl ammonium bis(trifluoromethylsulfonyl)imide
[BmIm][Cl] 1-butyl-3-methylimidazolium chloride
[BmIm][I] 1-butyl-3-methylimidazolium iodide
[BmIm][OAc] 1-butyl-3-methylimidazoliumacetate
[BmIm][PF6] 1-butyl-3-methylimidazolium hexafluorophosphate
[BmIm][Tf] 1-butyl-3-methylimidazolium trifluoromethanesulfonate
[BmIm][TFSI] 1-butyl-3-methylimidazolium trifluoromethanesulfonyl imide
Bu4NBF4 Tetrabutylammonium tetrafluoroborat
Ce(CF3SO3)3 Cerium triflate
[Ch][OAc] Trimethyl-ethanolammonium acetate
CH3COONH4 Ammonium acetate
CMC Carboxymethyl cellulose
CMCh Carboxymethyl chitosan
CNC Cellulose nanocrystals
CN-HPC Cyanoethylated hydroxypropyl cellulose
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Co3O4 Cobalt oxide
DAII 1-3-diallylimidazolium iodide
DES Deep eutectic solvent
DMC Dimethyl carbonate
DPEO Poly(ethylene oxice) diisocyanate
DSSC Dye sensitized solar cell
DTAB Dodecyltrimethyl ammonium bromide
EC Ethylene carbonate
ECD Electrochromic device
EDLC Electrical double layer capasitor
EMC Ethyl methyl carbonate
[EmIm][Br] 1-butyl-3-methylimidazolium bromide
[EmIm][Cl] 1-ethyl-3-methylimidazolium chloride
[EmIm][CF3SO3] 2-ethyl-3-methylimidazolium trifluoromethanesulfonate
[EmIm][C1SO3] 1-ethyl-3-methylimidazolium methylsulfonate
[EmIm][C2SO3] 1-ethyl-3-methylimidazolium ethylsulfonate
[EmIm][C4SO3] 1-ethyl-3-methylimidazolium butylsulfonate
[EmIm][C2SO4] 1-ethyl-3-methylimidazolium ethylsulfate
[EmIm][Eu(SCN)4] 1-ehtyl-3-methylimidazolium europium(III) tetrathiocyanate
[EmIm][OAc] 1-ethyl-3-methylimidazolium acetate
[EmIm][N(CN)2] 1-ethyl-3-methylimidazolium dicyanamide
[EmIm][NO3] 1-ethyl-3-methylimidazolium nitrate
[EmIm][SCN] 1-ethyl 3-methylimidazolium thiocyanate
[EmIm][TFSI] 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide
ENR-25 25% epoxidized natural rubber
ENR-50 50% epoxidized natural rubber
EO-EPI ethylene oxide-epichlorohydrin
Er(CF3SO3)3 Erbium triflate
ES Ethylene sulphite
EtC Ethyl carbonate
[Eu(pic)3] Europium picrate
Eu(CF3SO3) 3 Europium triflate
Fe2O3 Iron (III) oxide
Fe3O4 Iron (II,III) oxide
GBL γ-butyrolactone
GO Graphene oxide
GSCN Guanidinium thiocyanate
H2SO4 Sulphuric acid
HCF Hexacyanoferrate
HCl Hydrochloric acid
HEC Hydroxyethyl cellulose
HPC Hydroxypropyl cellulose
HPMC Hydroxypropyl methyl cellulose
I2 Iodine
KCl Potassium chloride
KI Potassium iodide
LENR-50 Liquid 50% epoxidized natural rubber
Li2B4O7 Lithium tetraborate
LiBF4 Lithium tetrafluoroborate
LiBoB Lithium bis(oxalato) borate
LiBs lithium benzenesulfonate
LiCF3SO3 Lithium trifluoromethanesulfonate
LiCl Lithium chloride
LiClO4 Lithium perchlorate
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LiI Lithium iodide
LiN(CF3SO2)2 lithium trifluoromethane sulfonimide/lithium imide
LiNO3 Lithium nitrate
LiOAc Lithium acetate
LiPF6 Lithium hexafluorophosphat
LiTFSI Lithium bis(trifluoromethane sulfonyl)imide
MFC Microfibrillated cellulose
MG-30 30% methyl methacrylate grafted natural rubber
MG-49 49% methyl methacrylate grafted natural rubber
Mg(C2H3O2)2 Magnesium acetate
Mg(CF3SO3)2 Magnesium triflat
MHII 1-methyl-3-hexylimidazolium iodide
MPII 1-methyl-3-propylimidazolium iodide

[N1112(OH)][NTf2]
N,N,N-trimethyl-N-(2-hydroxyethyl)ammonium
bis(trifluoromethylsulfonyl)imide

NaCl Sodium chloride
NaClO4 Sodium perchlorate
NADES Ternary natural deep eutectic solvent (NADES)
NaI Sodium iodide
Na2S/S Poly sulphide solution
NH4BF4 Ammonium tetrafluoroborate
NH4Br Ammonium bromide
NH4CF3SO3 Ammonium triflate
NH4Cl Ammonium chloride
(NH4)2CO3 Ammonium carbonate
NH4I Ammonium iodide
NH4NO3 Ammonium nitrate
NH4SCN Ammonium thiocyanate
NiO Nickel oxide
NMBI N-methylbenzimidazole
NMPS N,N-dimethylene phosphonic acid propylsilane
NR Natural rubber
NSB-Chitosan N-o-sulphonic acid benzyl chitosan
NWF Nonwoven fabric
o-H3PO4 Ortho-phosphoric acid
PMMA poly(methyl methacrylate)
PAN Poly(acrylonitrile)
PANI Polyaniline
pAPS Poly(aminopropyltriethoxysilane)
PC Propylene carbonate
PE Polyethylene
PEDOT Poly(3,4-ethylenedioxythiophene)
PEG Poly(ethylene glycol)
PEGMA Poly(ethylene glycol) methyl ether methacrylate
PEO Poly(ethylene oxide)
PHB Poly(3-hydroxybutyrate)
PLA Poly(lactic acid)
PLGA Poly(lactic-co-glycolic acid)
PMII Propyl-methyl-imidazolium iodide
PMMA Poly(methyl methacrylate)
P(AEMIBr) Poly(1-[2-acryloylethyl]-3-methylimidazolium bromide)
POE Poly(oxyethylene)
PSSA Poly(4-styrene sulfonic acid) (PSSA)
PVA Poly(vinyl alcohol)
PVC Poly(vinyl chloride)
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PVDF Poly(vinylidene fluoride)
PVDF-HFP Poly(vinylidene fluoride-hexafluoro propylene)
PVP Poly(vinylpyrrolidone)
PVPA poly(vinylphosphonic acid)
Pyr14TFSI N-butyl-N-methylpyrrolidinium bis(trifluoromethane-sulfonyl) imide
SDS Sodium dodecyl sulphate
SiO2 Silicon diioxide
SY Super yellow
TBABF4 Tetrabutylammonium tetrafluorborate
TBAI Tetrabutylammonium iodide
TBP 4-tert-butylpyridine
TEGDME Tetra(ethylene) glycol dimethyl ether
TiO2 Titanium dioxide
Tm(CF3SO3)3 thulium triflate
TPAI Tetrapropylammonium iodide
TW-80 Polysorbate 80
Zn(CF3SO3)2 Zinc triflate
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