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ABSTRACT
Background Amino acid metabolism is essential for 
tumor cell proliferation and regulation of immune cell 
function. However, the clinical significance of free amino 
acids (plasma- free amino acids (PFAAs)) and tryptophan- 
related metabolites in plasma has not been fully 
understood in patients with non- small cell lung cancer 
(NSCLC) who receive immune checkpoint inhibitors.
Methods We conducted a single cohort observational 
study. Peripheral blood samples were collected from 
53 patients with NSCLC before treatment with PD- 
1 (Programmed cell death- 1) inhibitors. The plasma 
concentrations of 21 PFAAs, 14 metabolites, and neopterin 
were measured by liquid chromatography–mass 
spectrometry. Using Cox hazard analysis with these 
variables, a multivariate model was established to stratify 
patient overall survival (OS). Gene expression in peripheral 
blood mononuclear cells (PBMCs) was compared between 
the high- risk and low- risk patients by this multivariate 
model.
Results On Cox proportional hazard analysis, higher 
concentrations of seven PFAAs (glycine, histidine, 
threonine, alanine, citrulline, arginine, and tryptophan) 
as well as lower concentrations of three metabolites 
(3h- kynurenine, anthranilic acid, and quinolinic acid) and 
neopterin in plasma were significantly correlated with 
better OS (p<0.05). In particular, the multivariate model, 
composed of a combination of serine, glycine, arginine, 
and quinolinic acid, could most efficiently stratify patient 
OS (concordance index=0.775, HR=3.23, 95% CI 2.04 
to 5.26). From the transcriptome analysis in PBMCs, this 
multivariate model was significantly correlated with the 
gene signatures related to immune responses, such as 
CD8 T- cell activation/proliferation and proinflammatory 
immune responses, and 12 amino acid- related genes were 
differentially expressed between the high- risk and low- risk 
groups.

Conclusions The multivariate model with PFAAs and 
metabolites in plasma might be useful for stratifying 
patients who will benefit from PD- 1 inhibitors.

INTRODUCTION
Immune checkpoint inhibitors (ICIs) have 
provided new therapeutic approaches for 
treatment of otherwise incurable cancer 
patients. Recently, ICI therapy has become 
widely accepted as a standard cancer treat-
ment for various cancers, including non- small 
cell lung cancer (NSCLC). However, only a 
limited number of patients show long- term 
clinical benefits. Thus, biomarkers for patient 
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selection need to be developed to identify those who will 
optimally benefit from ICI and to avoid unnecessary 
adverse events (AEs) and treatment costs.

To date, several biomarkers, such as PD- L1 
(Programmed death- Ligand 1) expression in tumor or 
immune cells, the existence of driver gene mutations, and 
tumor mutational burden, have been available to predict 
patients’ responses to ICI but with limited accuracy.1 
Further, various next- generation ‘omics’ technologies 
that evaluate the genome, transcriptome, and epigenome 
have been applied to development of novel biomarkers,2 
but reliable discrimination technology is yet to be deter-
mined. In addition to good discrimination performance, 
simple and less invasive techniques that do not require 
tumor tissues remain to be developed because tumor 
samples often cannot be easily obtained especially in 
patients with cancer without indication of surgical treat-
ment. Therefore, blood testing might be one of the desir-
able approaches for biomarker development.3

The regulation of amino acid metabolism has been 
reported to be essential for tumor cell proliferation and 
regulation of immune cell functions.4 Thus, the amino 
acid profiles could be a critical marker to evaluate meta-
bolic reprogramming in the tumor immune microenvi-
ronment and the metabolic condition of systemic immune 
cells. The amino acid profiles that show characteristic 
changes in different cancers can be used for diagnosis 
and evaluation of prognosis after tumor resection.5 6 The 
present study thus aimed to evaluate the clinical signifi-
cance of plasma- free amino acid (PFAA) and tryptophan 
metabolites to ultimately develop a reliable method for 
stratifying patients with cancer who might benefit from 
ICI therapy.

MATERIALS AND METHODS
Patients
This study was a single cohort observational study that 
included patients with advanced or recurrent NSCLC who 
were scheduled to receive anti- PD- 1 antibody (nivolumab 
or pembrolizumab) without concurrent chemotherapy at 
Kurume University Hospital (Fukuoka, Japan) between 
May 2017 and September 2019. As an exploratory study, 
we set an eligible target number of cases during the study 
period. All eligible patients received nivolumab (3 mg/
kg/body) every 2 weeks or pembrolizumab (200 mg/
body) every 3 weeks. Kidney dysfunction, liver cirrhosis, 
and congenital metabolic disorder were excluded.

Data collection
All clinical data, including blood test results, were 
collected from the patients’ medical records. The best 
overall response was defined as the best response desig-
nation recorded between the date of the first dose of 
PD- 1 inhibitor and the date of the first documented 
tumor progression. Treatment response was determined 
according to the Response Evaluation Criteria in Solid 
Tumors (RECIST) v.1.1. Progression- free survival (PFS) 

was defined as the period from the date of the first dose to 
the date of disease progression or death due to any cause. 
Overall survival (OS) was defined as the period from the 
date of the first dose to the date of death from any cause. 
The severity of AEs was graded using the National Cancer 
Institute Common Terminology Criteria for Adverse 
Events V.4.0. PD- L1 expression was examined by immuno-
histochemistry with anti- PD- L1 antibody (clone E1L3N; 
Cell Signaling Technology, Danvers, Massachusetts, 
USA) in paraffin- embedded tissue samples, as reported 
previously.7

Analysis of PFAAs
Peripheral blood samples were collected in the morning 
before initiation of ICI therapy. After an overnight fast, 
blood samples (5 mL) were collected from the antecubital 
vein into tubes containing EDTA- 2Na as an anticoagulant 
and were immediately (<1 min) placed on ice. Plasma was 
separated from the whole blood samples via centrifuga-
tion at 3000 rpm (at 1000G or more to reduce platelet 
contamination) for 15 min at 4°C and stored at −80°C 
until analysis. After thawing, plasma samples were depro-
teinized using acetonitrile at a final concentration of 
50% before measuring amino acid concentrations using 
high- performance liquid chromatography–electrospray 
ionization mass spectrometry via precolumn derivatiza-
tion, as described previously.8 This deproteinizing step 
with acetonitrile allowed analysis of amino acids bound 
to protein carriers in plasma. Concentrations of the 
following 21 amino acids were measured: alanine, alpha- 
amino- butyric acid, arginine, asparagine, citrulline, gluta-
mine, glutamate, glycine, histidine, isoleucine, leucine, 
lysine, methionine, ornithine, phenylalanine, proline, 
serine, threonine, tryptophan, tyrosine, and valine.

Analysis of tryptophan-related metabolites and neopterin in 
plasma
Tryptophan- related metabolites and neopterin were 
analyzed as reported previously.9 Briefly, 14 metabo-
lites (3- hydroxyanthranilic acid, 3- hydroxy- kynurenine, 
3- indoleacetic acid, 5- hydroxyindole- 3- acetic acid, 
5- hydroxy- L- tryptophan, anthranilic acid, indole- 3- lactic 
acid, kynurenine, kynurenic acid, picolinic acid, quin-
olinic acid, serotonin, xanthurenic acid, and N′-formyl- 
kynurenine) in deproteinized plasma were analyzed using 
liquid chromatography–electrospray ionization tandem 
mass spectrometry. These metabolites were successfully 
separated within 15 min without derivatization using a 
reversed- phase pentafluorophenyl column for liquid 
chromatography separation. Neopterin, which is known 
as a biomarker for inflammation and is often evaluated 
with tryptophan metabolites, was also simultaneously 
analyzed.

Statistical analysis for developing multivariate models
To develop the multivariate model according to previously 
reported methods,10 the PFAAs and metabolites associ-
ated with OS (p<0.1) without adjusting for multiplicity 
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were chosen as variables for multivariate regression anal-
ysis with the Cox proportional hazards model. Stepwise 
variable selection was performed to minimize the Akaike 
information criterion (AIC) and the concordance index 
(C- index), and its 95% CI was also estimated. To verify the 
combination of variables, leave- one- out cross- validation 
(LOOCV) was applied to the multivariate model using the 
same variables set. In brief, one matched set composed 
of one responder patient, and a corresponding non- 
responder patient was omitted from the training data set. 
The logistic regression model was then calculated using 
the remaining samples to re- estimate coefficients for each 
variable. The function values for the left- out matched set 
were calculated based on this model. This process was 
repeated until every sample in the study data set had been 
left out once. Cut- off values of the multivariate model 
for Kaplan- Meier analysis and log- rank test were estab-
lished for the first quartile, median, and third quartile 
values. The HR and 95% CI between the stratified groups 
with a multivariate model were determined using Cox 
proportional hazard analysis. Complete- case analysis was 
performed in the development of the multivariate model.

Preparation of peripheral blood mononuclear cells (PBMCs) 
and total RNA extraction
PBMCs were isolated by density gradient centrifuga-
tion using Ficoll- Paque Plus (GE Healthcare, Uppsala, 
Sweden) before initiation of ICI therapy and were frozen 
until analysis. Total RNA was isolated from PBMCs 
using RNeasy Plus Universal Mini Kit (Qiagen, Hilden, 
Germany), according to the manufacturer’s instruc-
tions. RNA amounts and purities were measured using 
NanoDrop1000 (Thermo Scientific, Wilmington, Dela-
ware, USA). RNA integrity was assessed using the RNA 
Nano 6000 Assay Kit of the Agilent Bioanalyzer 2100 
system (Agilent Technologies, Santa Clara, California, 
USA). Construction of cDNA libraries followed by RNA 
sequencing was performed by Takara Bio (Shiga, Japan) 
as a contract analysis with SMART- Seq V.4 Ultra Low Input 
RNA Kit (Clontech, Palo Alto, California, USA) and a 
NovaSeq sequencing system (Illumina, San Diego, Cali-
fornia, USA) according to the manufacturer’s instruction.

Analysis of RNA sequencing data
After confirming the read quality with FastQC (https://
www.bioinformatics.babraham.ac.uk/projects/fastqc/), 
sequence data were aligned to the human genome 
GRCh37 using STAR V.2.5.2a (https://github.com/ 
alexdobin/STAR/releases/tag/2.5.2a), and the mapped 
read count of each sample was calculated using Python 
V.2.7- based HTseq. The obtained read count data for 
each PBMC sample were subjected to the Genomon 2 
DNA analysis pipeline (https://github.com/Genomon- 
Project) to check sequencing qualities. The CIBERSORT 
algorithm (‘CIBERSORT’ R package, http://cibersort. 
stanford.edu) was applied to deconvolute the total tran-
scriptome data for predicting the relative proportion of 
individual immune cell subtypes in the PBMCs of each 

patient based on an LM22 signature gene file.11 The 
‘DESeq2’ Bioconductor R package V.1.28.1 (http://www. 
bioconductor.org/packages/release/bioc/vignettes/ 
DESeq2/inst/doc/DESeq2.html) was carried out to 
normalize the process and identify the differentially 
expressed genes (DEGs) between two groups from the 
read count data of RNA sequencing. The threshold value 
to list DEGs was greater than 1.5- fold change with p<0.05. 
A list of amino acid metabolism- related genes (AAMGs), 
including those involved in amino acid metabolic path-
ways and amino acid transport, was generated from the 
Kyoto Encyclopedia of Genes and Genomes (KEGG, www. 
genome.jp/kegg) and the AmiGO V.2 browser (http:// 
amigo.geneontology.org/amigo). Gene annotation anal-
ysis was performed for DEGs as a whole or DEGs listed 
as AAMGs (amino acid metabolism- related DEGs (DEG–
AAMGs)) based on the Gene Ontology (GO, http://gene-
ontology.org), KEGG, Reactome Pathway (REACTOME, 
https://reactome.org), and gene set enrichment analysis 
(GSEA, https://gsea-msigdb.org/gsea/index.jsp) data-
bases. The ‘clusterProfiler’ V.3.16.1 and ‘ReactomePA’ 
V.1.32.0 R packages were used for enrichment data anal-
ysis and data visualization.12 P values were corrected for 
multiple comparisons by performing the R function p.ad-
just with the Benjamin and Hochberg method.

Statistical analysis
The Cox proportional hazard model was used to analyze 
each patient’s characteristics, blood test results, PFAA 
and metabolite concentrations as an explanatory variable 
(univariate analysis) correlated with OS. Continuous vari-
ables were presented as mean and SD; they were compared 
between categorical groups using a t- test. Correlations 
between continuous variables were evaluated using Spear-
man’s rank correlation coefficient analysis. Univariate 
logistic regression was performed with the multivariate 
model score as the dependent variable and patient char-
acteristics as independent variables to estimate OR and 
95% CI. All statistical analyses were conducted using the 
R- language for statistical computing V.2.9.0 and V.4.0.2, 
and JMP V.15 (SAS Institute, Cary, North Carolina, USA).

RESULTS
Patient characteristics and their association with OS
This study enrolled 53 patients treated with anti- PD- 1 
therapy. The overall response rate, median PFS, and 
median OS were 30.2%, 2.8 months (95% CI 1.4 to 4.9 
months), and 7.6 months (95% CI 5.5 to 13.1 months), 
respectively. Overall, 19/53 patients (35.8%) developed 
treatment- related AEs, and 35 patients died during 
follow- up. The patients’ characteristics and blood test 
results are shown in table 1. Forty (75%) patients were 
male and 13 (25%) were never- smokers, and the mean 
age of all patients was 69.7 years. Seven (13%) patients 
had recurrence after concurrent chemoradiotherapy; 14 
(26%) had recurrence after surgery; and 32 (60%) had 
stage IV. Twenty (38%) patients received PD- 1 inhibitor 
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Table 1 Patient characteristics and their association with OS

Patient characteristics Total (N=53)

Cox hazard model

HR 95% CI P value

Age (years), mean (SD) 69.7 (8.5) 1.23 0.88 to 1.74 0.232

Sex, n (%)

  Female 13 (25) 1

  Male 40 (75) 0.92 0.44 to 1.92 0.826

Smoking, n (%)

  Former 40 (75) 1

  Never 13 (25) 1.46 0.71 to 3.01 0.318

Performance Status, n (%)

  0–1 38 (71) 1

  2–3 15 (29) 2.17 1.06 to 4.44 0.043

Stage, n (%)

  Stage III (recurrent after chemoradiotherapy) 7 (13) 1

  Recurrent after surgery 14 (26) 2.25 0.47 to 10.72 0.308

  Stage IV 32 (60) 4.85 1.14 to 20.67 0.033

Histology, n (%)

  Non- squamous 38 (72) 1

  Squamous 15 (28) 1.38 0.65 to 2.92 0.410

Driver mutation, n (%)

  Wild Type 41 (77) 1

  EGFR (Epidermal growth factor receptor) 11 (21) 0.64 0.26 to 1.56 0.306

  ALK (Anaplastic lymphoma kinase) 1 (2) (EGFR or ALK/WT)

Tumor PD- L1 expression, n (%)

  0%–49% 21 (45)

  50%–100% 26 (55) 1.23 0.60 to 2.51 0.232

Treatment line, n (%)

  1st line 20 (38) 1

  2nd line 22 (42) 0.76 0.36 to 1.60 0.471

  3rd line 7 (13) 0.75 0.30 to 1.88 0.540

  4th line 2 (4) (3rd line or later/1st line)

  6th and 7th lines 2 (4)

PD- 1 blocker, n (%)

  Nivolumab 25 (47) 1

  Pembrolizumab 28 (53) 1.37 0.70 to 2.66 0.358

Blood test, mean (SD)

  Albumin (g/dL) 3.42 (0.61) 0.57 0.38 to 0.85 0.005

  LDH (lactate dehydrogenase, U/L) 2634 (118) 1.13 0.81 to 1.49 0.448

  White blood cell (/μL) 7513 (3357) 1.35 0.98 to 1.75 0.062

  Lymphocyte (/μL) 1354 (615) 0.58 0.38 to 0.86 0.006

  Neutrophil (/μL) 5476 (2969) 1.50 1.10 to 1.97 0.011

  Eosinophil (/μL) 176 (178) 0.80 0.52 to 1.15 0.248

  Monocyte (/μL) 477 (223) 1.49 1.05 to 2.02 0.027

  Neutrophil:lymphocyte ratio 4.94 (3.56) 1.72 1.27 to 2.25 <0.001

Categorical variables are shown as the distribution of corresponding patient numbers. Continuous variables are shown as mean and SD values.
Univariate analysis was conducted using the Cox proportional hazard model for OS. HR, 95% CI.

ALK, anaplastic lymphoma kinase; LDH, lactate dehydrogenase; OS, overall survival; PS, performance status; WT, wild type.
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as the first line, 22 (42%) as the second line, 7 (13%) as 
the third line, 2 (4%) as the fourth line, and 2 (4%) as the 
sixth or seventh line.

On the univariate analysis, performance status and 
tumor stage showed significant correlations with OS 
(p=0.043 and 0.033, respectively). In the blood test results, 
albumin levels, lymphocyte counts, neutrophil counts, 
monocyte counts, and neutrophil:lymphocyte ratios 
(NLRs) before ICI therapy were significantly correlated 
with OS (p=0.005, 0.006, 0.011, 0.027, and <0.001, respec-
tively). Regarding the treatment lines, there were no 
significant differences in OS between the first line and the 
second line or the third line or later in patients with both 
low (0%–49%) and high (50%–100%) PD- L1 expression 
levels (online supplemental figure 1A). Of the 12 patients 
positive for driver gene mutations, most (92%) patients 
receive PD- 1 inhibitors as the third- line or later after 
molecular targeted therapy and/or chemotherapeutic 
agents had failed, but half of the enrolled patients showed 
good antitumor responses (Partial Response, n=6) in this 
study (online supplemental figure 1).

Association between PFAA and metabolite concentrations and 
OS
Higher concentrations of seven PFAAs, including 
glycine, histidine, threonine, alanine, citrulline, arginine, 
and tryptophan, before ICI therapy were significantly 
correlated with better OS on Cox proportional hazard 
analysis (p=0.049, 0.009, 0.015, 0.006, 0.018,<0.001, 
and 0.005, respectively) (table 2). In contrast, lower 
concentrations of three tryptophan- related metabolites, 
including 3h- kynurenine, anthranilic acid, and quino-
linic acid, and neopterin before ICI therapy were signifi-
cantly correlated with better OS (p=0.002, 0.007, 0.049, 
and 0.014, respectively). The concentrations of serine, 
histidine, threonine, alanine, arginine, tryptophan, 
anthranilic acid, xanthurenic acid, and neopterin strat-
ified by the median value also showed significant differ-
ences in OS when analyzed by log- rank testing (online 
supplemental figure 2).

Development of a multivariate model for stratifying prognosis 
in ICI-treated patients
The PFAA and metabolite variables that showed a trend 
of correlation with OS in the univariate analysis (p<0.1) 
were selected as variables in the multivariate model. These 
included the following 15 PFAAs and metabolites: serine, 
glycine, histidine, threonine, alanine, citrulline, arginine, 
lysine, tryptophan, 3h- kynurenine, 5h- tryptophan, anthra-
nilic acid, kynurenine, quinolinic acid, and neopterin. 
A multivariate model was optimized through a stepwise 
method to minimize AIC. We created the best multivar-
iate model comprising three PFAAs and one metabolite, 
namely, serine, glycine, arginine, and quinolinic acid as 
variables, expressed by the combination of each variable 
and the corresponding coefficient, F=a+b*serine+c*gly-
cine+d*arginine+e*quinolinic acid. The discrimination 
performance of this model was as follows: C- index=0.775 

(no validation), C- index=0.742 (the combination of vari-
ables was validated with LOOCV), and Cox HR=3.23 
(95% CI 2.04 to 5.26).

Figure 1A shows the results of discrimination with this 
multivariate model at three cut- off values: (1) first quar-
tile, (2) median, and (3) third quartile. In this multivar-
iate model, the higher the score, the worse the prognosis; 
thus, we defined high- risk groups when the score of the 
multivariate model was higher than the cut- off value. 
When the cut- off value of the third quartile was selected, 
the model could discriminate patients to the high- risk 
group (MST=2.1, 95% CI 0.97 to 2.8) and low- risk group 
(MST=13.1, 95% CI 7.6 to 24.5) with an HR of 15.79 
(95% CI 6.15 to 40.52). We performed univariate regres-
sion analysis to investigate which factors were associated 
with the multivariate model and found that this model 
was significantly correlated with monocyte count and 
NLR (figure 1B). Furthermore, we evaluated the inde-
pendency of prognostic factors, such as tumor stage, 
performance status, tumor PD- L1 expression, albumin 
level, monocyte count, NLR, and the multivariate model 
(table 3). Since neutrophil and lymphocyte counts had 
a direct inter- relation with NLR, they were not included 
in this analysis. As a result, performance status and the 
multivariate model were selected as significantly indepen-
dent factors (p=0.008 and p=0.005, respectively).

We further evaluated the multivariate prediction model 
in the subgroups stratified by PD- L1 expression levels in 
tumors (figure 1C). When the cut- off value of the multi-
variate model was set in the median score, the high- risk 
group showed worse OS in higher (≥50%, n=26) PD- L1 
expression subgroups (log- rank test, p=0.014).

Total transcriptome analyses in PBMCs obtained from high-
risk and low-risk patients
We investigated the relationships between PFAAs/metab-
olites and transcriptome in PBMCs to elucidate poten-
tial molecular mechanisms of amino acid metabolism. 
Among the 53 patients analyzed previously, PBMCs from 
36 patients before ICI treatment were available for total 
transcriptome analyses by RNA sequencing. We separated 
the patients into the low- risk (n=30) and high- risk (n=6) 
groups according to the cut- off at the third quartile on 
the established multivariate model. Online supplemental 
tables 1 and 2 show the information of the 36 patients 
analyzed, including patient characteristics, blood test 
results, and concentrations of PFAAs and tryptophan- 
related metabolites, and neither of them in these 36 
patients had significant differences with those in the orig-
inal 53 patients. The patients in the high- risk group had 
a significantly worse OS after ICI therapy (online supple-
mental figure 3A), and MST of both high- risk (2.5 months) 
and low- risk (13.6 months) groups showed no significant 
differences with those in the original 53 patients (2.1 and 
13.1 months, respectively). The risk scores by the multi-
variate model with PFAAs/metabolites were compared 
using a Mann- Whitney- Wilcoxon test between the 
subgroups classified by the antitumor responses (RECIST 
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criteria). The distribution of risk scores in the multivar-
iate model showed significant differences between the 
tumor response PD and PR groups, similar to the orig-
inal 53 patients (online supplemental figure 3B). These 
data suggested that the 36 patients, whose PBMCs were 

evaluated by RNA sequencing, retained the same clinical 
characteristics as the original 53 patients.

The immune cell constitution of PBMCs obtained from 
the high- risk and low- risk patients was deduced by deconvo-
luting the bulk RNA sequencing data with the CIBERSORT 

Table 2 Association between PFAA and metabolite concentrations before ICI therapy and OS

PFAA/metabolite (μM) Mean (SD)

Cox hazard model

HR 95% CI P value

Glutamic acid 50.5 (22.2) 1.03 0.71 to 1.45 0.863

Serine 101.6 (27.4) 0.72 0.50 to 1.03 0.075

Asparagine 41.9 (10.8) 0.73 0.47 to 1.06 0.107

Glycine 207.4 (64.5) 0.69 0.45 to 1.00 0.049

Glutamine 543.4 (101.6) 0.77 0.51 to 1.16 0.213

Histidine 65.0 (23.0) 0.52 0.30 to 0.86 0.009

Threonine 107.4 (41.8) 0.58 0.34 to 0.91 0.015

Alanine 305.2 (110.6) 0.60 0.41 to 0.87 0.006

Citrulline 30.4 (13.1) 0.61 0.39 to 0.92 0.018

Arginine 74.1 (20.3) 0.42 0.27 to 0.64 <0.001

Proline 151.3 (63.3) 0.80 0.53 to 1.11 0.199

α-Amino butyric acid 17.5 (6.0) 0.99 0.70 to 1.39 0.977

Tyrosine 63.5 (17.4) 0.79 0.52 to 1.14 0.234

Valine 210.5 (63.7) 0.78 0.52 to 1.12 0.193

Methionine 22.1 (7.5) 0.75 0.46 to 1.12 0.183

Ornithine 64.9 (13.4) 0.72 0.46 to 1.10 0.126

Lysine 175.7 (49.1) 0.70 0.47 to 1.03 0.069

Isoleucine 69.2 (29.7) 0.90 0.56 to 1.22 0.566

Leucine 120.8 (47.7) 0.87 0.55 to 1.22 0.471

Phenylalanine 62.1 (13.3) 1.23 0.83 to 1.82 0.294

Tryptophan 46.8 (17.8) 0.53 0.34 to 0.83 0.005

3h- kynurenine 0.069 (0.050) 1.85 1.27 to 2.60 0.002

3h- anthranilic acid 0.047 (0.036) 1.37 0.86 to 1.96 0.166

5h- indol- 3- acetic acid 0.070 (0.062) 1.02 0.68 to 1.33 0.923

5h- tryptophan 0.005 (0.009) 1.38 0.99 to 1.74 0.054

Anthranilic acid 0.019 (0.016) 1.47 1.13 to 1.82 0.007

Indol- 3- acetic acid 1.996 (1.771) 0.81 0.51 to 1.12 0.236

Indol- 3- lactic acid 0.862 (0.551) 0.96 0.67 to 1.28 0.810

Kynurenic acid 0.049 (0.027) 1.22 0.83 to 1.73 0.293

Kynurenine 2.448 (0.716) 1.37 0.96 to 1.95 0.083

Picolinic acid 0.054 (0.033) 1.18 0.82 to 1.63 0.358

Quinolinic acid 0.730 (0.515) 1.34 1.00 to 1.69 0.049

Serotonin 0.159 (0.152) 1.09 0.70 to 1.55 0.680

Xanthurenic acid 0.011 (0.012) 0.91 0.60 to 1.29 0.572

Neopterin 0.010 (0.009) 1.50 1.10 to 1.92 0.014

N′-formyl- kynurenine 0.018 (0.014) 0.82 0.46 to 1.14 0.295

The concentrations of PFAAs and metabolites are shown as mean and SD values.
Univariate analysis of PFAAs and metabolites before ICI therapy was conducted using the Cox proportional hazard model for OS. HR, 95% CI 
and P values are shown.
ICI, immune checkpoint inhibitor; OS, overall survival; PFAA, plasma- free amino acid.

https://dx.doi.org/10.1136/jitc-2021-004420
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Figure 1 Multivariate model for prognosis of patients treated with immune checkpoint inhibitor. (A) Kaplan- Meier analysis 
for OS in the subgroups stratified by the multivariate model. The cut- off values between the high- risk and the low- risk groups 
at the following three points: first quartile value, median value and third quartile value. Cox HR (95% CI) and p value (log- rank 
test) are shown. (B) Univariate regression analysis for the association of patient characteristics with the multivariate model. 
The cut- off value of the multivariate model was set at the third quartile score. Continuous prognostic factors were divided at 
the median value. ORs about tumor stage and mutation were not determined because all patients with stage III (recurrent after 
chemoradiotherapy) or Epidermal growth factor receptor mutations were stratified into the high- risk group. (C) Kaplan- Meier 
analysis for OS in the subgroups stratified by the multivariate model in the high (≥50%, n=26) or low (<50%, n=21) PD- L1 
expression group. The cut- off values between the high- risk and low- risk groups were set at the median value. Cox HR (95% CI) 
and p value (log- rank test) are shown. NLR, neutrophil:lymphocyte ratio; OS, overall survival.
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algorithm. Among the deduced 22 immune cell subtypes, 
the proportions of CD8+ T cells, follicular helper T cells, 
and M1 macrophages were significantly abundant in the 
low- risk group (p=0.016, 0.003, and 0.024, respectively), as 
shown in figure 2A. The relative abundance of CD8+ T cells 
in the PBMCs was significantly positively correlated with 
CD4+ memory- activated T cells and significantly negatively 
correlated with memory B cells, monocytes, resting mast 
cells, and activated dendritic cells, with a p value of <0.05 
(figure 2B).

We also examined the correlations between the concentra-
tions of PFAAs/metabolite selected in the multivariate model 
(arginine, serine, glycine, and quinolinic acid) and the 
expressions of immune- related genes, especially those of T 
cell- related genes. As shown in figure 2C, the plasma concen-
trations of arginine and serine were positively correlated 
with the expressions of genes of TCR- mediated signaling 
pathways, such as CD3D, CD3E, CD3G, LCK, ZAP70, and LAT, 
and T- cell activation, such as CD6, ICOS, and CD40 Ligand, 
whereas the quinolinic acid concentration tended to be 
negatively correlated with them. Of note, the arginine and 
serine concentrations also tended to be positively correlated 
with the expressions of genes of CD8 T cells and their acti-
vation, such as CD8A, CD8B, IFN-γ, Perforin, and Granzymes, 
but not with CD4- related genes. Furthermore, arginine and 
serine tended to be negatively correlated with genes related 
to M2 macrophages, such as CD209, FCER1G, VSIG4, and 
CD163, but quinolinic acid tended to be positively correlated 
with them.

Identification and characterization of DEGs between the high-
risk and low-risk patients
Through analysis of RNA sequencing data of PBMCs, 
492 DEGs were identified between the low- risk and high- 
risk groups. Top 10 GO terms obtained by GO term 

enrichment analysis for the identified DEGs included 
the terms ‘T cell activation’, ‘Lymphocyte differenti-
ation’, ‘Nuclear division’, ‘Regulation of T cell activa-
tion’, ‘Mitotic nuclear division’, ‘Regulation of leukocyte 
cell- cell adhesion’, ‘T cell differentiation’, ‘Regulation 
of nuclear division’, ‘Regulation of mitotic nuclear divi-
sion’, and ‘T cell proliferation’ (online supplemental 
figure 4A). In addition, immune- related GO terms, such 
as ‘Regulation of lymphocyte activation’, ‘Positive regula-
tion of cell cycle’, ‘Macrophage activation’, ‘Regulation of 
interferon- gamma production’, ‘Regulation of inflamma-
tory response to antigenic stimulus’, and ‘Regulation of 
dendritic cell differentiation’ were also obtained by this 
analysis (p<0.05) (online supplemental table 3).

Analysis of enrichment pathways in DEGs by KEGG 
identified ‘Staphylococcus aureus infection’, ‘complement 
and coagulation cascades’, ‘pertussis’, and ‘cell cycle’ as 
upregulated pathways in the high- risk group, whereas 
‘NF- kappa B signaling pathway’, ‘T cell receptor signaling 
pathway’, ‘hematopoietic cell lineage’, and ‘primary 
immunodeficiency’ were downregulated (p<0.05) 
(online supplemental figure 4B and online supplemental 
table 4). We further evaluated the RNA sequencing data 
across different pathways by GSEA between the high- risk 
and low- risk groups. ‘Complement cascade’, ‘regulation 
of TLR by endogenous ligand’, ‘interferon alpha beta 
signaling’, ‘cell cycle checkpoints’, ‘biological oxidations’ 
and ‘Toll- like receptor TLR1:TLR2 cascade’ showed a 
significantly positive enrichment in the low- risk group 
(p<0.05). In contrast, ‘cell–cell junction organization’ 
and ‘antigen activated B- cell receptor leading to gener-
ation of second messengers’ were positively enriched in 
the high- risk group (p<0.05) (online supplemental figure 
4C).

Analysis of DEG–AAMGs
Among 492 DEGs identified between the low- risk and 
high- risk groups, 12 were amino acid metabolism- related 
genes (DEG–AAMGs), as shown in figure 3A. The high risk 
group showed upregulation of 9 DEG–AAMGs, including 
SLC1A3, 3- Hydroxy Anthranilic Acid Dioxygenase (HAAO), 
PHGDH, AANAT, ALAS2, FAH, BCAT1, SLC11A1, and 
Glutamate- Ammonia Ligase (GLUL), and dowregulation 
of 3 DEG–AAMGs, including DCT, SLC6A13, and TPH1 
(figure 3B). Annotation of these DEG–AMGs by KEGG 
enrichment pathways identified ‘biosynthesis of amino 
acids’, ‘glysine, serine, and threonine metabolism’, 
‘biosynthesis of cofactors’, ‘cysteine and methionine 
metabolism’, ‘glutamatergic synapse’, ‘arginine biosyn-
thesis’, ‘pantothenate and CoA biosynthsis’, ‘tryptophan 
metabolism’, ‘2- oxocarboxylic acid metabolism’, and 
‘nitrogen metabolism’ as upregulated pathways in the 
high- risk group. In contrast, ‘folate biosynthesis’, ‘tyro-
sine metabolism’, ‘tryptophan metabolism’, ‘synaptic 
vesicle cycle’, ‘GABAergic synapse’, ‘melanogenesis’, 
‘serotonergic synapse’, and ‘tryptophan metabolism’path-
ways were downregulated in the high- risk group (p<0.05) 
(online supplemental figure 5).

Table 3 Multivariate analysis of prognostic factors for 
overall survival

Prognostic factors

Cox hazard model

HR 95% CI P value

Tumor stage (recurrent 
after surgery and stage 
VI/recurrent- after 
chemoradiotherapy)

5.00 0.64 to 39.06 0.125

Performance status 
(2–3/0–1)

3.18 1.35 to 7.51 0.008

PD- L1 expression (50%–
100%/0%–49%)

1.24 0.56 to 2.78 0.596

Monocyte (median) 0.64 0.29 to 1.40 0.264

Neutrophil:lymphocyte 
ratio (median)

2.17 0.75 to 6.25 0.151

Albumin (median) 1.59 0.68 to 3.69 0.283

Multivariate model 
(median)

3.55 1.47 to 8.59 0.005

Each prognostic factor for overall survival was evaluated by 
multivariate Cox proportional hazard analysis.

https://dx.doi.org/10.1136/jitc-2021-004420
https://dx.doi.org/10.1136/jitc-2021-004420
https://dx.doi.org/10.1136/jitc-2021-004420
https://dx.doi.org/10.1136/jitc-2021-004420
https://dx.doi.org/10.1136/jitc-2021-004420
https://dx.doi.org/10.1136/jitc-2021-004420
https://dx.doi.org/10.1136/jitc-2021-004420
https://dx.doi.org/10.1136/jitc-2021-004420
https://dx.doi.org/10.1136/jitc-2021-004420
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Figure 2 Immune cell constitution of PBMCs in the high- risk and low- risk groups. (A) Violin plots depicting immune cell 
subtypes in PBMCs from the high- risk and low- risk groups by the multivariate model. Fractions of immune cells were 
deconvoluted by the CIBERSORT algorithm from RNA- seq data in PBMCs and compared between the high- risk and low- risk 
groups using Student’s t- test. Blue, low- risk group; orange, high- risk group. (B) Heatmap of Spearman’s correlations among 
immune cell subtypes. Red, positive correlation; blue, negative correlation; white, no correlation. (C) Correlations between 
immune- related gene expression in PBMCs and PFAAs/tryptophan metabolites. Heatmap of Spearman’s correlations between 
gene expression levels of immune- related genes and concentrations of 4 PFAAs/metabolite selected in the multivariate 
model (arginine, serine, glycine, and quinolinic acid) are shown. The genes were grouped by immune pathways. Red, positive 
correlation; blue, negative correlation; white, no correlation. NK, natural killer; PBMC, peripheral blood mononuclear cell.
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Figure 3 Identification of AAMGs differentially expressed between the high- risk and low- risk groups. (A) Venn plot of AAMGs 
among the DEGs. (B) Volcano plot of DEGs. AAMGs were labeled in the plot with gene names. Red dots, upregulated genes; 
blue dots: downregulated genes; gray dots, stable genes. (C) Kaplan- Meier estimates of OS in the subgroups stratified by RNA 
expression level of three AAMGs, SLC11A1, HAAO, and PHGDH, in PBMCs. Cut- off values between the high and low groups 
were set at the median of gene expression levels. P values (log- rank test) are shown. (D) Correlations between 12 DEG–AAMGs 
in PBMCs and PFAAs/tryptophan metabolites. Heatmap of Spearman’s correlations between expression levels of 12 DEG–
AAMGs and concentrations of 4 PFAAs/metabolites selected in the multivariate model (arginine, serine, glycine, and quinolinic 
acid) are shown. Red, positive correlation; blue, negative correlation; white, no correlation. (E) Scatter plots of the HAAO 
gene expression in PBMCs versus concentrations of quinolinic acid or arginine (left half). Scatter plots of the SLC11A1 gene 
expression in PBMCs verus concentrations of serine or arginine (right half). The correlations were evaluated by Spearman’s 
rank correlation coefficient analysis. R indicates correlation coefficient. amino acid metabolism- related gene; DEG, differentially 
expressed gene; HAAO, 3- Hydroxy Anthranilic Acid Dioxygenase; OS, overall survival; PFAA, plasma- free amino acid.
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Association between AAMG expression in PBMCs and patient 
prognosis
We further examined the relationships between AAMG 
expression in PBMCs and OS in the 36 patients treated 
with ICI. Expression levels of 20 AAMG mRNA were 
significantly correlated with the OS; upregulation of 
3 AAMGs, VAMP2, PER2, and ACY1, was positively 
correlated with OS, whereas upregulation of 17 AAMGs, 
UNC13B, SH3BP4, SFXN3, SFXN2, ASL, ASH1L, ACAA2, 
PLOD3, ACAT1, PSAT1, ACADS, ALDH3B1, ALDH2 and 
HMGCL, SLC11A1, HAAO, and PHGDH, was negatively 
correlated with OS (log- rank test, p<0.05) (online supple-
mental figure 6 and figure 3C). Notably, SLC11A1, HAAO, 
and PHGDH were also selected as DEG–AAMGs in the 
preceding analysis.

We also performed Spearman’s correlation coefficient 
analysis to investigate the relationships between the 
PFAAs/metabolite selected as the components of the 
multivariate model and the expressions of DEG–AAMGs. 
Heatmap of Spearman’s correlations between the expres-
sion levels of 12 DEG–AAMGs and concentrations of 4 
PFAAs/metabolite, including arginine, serine, glycine, 
and quinolinic acid, are shown in figure 3D. Of note, 
among the three DEG–AAMGs with survival significance, 
the HAAO expression was positively correlated with the 
plasma quinolinic acid (R=0.375, p=0.024) and negatively 
correlated with the plasma arginine (R=−0.378, p=0.023), 
whereas the SLC11A1 expression was negatively correlated 
with the plasma arginine (R=−0.353, p=0.035) and serine 
(R=−0.353, p=0.035) (figure 3E). However, the expression 
of PHGDH gene was not significantly correlated with the 
plasma glycine (R=−0.183, p=0.285) or serine (R=−0.123 
p=0.474) (data not shown).

DISCUSSION
In the present study, we showed that the optimized multi-
variate model with PFAAs and metabolites in plasma can 
stratify the prognosis in patients with NSCLC treated with 
ICI. Notably, this multivariate model was a significantly 
independent factor for OS. In addition, it was useful for 
stratifying the prognosis in the subgroup with higher 
PD- L1 expression. Therefore, our finding might help 
develop a novel biomarker for ICI treatment, which could 
have different values from current biomarkers, such as 
PD- L1 expression.

Amino acid metabolism in the tumor microenviron-
ment (TME) plays key roles in tumor development and 
progression. Tumor cells often exclusively consume 
regional nutrients, such as amino acids, for their survival 
and compete for them with other surrounding cells, such 
as antitumor immune cells. It may thus be noteworthy 
that the plasma PFAAs and metabolites before ICI therapy 
were significantly correlated with OS. The best multi-
variate model for stratifying the prognosis of patients 
treated with ICI was composed of four PFAAs/metabo-
lite, namely, serine, glycine, arginine, and quinolinic acid. 
Among these amino acids, serine and glycine are known 

to form one- carbon pathway involved in the anabolism 
of multiple macromolecular substances, such as proteins, 
nucleic acids, lipids and other biological molecules, to 
support tumor growth.13 Arginine is known as substrate of 
nitric oxide and might regulate proliferation, cell death 
and angiogenesis in cancer cells.14 15 Of note, these amino 
acids are also important for metabolism of immune cells 
and might substantially contribute to antitumor immu-
nity. For example, extracellular serine was reported to be 
one of the key immunometabolites that modulate adap-
tive immunity by controlling T- cell proliferative capacity.16 
Arginine is also widely recognized as a major contributor 
to metabolic reprogramming through control of poly-
amine synthesis for immune cell proliferation and nitric 
oxidase synthesis for cytotoxicity. In addition, enhanced 
arginine uptake from extracellular sources induces meta-
bolic changes in T cells, including a shift from glycolysis 
to oxidative phosphorylation in activated T cells, and 
promotes generation of central memory- like cells with 
stronger antitumor activity and longer survival capacity.17 
Furthermore, infiltrating myeloid- derived suppressor 
cells expressing arginase were reported to suppress the 
efficacy of ICI therapy.18 19 Interestingly, in the present 
study, the concentrations of plasma arginine and serine 
were significantly correlated with the expressions of T 
cell- related genes in PBMCs. Considering their critical 
roles in T- cell survival and activation,16 17 it might be likely 
that they regulate T- cell functions directly.

The metabolism of the tryptophan–kynurenine pathway 
might not directly affect tumor cells but may promote 
tumor progression through modulation of the immuno-
suppressive microenvironment via multiple mechanisms. 
For example, tryptophan- metabolizing enzymes IDO 
(indoleamine 2,3- dioxygenase) /TDO (tryptophan 2, 
3- dioxygenase) were reported to affect antitumor immu-
nity in various tumors.20 21 In the present study, our Cox 
proportional hazard analysis demonstrated that decrease 
in tryptophan and increase in kynurenine- derived metab-
olites, including 3h- kynurenine, anthranilic acid, and 
quinolinic acid, were significantly correlated with poor 
OS, possibly due to impaired antitumor immunity. In 
addition, the concentration of quinolinic acid tended to 
be negatively correlated with the expressions of T cell- 
related genes in PBMCs. Since quinolinic acid is a down-
stream catabolite of tryptophan, which is known to play a 
critical role in T- cell activation, it might be possible that 
tryptophan catabolism, which increases quinolinic acid, is 
associated with T- cell suppression and dysfunction. More-
over, since consumption of tryptophan and accumulation 
of its metabolites are known to activate specific genes, 
such as AhR and GCN2, which drive a tolerogenic macro-
phage phenotype, indicating that they might directly 
regulate myeloid cell functions.22 Consistent with our 
results, similar metabolic features on tryptophan metab-
olites were reported to correlate with the prognosis of 
patients treated with ICI.23 24

Antitumor immune cells are suggested to continuously 
circulate between the TME and the peripheral blood, 

https://dx.doi.org/10.1136/jitc-2021-004420
https://dx.doi.org/10.1136/jitc-2021-004420


12 Azuma K, et al. J Immunother Cancer 2022;10:e004420. doi:10.1136/jitc-2021-004420

Open access 

as illustrated in online supplemental figure 7. Thus, the 
immune cells in the peripheral blood may reflect the 
composition, activity, and metabolic characteristics of 
those within the TME.25 26 Indeed, in the present study, 
when the composition of immune cells was examined 
by deconvoluting whole transcriptomic data of PBMCs 
with the CIBERSORT algorithm, CD8+ T cells that have 
prognostic relevance for tumor immunotherapy27 28 were 
significantly increased in the low- risk group according to 
the multivariate model. In addition, the GO term enrich-
ment analysis of the PBMC transcriptome demonstrated 
that DEGs identified between the low- risk and high- risk 
groups were significantly associated with T- cell prolifer-
ation, differentiation, and activation. Furthermore, the 
KEGG pathway annotation and GSEA analysis of reac-
tome pathways showed that the pathways associated with 
proinflammatory immune responses were significantly 
enriched in the low- risk group. Taken together, these 
results suggested that the PBMCs’ transcriptome in the 
low- risk group might reflect the so- called ‘hot tumor’ 
characteristics in TME.29

Interestingly, the expressions of 2 DEG–AAMGs with 
prognostic significance, HAAO and SLC11A1, showed weak 
but significant correlations with some of PFAA/metabo-
lite concentrations in the present study. The expression 
of HAAO was positively correlated with the plasma quin-
olinic acid concentration. HAAO is an enzyme involved 
in the metabolism of tryptophan–kynurenine pathway 
and reported to catalyze the synthesis of quinolinic 
acid.30 Therefore, higher HAAO expression in PBMCs 
might directly contribute to higher plasma concentra-
tion of quinolinic acid through catabolism of trypto-
phan. In contrast, the expression of SLC11A1 (NRAMP1) 
encoding a proton- coupled metal ion transporter was 
negatively correlated with the plasma arginine concentra-
tion. SLC11A1 is expressed in the lysosomal compartment 
of macrophages and translocates to the phagolysosome 
membrane when activated. Previous reports showed 
that SLC11A1 increases the expression of iNOS, an argi-
nine metabolizing enzyme, and eliminates intracellular 
pathogens.31 Thus, it might be reasonable that higher 
SLC11A1 expression in PBMCs directly contributes to 
reduction of plasma arginine concentration. Based on 
these results, high expression of HAAO and SLC11A1 may 
lead to decrease in tryptophan and arginine, respectively, 
resulting in immune cell suppression in the high- risk 
group in our multivariate model. In contrast, another 
DEG–AAMG with prognostic significance, Phosphoglyc-
erate Dehydrogenase (PHGDH), is a key enzyme for de novo 
serine/glycine synthesis, but the PHGDH expression level 
in PBMCs was not significantly correlated with the plasma 
glycine or serine in this study. Elevated expression of 
PHGDH is reported to be associated with tumor develop-
ment in various tumors32 and poor prognosis in patients 
with cancers, including NSCLC.33 It was also reported to 
be involved in polarization and proliferation of M2 macro-
phage.34 Since deficiency of serine/glycine was reported 
to increase the enzmes for serine/glycine synthesis, 

including PHGDH,35 such negative feedback mechanisms 
might prevent direct correlation between the PHGDH 
expression and serine/glycine concentrations.

In this study, the following nine genes were further 
identified as DEG–AAMGs (figure 3B). BCAT1 is an 
enzyme that converts branched- chain amino acids into 
the corresponding branched- chain α-keto acids and 
generates glutamate, and was reported to be associated 
with tumor growth and progression. BCAT1 was also 
shown to control metabolic reprogramming in activated 
human macrophages.36 GLUL is an enzyme for de novo 
synthesis of glutamine by catalyzing the ATP- dependent 
condensation of glutamate with ammonia. It was reported 
to bias macrophages towards an M1- like phenotype and 
inhibit tumor metastasis.37 SLC1A3 is a glutamate/aspar-
tate transporter that uses aspartate to support cells in the 
absence of extracellular glutamine. Since SLC1A3 expres-
sion promotes the synthesis of glutamate and glutamine, 
tumor cells with high levels of SLC1A3 expression were 
resistant to glutamine starvation and SLC1A3 deprivation 
retarded the tumor growth.38 ALAS2 is a mitochondrial 
enzyme which uses glycine and succinyl- CoA to form 
5- aminolevulinic acid (ALA), a crucial precursor in heme 
synthesis.39 SLC6A13 belongs to the neurotransmitter 
transporter family and promotes ALA- induced accumu-
lation of protoporphyrin IX and photodamage through 
ALA uptake by cancer cells.40 AANAT and TPH1 are 
involved in tryptophan metabolism for melatonin and 
serotonin synthesis. AANAT modulates the phagocytic 
activity,41 whereas TPH1 regulates immunological toler-
ance.42 FAH43 and DCT44 are mainly involved in tyrosine 
metabolism; FAH catalyzes the final step of tyrosine degra-
dation, whereas DCT is a zinc enzyme associated with the 
melanogenic process of flavonoids. Since the roles of 
most of these genes, including SLC1A3, ALAS2, SLC6A13, 
AANAT, TPH1, FAH, and DCT, in immune cells, have not 
been fully elucidated, functional mechanisms of these 
genes remain to be further investigated.

In conclusion, our findings suggested that the profiling 
of PFAAs and metabolites in plasma might be useful for 
stratifying patients who will benefit from ICI treatment. 
Nevertheless, the present study had several limitations. 
The investigation was conducted in a single- center 
cohort with a relatively small number of patients who 
receive anti- PD- 1 antibody without concurrent chemo-
therapy. However, the next phase of clinical trial has been 
ongoing as a larger multicenter cohort study to further 
optimize the multivariate model with PFAAs and metab-
olites in patients with NSCSC who receive combined 
treatment with anti- PD- 1 antibody and chemotherapy 
(jRCT1031190196).
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