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Identifying of biomarkers
associated with gastric cancer
based on 11 topological analysis
methods of CytoHubba

Hua Ma?, Zhihui He?, Jing Chen?, Xu Zhang'* & Pingping Song*

Gastric cancer (GC) is one of the most common types of malignancy. Its potential molecular
mechanism has not been clarified. In this study, we aimed to explore potential biomarkers and
prognosis-related hub genes associated with GC. The gene chip dataset GSE79973 was downloaded
from the GEO datasets and limma package was used to identify the differentially expressed genes
(DEGs). A total of 1269 up-regulated and 330 down-regulated genes were identified. The protein-
protein interactions (PPI) network of DEGs was constructed by STRING V11 database, and 11 hub
genes were selected through intersection of 11 topological analysis methods of CytoHubba in
Cytoscape plug-in. All the 11 selected hub genes were found in the module with the highest score from
PPI network of all DEGs by the molecular complex detection (MCODE) clustering algorithm. In order to
explore the role of the 11 hub genes, we performed GO function and KEGG pathway analysis for them
and found that the genes were enriched in a variety of functions and pathways among which cellular
senescence, cell cycle, viral carcinogenesis and p53 signaling pathway were the most associated with
GC. Kaplan-Meier analysis revealed that 10 out of the 11 hub genes were related to the overall survival
of GC patients. Further, seven of the 11 selected hub genes were verified significantly correlated

with GC by uni- or multivariable Cox model and LASSO regression analysis including C3, CDK1, FN1,
CCNB1, CDC20, BUB1B and MAD2L1. C3, CDK1, FN1, CCNB1, CDC20, BUB1B and MAD2L1 may serve
as potential prognostic biomarkers and therapeutic targets for GC.

Abbreviations

GC Gastric cancer

DEGs Differentially expressed genes

GEO Gene expression omnibus

FC Fold change

GO Gene ontology

KEGG Kyoto encyclopedia of genes and genomes
PPI Protein-protein interactions

STRING  Search tool for the Retrieval of Interacting Genes
MCODE The molecular complex detection

BP Biological process
MF Molecular function
CcC Cellular component

Gastric cancer (GC), a common heterogeneous disease, is one of the most deadly malignancies worldwide,
especially in East Asia'. Previously, many patients missed the optimal diagnosis and treatment time, which leads
to tumor cell metastasis and progression to advanced cancer. Currently, there is a lack of effective biomarkers
for early diagnosis. Comprehensive treatment and cancer surveillance have been identified as one of the major
obstacles to improve the prognosis of gastric cancer® Therefore, a deeper understanding of the mechanisms
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involved in GC progression and identification of potential biomarkers and targets for the diagnosis, prognosis
and therapy of GC are urgently needed.

Bioinformatics analysis methods, are powerful tools for identifying potential biomarkers related to diagnosis
and treatment, including the analysis of gene interaction networks, gene annotation and microarray expression
profiles®. For example, Hao et al. explored 10 genes (COL1A1, COL3A1, COL1A2, COL5A2, FN1, THBSI1,
COL5AL, SPARC, COL18A1 and COL11A1) as potential biomarkers and therapeutic targets for GC, through
analysis data from the Gene Expression Omnibus (GEO) database®. Furthermore, Zhu et al. found that CDK1
overexpression was a prognostic factor for hepatocellular carcinoma (HCC), which makes it a potential thera-
peutic target and biomarker for HCC diagnosis, through analysis data from GEO and the Cancer Genome Atlas
(TCGA)®. Liao et al. identified two genes (SERPINE1 and SPARC) as potential biomarkers and therapeutic
targets for GC®. However, the methods of hub gene selection in the above literatures was single and the potential
molecular mechanism of gastric cancer was still unclear, which needs further exploration.

In this study, DEGs between human GC tissues and normal tissues were identified using Limma based on
GEO datasets. And a directed acyclic graph was constructed with Bingo plug-in to view the overall enrichment
of DEGs. Next we constructed a PPI network of DEGs based on the STRING V11 database and visualized it using
Cytoscape software. And then 11 topological analysis methods were adopted to select the hub genes. Important
module in the network related to the hub genes were abstracted by MCODE. In addition, in order to explore
the role of the 11 selected hub genes in the pathogenesis of GC, we performed GO function and KEGG pathway
enrichment analysis for the genes. Finally, Kaplan-Meier analysis was performed to evaluate the prognostic value
of these hub genes. And Cox model and LASSO regression analysis were used to verify these hub genes further.

Results

Data preprocessing. It can be seen from the weight and residual symbol maps (Fig. la-b) that all the
points were evenly distributed. In the relative logarithmic expression graph (Fig. 1c), all the samples were near
the zero point without outliers. For the RNA degradation diagram (Fig. 1d), generally we need 5'-terminal lower
than 3'-terminal’. Our results showed that the data was in good quality and suitable for downstream analysis.

Differentially expressed genes and enrichment analysis. Though Limma method, a total of 1599
DEGs were identified in the dataset GSE79973, of which 1269 were up-regulated and 330 were down-regulated
(Fig. 2). Cytoscape’s plug-in Bingo generated a directed acyclic graph (Fig. 3), in which branches represented
inclusion relationships. The range of functions defined by the arrow direction from top to bottom was getting
smaller and smaller, the deeper color the higher degree of enrichment. The graph was divided into three parts,
representing BP, MF and CC. These genes were thought to be involved in the regulation of RNA metabolic pro-
cesses, positive and negative regulation of phosphorous metabolic processes in the adaptive immune response
based on somatic cells, extracellular matrix tissue and etc.

PPl network and GC-associated clustering module construction. Based on 1599 DEGs, a PPI net-
work was constructed where 1376 genes formed the network with 14,394 edges (Fig. 4a). And hub genes were
identified by 11 topological analysis methods, where the top 20 genes were selected for each method (Sup-
plementary file 1), among which C3, CDK1, AURKA, CDC20, CCNA2, AURKB, CCNB1, BUBIB, MAD2LI,
UBE2C and FN1 were found in the intersection of at least five methods and were selected as GC related hub
genes. We also obtained the clustering module with the highest score from PPI network of all DEGs (Fig. 4b) by
MCODE algorithm. It was found that all the 11 hub genes were contained in this module.

GO and KEGG functional enrichment analysis for the selected hub genes. In order to explore the
role of the 11 selected hub genes, we performed GO function and KEGG pathway analysis for them. The results
of GO function enrichment indicated GO terms for 187 biological processes (BP), 29 cell components (CC) and
7 molecular functions (MF), see Supplementary file 2. Figure 5 showed the top 10 terms for BP, CC and all the
terms for MF and KEGG. Among these top terms, we found 6 terms associated with GC and some similar can-
cers. These terms were mitotic spindle checkpoint, anaphase-promoting complex, cell cycle, viral carcinogenesis,
cellular senescence and p53 signaling pathway. Kim et al. found that frequent mutations of human Mad2, but not
Bubl, in gastric cancers cause defective mitotic spindle checkpoint®. Zhu et al. found that the miR-383 inhibited
the cell cycle progression of gastric cancer cells via targeting cyclin E2°. Uozaki et al. studied that gastric cancer
and viral carcinogenesis through epigenetic mechanism'. Ji et al. found that microRNA miR-34 was a direct
target of p53, which played an anti-cancer role in the downstream of p53 pathway'!. By modulating the cellular
senescence through E2F/miR-106b-5p/p21 axis, Dong et al. found a novel mechanism by which BRD4 regulated
cancer cell proliferation and provided new insights into using BET inhibitors as potential anticancer drugs'?. Dai
et al. found that activation of anaphase-promoting complex by p53 induced a state of dormancy in cancer cells
against chemotherapeutic stress'>.

Survival analysis.  Using the Kaplan-Meier plotter database, the prognostic value of the 11 hub genes were
evaluated in GC patients. All the 11 hub genes were up-regulated (logfoldchange(FC) > 1, Table 1). It was found
that 10 out of the 11 hub genes including C3, CDK1, AURKA, CCNA2, AURKB, CCNBI1, BUB1B, MAD2LI,
FN1 and UBE2C (p-value < 0.05) had significant difference of overall survival between high and low expression.
The results showed that the survival rate of high expression C3, AURKB, FN1 and UBE2C groups were signifi-
cantly lower than that of low expression groups, and the survival rate of low expression CDK1, AURKA, CCNA2,
CCNBI1, BUB1B, MAD2L1 groups were significantly lower than that of high expression (Fig. 6).
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Figure 1. Maps to check the quality of the data. (a) is a weight map, (b) is a residual symbol map, (c) is a
relative logarithmic expression and (d) is an RNA degradation map. [The figures were created by R version 3.5.1
(https://www.r-project.org/)].

Verification based on another dataset. Based on dataset GSE19826, Limma identified 333 DEGs. These
DEGs were imported into the STRING V11 database to obtain a TSV file of protein interactions. And hub genes
were identified by 11 topological analysis methods, where the top 20 genes were selected for each method (Sup-
plementary file 3), among which FN1, CDK1, MMP9, CCNB1, AURKA, UBE2C, AURKB, CCNA2, FOXM1,
ITGB1, EZH2, RRM2, THBSI, CXCL8, CDC20, COL1A1, BUB1B, MAD2L1, HIF1A and CDH2 were found in
the intersection of at least five methods, including 10 out of the 11 hub genes in the above conclusion, except C3.
Important clustering module related to the 11 hub genes were abstracted by CytoHubba which had 133 nodes
and 1077 edges (Supplementary Fig. 1a). We obtained two clustering modules with the highest score from PPI
network of all DEGs (Supplementary Fig. 1b,c) by MCODE algorithm. It was found that all the 11 hub genes
were contained in this module.

Cox analysis and LASSO regression analysis. The analysis results of correlation between DEGs
expression and overall survival (OS) as well as other clinical features investigated by Cox analysis were shown in
Table 2. The results suggested that six clinical features including age, stage, grade, T, M and N and six hub genes
including C3, CDK1, FN1, CCNB1, CDC20 and BUB1B were revealed significantly correlated with OS (p-value
< 0.05) by univariate or multivariate Cox analysis. The LASSO method established regression model and con-
tinued to screen the 11 hub genes. By setting different /, the path change graph of the regression coeflicient was
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Figure 2. Volcanic map of DEGs, red color represents DEGs in GC including up-regulated and down-regulated
genes. [The figure was created by Limma (http://www.bioconductor.org/packages/release/bioc/html/limma
html)].

obtained (Fig. 7a). The trend of each curve in the figure represented the change of the regression coeflicient path.
It could be seen that the regression coefficients were mostly compressed to zero, which showed that the model
had a good advantage in dimensionality reduction and variable selection. Each point in Fig. 7b corresponded to
a penalty value, and the position of the vertical dashed line represented the number of genes selected under the
optimal model. It could be seen from the figure that there were five genes under the optimal model, including
C3, CCNBI, CDC20, FN1 and MAD2LI1. Therefore, seven of the 11 selected hub genes including C3, CDKI1,
FN1, CCNB1, CDC20, BUB1B and MAD2L1 were verified through Cox analysis or LASSO regression analysis
which could be taken as independent prognostic biomarkers for GC.

Discussion

The study of molecular genetics and signal transduction pathways are helpful for further understanding of the
pathogenesis and early diagnosis of GC. Therefore, recognition of DEGs for GC based on transcriptome micro-
array datasets may contribute to early diagnosis and develop effective therapies.

In our study, a total of 1599 DEGs were identified in the dataset GSE79973, of which 1269 were up-regulated
and 330 were down-regulated. Based on these DEGs, a PPI network was constructed where 1376 genes formed
the network with 14,394 edges. And 11 hub genes were selected through intersection of 11 topological analysis
methods. Clustering module related to these 11 genes were obtained by MCODE. In order to explore the role of
the 11 selected hub genes in the pathogenesis of GC, we performed GO function and KEGG pathway enrichment
analysis for them and found that the genes were enriched in a variety of functions and pathways. Kaplan-Meier
analysis revealed that 10 out of the 11 hub genes were related to the overall survival of GC patients. Cox analysis
and LASSO regression analysis showed that seven of the 11 selected hub genes were significantly correlated
with GC.

The overall aim of this study was to identify the hub genes which may serve as potential biomarkers for GC
diagnosis and therapy, and to further explore the potential mechanisms of GC by integrated profiling analysis.
In our study, seven of the 11 selected hub genes including C3, CDK1, CCNB1, BUB1B, MAD2L1, FN1 and
CDC20 were considered to be the most likely independent prognostic biomarkers associated with GC. And
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Figure 3. Enrichment analysis of DEGs. The deeper color the higher degree of enrichment. [The figure was
created by Bingo plug-in in Cytoscape (https://cytoscape.org/)].

five of them were newly found including C3, CDC20, CCNB1, BUB1B and MAD2L1 compared with previously
published results using the same dataset. Some relevant literatures suggested from biological point of view
that most of these found hub genes played important roles on GC. Kitano et al. showed that the synthesis and
secretion of C3 by all the tested GC derived cell lines in response to TNE, suggested that C3 may be secreted in
the gastric wall as part of its normal physiology, or as a result of tumour pathology and thereby participate in
local immune or inflammatory responses'®. Lee et al. found that the high expression of CDK1 in GC patients
may imply a strong biological ability of tumor invasion and CDK1 was the target gene of mir-490-5p. Down-
regulation of mir-490-5p and up-regulation of CDKI1 can promote the proliferation ability of GC cells and the
transformation of G1/S phase’. A study by Kidokoro et al. found that CDC20 was often up-regulated in many
types of tumors and significantly inhibited by ectopic introduction of p53. Additionally, treatment of cancer
cells with siRNA against CDC20 can induce G2/M arrest and inhibit cell growth'®. CCNB1 knockdown by RNA
interference was found to significantly inhibited proliferation, migration and invasion of HCC cells'”. Hudler
et al. found that the expression of BUBIB in GC tissues was significantly higher than that in adjacent normal
tissues, nearly (8.875 =+ 1.08) times'S. Frio et al. found that at least one BUB1B mutation can result in autosomal
recessively inherited susceptibility to gastrointestinal cancer, as do mutations in MUTYH and the mismatch-
repair genes'®. FN1 was an significant regulatory factor promoting the development and formation of various
cancer cells, such as laryngeal, skin squamous carcinoma®**! and brain glioblastoma??. Zhang et al. found that
miR-200c can inhibit the migration, proliferation and invasion of GC cells in vitro by directly combining with
FN1, which indicated that mir-200c and FN1 may be potential biomarkers or therapeutic methods for GC*. A
study by Wang et al. confirmed the prognostic value of two key mitotic checkpoint genes MAD2L1 and BUBI,
which have been included in multiple gene expression signatures for breast cancer prognosis. And they also found
that these genes were biologically relevant to breast cancer progression, as suppression of their expression was
associated with reduced tumor cell growth, migration and invasion®.

This study provides important clues for exploring potential biomarkers and targets for the diagnosis, prognosis
and treatment of GC. In future work, if condition permits, we hope to conduct some experiments to verify the
important relation between these hub genes and GC from biological point of view.
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Figure 4. PPI network and highest score clustering module. (a) PPI network, yellow color indicates the hub
genes, red nodes represent DEGs. (b) The highest score clustering module generated by MCODE, yellow color
indicates the hub genes, red nodes represent DEGs. [The figures were created by STRING V11.0 (https://strin
g-db.org/) and MCODE plug-in in Cytoscape (https://cytoscape.org/)].

Conclusion

Through 11 topological analysis methods, we identified 11 hub genes for GC. We validated these hub genes
through functional enrichment analysis, the clustering module with the highest score, relevant literatures,
Kaplan-Meier analysis, Cox analysis and LASSO regression analysis. The results suggested that seven of the 11
selected hub genes including C3, CDK1, CCNB1, BUB1B, MAD2LI, FN1 and CDC20 may serve as potential
prognostic biomarkers and therapeutic targets for GC. These results may provide a theoretical direction for future
research with regards to the molecular mechanisms of the progression of GC.
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Figure 5. GO and KEGG functional enrichment analysis. (a) Top 10 terms in BP category. (b) Top 10 terms in
CC category. (c) All terms in MF category. (d) All terms in KEGG pathway analysis. (The figures were created by
R version 3.5.1 based on the KEGG pathway database www.kegg jp/kegg/keggl.html).

Gene symbol | Log FC p value Adj p val

FN1 2.182008173 | 5.82E--06 4.96E-05

UBE2C 2.1341329 0.000173126 | 0.000693925
CCNB1 1.736845192 | 0.000104015 | 0.000459134
MAD2L1 1.635046726 | 2.17E-05 0.000133896
CCNA2 1.582022494 | 4.42E-05 0.000231949
C3 1.561270443 | 0.006073294 | 0.013605247
CDK1 1.321178004 | 0.002097257 | 0.005543793
BUBIB 1.318731789 | 0.002695901 | 0.006858173
CDC20 1.301949207 | 0.005086582 | 0.011692519
AURKB 1.240762245 | 4.32E-05 0.000227121
AURKA 1.023628153 | 0.002870315 | 0.007224631

Table 1. Regulation of 11 hub genes.

Materials and methods

Dataset. We collected the set of gene expression profiles of GC from the Gene Expression Omnibus database
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE79973). This dataset includes 10 GC samples and 10
normal gastric samples. The platform was GPL570 (Affymetrix Human Genome U133 Plus 2.0). This dataset
was used by previous studies*®?*-?’, where the authors mainly clarified the emerging role of long non-coding
RNA (IncRNA) in cancer development, explored novel IncRNA candidates, identified key candidate genes and
circRNA, and explored the molecular mechanism of GC through comprehensive analysis of mRNA and miRNA
expression profiles. Here we aimed to identify potential prognostic biomarkers of GC based on 11 topological
analysis methods and used the MCODE method and survival analysis to verify these hub genes.
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Figure 6. Survival plot of the significant genes by Kaplan Meier test. The Kaplan—Meier test p-value < 0.05: (a)
C3, (b) CDK1, (c) AURKA, (d) CCNA2, (¢) AURKB, (f) CCNB1, (g) BUBIB, (h) MAD2LI, (i) FN1 and (k)
UBE2C. The test p-value > 0.05: (j) CDC20. [The figures were created by Kaplan-Meier (https://kmplot.com/
analysis/index.php?p=service&cancer=gastric)].
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Univariate Cox Multivariate Cox

Variables | HR HR.95L HR.95H p value Variables | HR HR.95L HR.95H p value

Age 1.022212351 | 1.005811513 | 1.038880621 | 0.007764558 | Age 1.03433333 1.016841941 | 1.052125601 | 0.000104766
Grade 1.420247616 | 1.023095183 | 1.971569532 | 0.036046698 | Grade 1.567172974 | 1.103167545 | 2.226344622 | 0.012138576
Stage 1.653117193 | 1.348649804 | 2.026320283 | 1.30E-06 Stage 1.353901129 | 1.024986088 | 1.788364047 | 0.032862236
T 1.39801979 | 1.137483947 | 1.718230255 | 0.001451642 | M 2.195910547 | 1.337728548 | 3.60463499 | 0.001866895
M 2.372585415 | 1.502749378 | 3.745908422 | 0.000208927 | C3 1.001531756 | 1.00010612 | 1.002959424 | 0.035207018
N 1.387710481 | 1.195331802 | 1.611050903 | 1.68E-05 CDK1 0.958783737 | 0.928669867 | 0.989874107 | 0.009736787
C3 1.161967017 | 1.048765553 | 1.2873872 0.004099372 | BUB1B 8.568665988 | 1.604562951 | 45.75827753 | 0.011965015
CDK1 1.129353067 | 1.012197799 | 1.260068291 | 0.029485595 | FN1 1.100769547 | 1.00269362 | 1.20843852 | 0.043751763
FN1 1.125876038 | 1.008258757 | 1.25721383 | 0.035198627 | CCNB1 1.478932638 | 1.056967554 | 2.069355618 | 0.022416923
BUB1B 1.122389719 | 1.00533721 1.25307078 | 0.03990889 | CDC20 0.689337825 | 0.509422258 | 0.932795201 | 0.015918054

Table 2. Univariate and multivariate Cox analysis.
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Figure 7. LASSO regression model analysis. (a) is the path change chart of regression coefficient and (b) is the
change curve of penalty term. [The figure was created by R version 3.5.1 (https://www.r-project.org/)].

Data preprocessing. The fitPLM function in the affyPLM package was adopted to perform regression cal-
culation on the dataset. Then, weight map, residual symbol map, relative logarithmic expression map and RNA
degradation map were used to check whether the data quality was suitable for downstream analysis. Finally, the
normal samples and gastric cancer samples were processed by RMA method and the missing values were added
by nearest neighbor method (KNN, k-Nearest Neighbor).

Identification of DEGs and enrichment analysis.  The ImFit and eBayes functions in the limma package
were used to identify the DEGs between GC and control samples. The threshold values log;foldchange(FC) > 1
and p-value < 0.05 indicated up-regulated DEGs, while log; (FC) < —1and p-value < 0.05 indicated down-reg-
ulated DEGs. we also used the Cytoscape plug-in Bingo to examine the enrichment of all DEGs in the biological
processes of Biological Process (BP), Molecular Function (MF) and Cellular Component (CC)*.

PPI network and GC-associated clustering module construction. We constructed a PPI network of
DEGs using the STRING V11 database®. Based on the genes in the network, we searched for hub genes through
11 topological analysis methods®. The selected hub genes were verified by MCODE method.

GO function and KEGG pathway enrichment analysis. To identify the potential functions of the
selected hub genes, we used the clusterProfiler package in R to perform GO functions and KEGG pathway analy-
sis of these genes®!. ClusterProfiler is an R package of Bioconductor which can perform statistical analysis and
visualization of functional clustering of gene sets or gene clusters.

Survival analysis. The Kaplan-Meier plotter database (http://kmplot.com), an online tool to evaluate the
prognostic values of genes in breast, ovarian, lung and gastric cancer patients, was applied to analyze the asso-
ciations between the identified hub genes and overall survival*?. The hazard ratio (HR) and its 0.95 confidence
intervals were calculated. p < 0.05 was used to indicate a statistically significant difference®.
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Verification based on another dataset. In order to validate the efficiency of our method, another
mRNA expression dataset (GSE19826) was downloaded from the GEO database (https://www.ncbi.nlm.nih.
gov/geo/), the mRNA profifiles were based on the GPL570 platform (Affymetrix Human Genome U113 Plus
2.0 Array). The GSE19826 dataset included 15 paracancerous tissues and 12 tumor tissues. The same method
was carried out on this dataset. Firstly, the Limma method was used to identify DEGs between GC tissues and
paracancerous tissues. Secondly, a PPI network of DEGs was constructed based on the STRING V11 database.
Based on the genes in the network, we searched for hub genes through 11 topological analysis methods in the
CytoHubba. Then, the clustering module related to these hub genes were constructed by CytoHubba and the
selected hub genes were verified by MCODE method.

Cox analysis and LASSO regression analysis. The TCGA data with corresponding clinical features
of GC was downloaded from TCGA database (https://tcgadata.nci.nih.gov/tcga/) which contained 375 tumor
tissue samples and 32 paracancerous tissue samples. Cox proportional hazard models of univariate and mul-
tivariate were used to calculate 95% confidence interval (CI) and hazard ratio (HR) for the DEGs and clinical
features where survival package was used for statistical analysis. Univariate Cox analysis model was used to
compare the relationship between clinical features and survival rates. Multivariate Cox analysis model was used
to evaluate how the genes expression and the clinical factors affect overall survival (OS). p < 0.05 was set as the
threshold. LASSO regression analysis was applied to confirm the selected hub genes further. When solving the
regression model, LASSO fitted the model that contained A prediction variables by constraining or punishing
the coefficients and compressing the coefficient estimation value to zero direction, so that the model had a better
interpretation effect. The screening of related variables could be done through the cv.glmnet and glmne function
in R language.

Consent for publication.  All the authors have consented for the publication.

Data availability
The datasets used and analyzed during the current study are available online.
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