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Review Article

introDuCtion

More than half a century has passed since Asherman[1] 
first described the frequency, etiology, and symptoms of 
intrauterine adhesion (IUA) in 1948. Since then, a numerous 
studies addressing the etiology and treatment of IUAs have 
been conducted. IUA refers to the destruction of the basal 
layer of the endometrium and is attributed to multiple 
causes.[2] These lead to adhesion between the uterine walls, 
which in turn results in clinical manifestations, such as 
amenorrhea, hypomenorrhea, pelvic pain, infertility, and 
habitual abortion.[3,4] IUAs generally occur after curettage 
and various forms of hysteroscopic surgery, including 
hysteroscopic resection of multiple fibroids and resection 
of the septa.[5] The primary causes of IUA include trauma to 
the basal layer of the endometrium and uterine infections.[6]

Histologically, IUA is defined as the condition in which the 
endometrium becomes fibrosed, which leads to impaired 
endometrium function, uterine cavity deformation, and 
stenosis.[2] In IUA, the endometrial stroma is mainly 
replaced by large fibrous tissues. IUA is characterized by the 
destruction of the border between the basal and functional 
layers of the endometrium. In addition, the functional layer 
no longer responds to hormone stimulation, and fibrous 
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scarring occurs across the uterine cavity. Vascularity 
might be abundant and may comprise thin‑walled and 
dilated vessels; however, in most cases, the tissues become 
avascular.[7] Fibrosis may limit uterine myometrial activity 
and reduce the perfusion of estrogen and progesterone, 
eventually resulting in atrophy.[7]

The treatments for IUAs include adhesiolysis and preventing 
the recurrence of adhesion. The primary objective of 
treatment is to restore the normal shape and volume of 
the uterine cavity, and the secondary goals of intervention 
include the treatment of associated symptoms (i.e., infertility 
and amenorrhea) and prevention of recurrence of adhesion.[8] 
With the application of intrauterine devices and antibiotics, 
the probability of recurrence of uterine cavity adhesion 
after treatment is gradually reduced.[9] In the near future, 
improvements in infertility outcomes, including pregnancy 
rates, and live birth rates are expected to serve as the 
primary indicators for defining complete resolution of 
IUAs. However, for patients with moderate‑to‑severe IUAs, 
recurrence of adhesion after hysteroscopic adhesiolysis still 
has a high incidence and remains difficult to treat. Moreover, 
the effects of IUA treatment on reproductive outcomes 
remain to be established.

Intrauterine devices and high doses of estrogen therapy are 
often used to prevent the recurrence of uterine adhesions 
and to promote endometrial repair.[7,10] However, it is worth 
noting that estrogen therapy alone has poor efficacy and is 
usually accompanied by adverse effects, which significantly 
limit its widespread application. Endometrial fibrosis has 
been implicated in the development of IUA. Thus, the 
prevention of endometrial fibrosis is fundamental to IUA 
treatment. The Hippo signaling pathway has been previously 
demonstrated to participate in the fibrogenesis of various 
organs and cross talks with other signaling pathways, 
such as the transforming growth factor‑β (TGF‑β) and 
Wnt/β‑catenin signaling pathways, through a variety of 
mechanisms.[11,12] In this review, we discuss the role of the 
Hippo pathway in endometrial fibrosis in IUAs and focus 
on the mechanisms by which the Hippo pathway integrates 
and interacts with other signaling pathways.

hippo signaling pathWay

The Hippo pathway, which was first discovered in 
Drosophila, is a highly conserved signaling pathway that 
plays essential roles in growth control. The first core 
components of the Hippo pathway to be identified include the 
tumor suppressor genes such as Warts, Hippo, and Salvador, 
which belong to the hyperplastic group of Drosophila tumor 
suppressors.[13] Mutations in the Warts, Hippo, and Salvador 
genes lead to extensive tissue overgrowth.[13] Hippo interacts 
with Salvador to phosphorylate and activate the complex 
formed by Wts and Mats.[14] Yorkie is the transcriptional 
co‑activator of the Hippo pathway. Subsequent studies have 
demonstrated that Yorkie can be directly phosphorylated and 
inhibited by Wts.[15,16]

The core components and downstream effectors of the Hippo 
pathway in Drosophila are highly conserved in mammals 
and include the following: Mst1/2 (Hippo homolog), 
Sav1 (Sav homolog), MOB1 (homolog of Mats), Lats1/2 
(Wts homologs), TAZ (transcriptional co‑activator with 
PDZ‑binding motif), and YAP (Yorkie homolog).[13] Mst1/2 
activates and phosphorylates Lats1/2 and MOB1, which in 
turn associate to form a complex that phosphorylates and 
inhibits the transcription of the co‑factors TAZ and YAP.[17,18] 
As transcriptional co‑activators, TAZ and YAP themselves 
cannot directly bind DNA but must form complexes with 
DNA‑binding transcription factors, such as TEADs, Smads, 
and TBX5, to regulate the expression of downstream 
targets.[19,20] Activation of MST and LATS kinases is 
considered as an indicator of an activated Hippo pathway, 
which leads to the phosphorylation of TAZ and YAP. In turn, 
phosphorylated TAZ and YAP are exported to the nucleus 
and are retained in the cytoplasm, making them unable to 
bind TEAD factors and inhibiting the expression of target 
genes.[17,21] The active Hippo pathway inhibits the activities 
of TAZ and YAP and thus suppresses the expression of genes 
driven by TAZ/YAP. Conversely, when the Hippo pathway 
is repressed, TAZ and YAP accumulate in the nucleus and 
drive target gene expression by forming complexes with 
TEAD factors.[21,22] Thus, the Hippo pathway primarily acts 
by restraining the nuclear import of TAZ and YAP.

hippo pathWay anD norMal enDoMetrial 
DevelopMent

The human endometrium is a unique tissue that undergoes 
regular processes of substantial and periodic proliferation, 
differentiation, sloughing, and renewal during a woman’s 
reproductive years.[23] Endometrial autocrine and paracrine 
factors change throughout the menstrual cycle and are 
thought to play vital roles in the regulation of endometrial 
physiology.[24] Previous studies have confirmed that members 
of the Hippo pathway are expressed in the endometrium 
and that their expression patterns change throughout the 
menstrual cycle, suggesting that the Hippo pathway is 
involved in regulating endometrial physiology.[25] Compared 
to the proliferative phase, Hippo and LATS kinases are 
upregulated during the secretory phase of the menstrual 
cycle.[25] Meanwhile, TAZ expression is downregulated 
during decidualization of endometrial stromal cells.[26,27]

Endometrial stromal cells undergo morphological and 
functional changes from the proliferative phase to the 
secretory phase. Stromal cells differentiate into decidual 
cells, and the endometrium undergoes decidualization 
during embryo implantation. Decidualization spreads from 
the implantation site to the whole uterine cavity, and the 
decidua serves as a contact inhibition barrier that prevents 
invasion by trophoblast cells for the whole duration of 
pregnancy.[27,28] Decidualization is vital for the establishment 
and maintenance of pregnancy. However, the molecular 
mechanisms that regulate the transformation of endometrial 
stromal cells during decidualization are still unknown. As 
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a contact inhibitory signaling pathway, the Hippo pathway 
inhibits cell proliferation and promotes cell apoptosis when 
cells are completely surrounded by their neighbors.[25,29] 
Decidualization is the differentiation response of endometrial 
stromal cells, during which the Hippo pathway is activated 
and its downstream effector, TAZ, is downregulated along 
with its disappearance from the nucleus.[27] Moreover, another 
effector, YAP, was upregulated in human decidual cells and 
was found to potentially influence the decidualization of 
endometrial stromal cells.[28]

The Hippo pathway is required for the actual proliferation 
and differentiation of stem cells and is involved in 
processes, such as regulation of reproductive stem cell 
differentiation to improve ovarian aging[30] and epithelial 
stem cell differentiation to promote lung maturation.[31] 
Endometrial stem cells are responsible for regenerating the 
endometrium,[32] and this process is regulated by estrogen. 
However, estrogen does not directly act on endometrial 
mesenchymal stem cells, but influence stem cells via 
paracrine signaling to promote endometrium regrowth.[33] 
Moreover, TAZ can be activated by estrogen.[34] These 
observations suggested that estrogen regulates endometrial 
stem cell differentiation via the Hippo pathway.

hippo pathWay anD fibrogenesis

Recent studies have implicated the Hippo pathway and its 
transcriptional effectors, TAZ and YAP, as necessary for tissue 
fibrosis and myofibroblast activation.[12] The Hippo/TAZ 
signaling pathway has been proven to play a major role in 
regulating the epithelial–mesenchymal transition (EMT), to 
promote the expression of α‑smooth muscle actin (α‑SMA) 
and connective tissue growth factor (CTGF),[35,36] and to 
regulate the growth and differentiation of stem cells. As 
a contact inhibitory signaling pathway, the Hippo/TAZ 
pathway is related to cell differentiation and organ size 
control.[25] It is widely believed that the Hippo/TAZ pathway 
is activated when cells enter the differentiation phase or 
when an organ approaches its final size, which in turn 
inhibits cell proliferation and regulates the EMT. TAZ is an 
important transducer of the Hippo pathway that modulates 
the EMT and cell proliferation. Activated TAZ translocates 
from the cytoplasm into the nucleus and binds with various 
transcription factors, such as TEAD and Smads. TAZ has 
been suggested to regulate the expression of α‑SMA and 
CTGF.[35‑37] Activation of the Hippo pathway leads to TAZ 
phosphorylation and limits cytoplasmic retention,[37] which 
in turn inhibits TAZ‑induced cell proliferation and the EMT 
process.

EMT has been well established as the key mechanism that 
mediates fibrosis during tissue repair. The most advanced 
form of EMT is the epithelial/fibroblast–myofibroblast 
transition, during which epithelial and stromal cells 
acquire a myofibroblast phenotype and is characterized 
by the expression of α‑SMA and increased secretion 
of collagen I . [38,39] The mesenchymal–epithelial 
transition (MET), the reverse process of EMT, is known 

to be crucial in counteracting fibrotic processes.[40] The 
balance between EMT and MET critically determines the 
convalescence of organ fibrosis. A previous study reported 
that promotion of MET and reversal of EMT could relieve 
liver fibrosis.[40] EMT and MET were also demonstrated to be 
involved in the fibrosis of pelvic endometriosis,[41] conversion 
of endometriotic stromal cells into myofibroblasts, and the 
upregulation of α‑SMA and collagen I.[39] Notably, the 
Hippo signaling pathway was also demonstrated to play a 
role in the development and progression of endometriosis, 
which modulates endometrial stromal cell activity through 
transcriptional regulation of CTGF.[42]

Cross talk betWeen hippo anD Wnt signaling

It is generally accepted that the Wnt gene family (especially Wnt4, 
Wnt5a, and Wnt7a) is highly involved in endometrial 
development.[43] The Wnt family of proteins comprises a large 
group of highly conserved and secreted glycoproteins that act 
via autocrine or paracrine mechanisms. Wnt proteins stimulate 
intracellular signaling pathways, regulate gene expression 
in the nucleus, and determine cell fate. Wnt4 and Wnt5a are 
involved in decidualization of endometrial stromal cells.[44] 
Wnt7a knockout mice were demonstrated to have thinner 
endometria and lack the endometrial glands.[44]

The involvement of Wnt in myofibroblast biology was first 
demonstrated one decade ago. Since then, numerous studies 
have suggested the critical role of the Wnt pathway in the 
fibrogenesis of organs, such as the heart and lungs.[45,46] 
The Wnt/β‑catenin pathway is aberrantly activated in those 
fibrotic diseases. Aberrant activation of the Wnt/β‑catenin 
pathway is implicated in endometriotic tissues and was 
demonstrated to mediate fibrogenesis in endometriosis.[47] 
Silence or inhibition of β‑catenin attenuates TGF‑β‑induced 
fibrotic process[48] and decreases the expression of α‑SMA, 
collagen I, and CTGF in endometriotic stromal cells.[39]

The first evidence of cross talk between Hippo and Wnt 
pathway was reported by Varelas et al.,[49] who demonstrated 
that TAZ inhibits DVL phosphorylation, which in turn 
inhibits the Wnt/β‑catenin signaling pathway. Their findings 
also suggested that overexpression of LATS or MST 
leads to cytoplasmic localization of TAZ, which inhibits 
Wnt3a‑mediated activity. Increased expression of nuclear 
β‑catenin has been detected in the kidneys of TAZ knockout 
mice.[49,50] Moreover, increased heart size and higher 
levels of nuclear β‑catenin were found in heart‑specific 
Salvador knockout mice, which suggested the inhibitory 
role of Hippo pathway in the Wnt/β‑catenin pathway.[51] 
However, Azzolin et al. demonstrated that β‑catenin can 
regulate the expression of TAZ.[52,53] In the absence of Wnt, 
phosphorylated β‑catenin forms a destruction complex with 
GSK3, Axin, and APC that is required for the association of 
TAZ with the β‑TrCP/E3 ligase complex. In the presence of 
Wnt, β‑catenin phosphorylation is blocked, which leads to 
dissociation of both TAZ and β‑catenin from the destruction 
complex, which subsequently promotes the expression of 
the target genes.
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Cross talk betWeen hippo anD transforMing 
groWth faCtor‑β signaling

During the menstrual cycle, members of the TGF‑β 
superfamily are dynamically expressed in the endometrium 
under hormonal regulation. The stroma and glands of 
endometrium secrete TGF‑β into the uterine fluid.[54] In 
addition, the protein and mRNA expression of TGF‑β is 
increased during menstruation, which suggests that TGF‑β 
is involved in the initiation of menstruation.[54] Furthermore, 
TGF‑β plays a specific role in the occurrence and aggravation 
of IUA. Aberrant upregulation of TGF‑β is observed in 
the endometrium during IUA, and the observed increase 
in TGF‑β was found to be positively correlated with the 
degree of IUA.[55]

TGF‑β has been considered as a key mediator for fibrosis.[56] 
It plays a vital role in modulating wound healing and tissue 
repair. TGF‑β activation is associated with excessive scaring 
and fibrosis, which are particularly pronounced at wound 
sites,[57] and blockade of TGF‑β activity could reduce 
scaring.[58] TGF‑β upregulates the expression of extracellular 
matrix (ECM) proteins and α‑SMA via Smad2/3 and is 
implicated in the progression of multiple fibrotic diseases, 
including idiopathic pulmonary fibrosis and renal fibrosis.[59] 
It is well known that fibrosis is primarily mediated by 
the epithelial/fibroblast–myofibroblast transition.[60] Most 
ECM components, such as collagens, are produced by 
myofibroblasts. During fibrosis, myofibroblasts aberrantly 
assemble in the wound site, leading to the formation 
of fibrous scar tissue. In fibrous scar tissue, the highly 
crisscrossed structure of collagen makes the fibrous scar 
highly resistant to protease degradation, which results in 
irreversible fibrosis and damage of tissue architecture.[61] 
Although the biological functions of myofibroblast have been 
well recognized, to date, no strategies have been established 
to reverse fibrosis.

TGF‑β signaling is involved in the differentiation of 
fibroblasts into myofibroblasts[62] and is a key regulator 
of myofibroblast biology.[61] Recent studies have also 
revealed cooperative interactions between YAP and 
TGF‑β‑regulated Smads that couple mechanotransduction 
in fibroblasts to TGF‑β‑induced profibrotic gene 
expression programs that are important in fibrosis.[63] 
Therefore, TGF‑β signaling is likely to be regulated by 
Hippo signaling. When Hippo signaling is activated, 
cytoplasmic localization of TAZ prevents the interaction 
of TGF‑β‑regulated Smads with TAZ and restricts 
Smads’ nuclear accumulation and activity.[17] In turn, 
Smads blunts transcriptional responses to TGF‑β, 
thereby inhibiting TGF‑β‑induced EMT. Hippo signaling 
is mediated by LATS kinases. Knockdown of LATS 
kinases was found to restore nuclear localization of 
TAZ and TGF‑β/Smads signaling.[64] However, as a 
key aspect of this cross talk, TGF‑β mediated TAZ 
upregulation via a Smad3‑independent mechanism during 
experimental kidney fibrosis.[65] Moreover, TAZ‑induced 

upregulation of collagen I could be potentiated by 
TGF‑β.[12] Accumulating evidence has suggested that, 
during fibrosis, the TGF‑β and Hippo signaling pathways 
work not as isolated entities but as integrated signaling 
networks that form the molecular framework.[61] TAZ 
knockdown or deficiency was found to attenuate 
myofibroblast response to TGF‑β signaling, reduce matrix 
synthesis and contractile capability, and downregulate 
αSMA expression.[66]

ConClusions anD future perspeCtives

Despite considerable advances in the etiology and treatment 
of IUAs, the cellular and molecular mechanisms underlying 
the development of IUAs remain unclear. Furthermore, 
no efficient therapy has been developed so far to prevent 
IUAs’ recurrence. Further research efforts must focus 
on elucidating the molecular mechanisms underlying 
endometrial fibrosis and strategies to reverse fibrogenesis. 
Recent advancements in the field of Hippo signaling have 
suggested its important role in fibrous diseases. Hippo 
signaling does not act alone but is involved in cross talk 
with Wnt and TGF‑β signaling components [Figure 1]. 
The interaction among these pathways is the reason why 
inhibition of a single molecular target often does not 
achieve the desired therapeutic effect. Our findings not only 
contribute to the current knowledge on the pathogenesis 
of endometrial fibrosis, but also highlight the necessity 
to develop highly specific inhibitors that target the 
protein–protein interactions at the intersection of multiple 
signaling pathways.
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Figure 1: Cross talk among the Hippo, Wnt, and TGF‑β signaling 
pathways. TGF‑β: Transforming growth factor‑β.
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