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Automated tracking of level of consciousness and delirium in
critical illness using deep learning
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Over- and under-sedation are common in the ICU, and contribute to poor ICU outcomes including delirium. Behavioral assessments,
such as Richmond Agitation-Sedation Scale (RASS) for monitoring levels of sedation and Confusion Assessment Method for the ICU
(CAM-ICU) for detecting signs of delirium, are often used. As an alternative, brain monitoring with electroencephalography (EEG)
has been proposed in the operating room, but is challenging to implement in ICU due to the differences between critical iliness and
elective surgery, as well as the duration of sedation. Here we present a deep learning model based on a combination of
convolutional and recurrent neural networks that automatically tracks both the level of consciousness and delirium using frontal
EEG signals in the ICU. For level of consciousness, the system achieves a median accuracy of 70% when allowing prediction to be
within one RASS level difference across all patients, which is comparable or higher than the median technician—-nurse agreement at
59%. For delirium, the system achieves an AUC of 0.80 with 69% sensitivity and 83% specificity at the optimal operating point. The
results show it is feasible to continuously track level of consciousness and delirium in the ICU.
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INTRODUCTION

The “ICU triad” of pain, agitation, and delirium’ makes the
intensive care unit (ICU) an intensely stressful experience for many
critically ill patients. Sedatives and analgesics are widely used to
minimize pain and agitation. Unfortunately, over- and under-
sedation and analgesia are common, affecting about 70% of ICU
patients.” Over-sedation is associated with hypotension, pro-
longed ventilation, and ICU length of stay; under-sedation is
likewise associated with pain, agitation, cardiac arrhythmias,
immune dysfunction, and ventilator desynchrony. Both over-
and under-sedation are associated with delirium, leading to
poorer cognition® and clinical outcomes.*

Many clinical assessment tools have been designed to monitor
the level of consciousness in the ICU, including the Ramsay Scale,
Sedation-Agitation Scale (SAS),° and Richmond Agitation-Sedation
Scale (RASS). Similarly, delirium is also assessed using behavioral
scales such as the Confusion Assessment Method for the ICU
(CAM-ICU)® and Intensive Care Delirium Screening Checklist
(ICDSC).? The inter-rater agreement with these scales is relatively
high.”#'° However, these assessments have inherent limitations:
(1) they do not continuously track patient status; (2) they are not
directly based on physiology; and (3) clinical assessments interrupt
sleep. Some prior studies suggest that continuous tracking of the
level of consciousness and delirium can contribute positively to
ICU outcomes, and may improve ICU post-discharge outcomes
and reduce costs.'""'?

Various reviews'>™"> have discussed the potential importance of
continuous EEG (cEEG) monitoring in the ICU, such as recognizing
non-convulsive status epilepticus, recognizing hypoactive delir-
ium, and managing sedation levels. Although cEEG is increasingly
implemented for monitoring patients after cardiac arrest and

providing routine care in several hospitals, there are not enough
trained clinical neurophysiologists available for reading EEG. Thus,
tracking the level of consciousness and delirium in a continuous
manner in the ICU has remained a challenge. Closely related to the
topic, anesthesia depth monitors using EEG signals are used in the
operation room to continuously track anesthesia depth, such as
the Bispectral Index (BIS) (Aspect Medical Systems, Norwood, MA,
USA) and Narcotrend Index (Monitor Technik, Bad Bramstedt,
Germany). Their algorithms are mostly based on extracting various
EEG spectral and entropy features and performing regression
analysis.16 However, these monitors in the operation room are not
optimized for the ICU, since they have been developed to monitor
consciousness in relatively normal brains, while the brains in the
ICU are very different.

Recent developments in deep learning have found promising
applications in healthcare domains.'”” Deep learning algorithms
can learn task-relevant features from raw signals, reducing the
need to handcraft features or biomarkers for a specific task. This
ability is promising for EEG-based tracking of level of conscious-
ness and delirium, where human experts may not be able to
identify all features in EEG waveforms relevant to the brain states
of interest.

Here we develop a deep learning model that automatically
tracks both the level of consciousness and delirium. The input to
the system is the preprocessed EEG waveform without extracting
any features. We evaluate different aspects of its performance
including tracking accuracy and delay. We interpret the model by
showing the important regions of the EEG signal that lead to the
final prediction. The results provide evidence for the feasibility of
continuously tracking level of consciousness and delirium in
the ICU.
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Fig. 1

CAM-ICU: 1 - specificity

Tracking performance for level of consciousness and delirium. a Boxplot of the mean absolute error (MAE) between true and predicted

RASS levels per patient in the pooled testing sets from all tenfolds. The upper, middle line, and bottom of the boxes are the 75% (Q3), 50%
(median), 25% (Q1) percentiles, respectively. The whiskers extend to the smallest and largest value which is within [Q1-1.5 X IQR, Q3 + 1.5 X
IQR]; circles are the outliers outside this range. The horizontal bars with stars indicate pairs with significantly different medians (p < 0.05). spect
spectrogram, bp band power, BSR burst suppression ratio, tech research technician. b Receiver operator curves (ROC) when only focusing on
RASS —5, —4 vs. —1, 0. The x-axis is the false-positive rate. The y-axis is the true positive rate. ¢ Accuracy when allowing 0 (left) and 1 (right)
level difference between true and predicted RASS. d ROC for detecting delirium. The markers indicate the optimal operating point according

to different criteria as shown in Table 1

RESULTS

Tracking level of consciousness

As shown in Fig. 1a, CNN + LSTM achieved similar MAE compared
to using CNN (p = 1.0), and outperformed spectrogram or band
power (p <0.05), suggesting that CNN learned a better set of
features compared to spectral domain only. The MAE was
comparative to technician-nurse agreement. In Fig. 1b we
compared the AUCs for RASS assessments only at —5, —4 vs.
—1, 0. CNN + LSTM achieved AUC 0.83 (95% CI 0.81-0.85). CNN +
LSTM had significantly better AUC than the non-deep learning
method (bp + BSR: using band power and burst suppression ratio
(BSR) as the features and ordinal regression as the model). As
shown in Fig. 1¢, the accuracy was 24% for the CNN + LSTM model
which was higher than technician-nurse agreement (p <0.05);
when allowing for one level of difference, the accuracy was 70%
which was comparative to technician-nurse agreement. Overall,
CNN + LSTM and CNN only achieved the best performance. LSTM
mainly learned to smooth without reducing performance. The
distributions of the individual performance metrics for CNN +
LSTM are shown in Supplementary Fig. 4.

Tracking delirium

In Fig. 1d we show the receiver operator curve (ROC) between true
CAM-ICU and the predicted probability of having positive CAM-
ICU. It achieved an AUC of 0.80 (95% Cl 0.73-0.86). In Table 1 we
show the sensitivity, specificity, and thresholds at various
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Table 1. Sensitivity, specificity, and threshold at different operating
points for tracking delirium
Condition Sensitivity ~ Specificity =~ Threshold
Sensitivity at predefined values 0.6 0.86 0.69
0.7 0.81 0.58
0.8 0.64 0.37
0.9 0.37 0.09
Specificity at predefined value 0.86 0.6 0.21
0.77 0.7 0.41
0.70 0.8 0.58
0.55 0.9 0.78
Optimal point 0.69 0.83 0.59

operating points. The optimal operating point'® is associated
with sensitivity of 0.69 and specificity of 0.83 at a threshold of 0.59.
A probability calibration curve for delirium detection is shown in
Supplementary Fig. 5, including the curve before and after re-
calibration. The calibration error (mean absolute error to the
diagonal line) after re-calibration is 0.040 (95% Cl 0.032-0.094).

Tracking delay for level of consciousness

In Fig. 2 we show boxplots for several different cases. The delay
was longer for larger increases or decreases in the level of
consciousness, since it required longer time for the “z-score” (the
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Fig.2 Tracking delay for level of consciousness. a Boxplot of the delays in seconds from the transition point to the point where the prediction
matches the new RASS level to within one level difference. It includes both transitions to higher and lower RASS levels. b Transitions to higher
RASS levels. ¢ Transitions to lower RASS levels. In all panels, the upper, middle line, and bottom of the boxes are the 75% (Q3), 50% (median),
and 25% (Q1) percentiles respectively. The whiskers extend to the smallest and largest value which is within [Q1-1.5 X IQR, Q3 + 1.5 X IQR];

circles are the outliers outside this range

Freq (Hz) o

o

RASS

s ]
|

iy v A
e

B

(g}

Predicted z-score

Q
-
I

—— Predicted probability of CAM-ICU = 1
e Nurse assessed CAM-ICU

CAM-ICU

0+

0 1 2 3 4 5 6 7 8 9 10 11

12 13 14 15 16 17 18 19 20 21

time (h)

Fig. 3 Example of the model output on 24 h of continuous EEG. a EEG spectrogram. b RASS levels assessed by ICU staff. The black line
indicates the period 30 min before and after each assessment. ¢ Predicted z-score of the level of consciousness (blue line). Dashed lines are the
thresholds learned by the model to partition the z-score into discrete RASS levels. The z-score beyond the top or bottom dashed line is log-
transformed to suppress large values for visual purpose. d CAM-ICU score assessed by ICU nurse staff (black line) and the predicted probability

of CAM-ICU =1 (blue line)

output from the final ordinal regression layer before applying the
thresholds to convert into discrete RASS levels, see Methods) to
climb up or drop down for a larger distance.

Example of continuous tracking

The model was trained only on EEG data 1h around each
assessment to maintain proximity to RASS or CAM-ICU scores. Here
we illustrate the application of the model on longer, continuous
EEG signals, as shown in Fig. 3. For level of consciousness, we show
the predicted z-score, which is a continuous value but can be
discretized into RASS levels. The predicted z-score matched well
with the periods around RASS assessments (solid lines in panel b).
Panel d shows the continuously tracked probability of delirium.

Scripps Research Translational Institute

Model interpretation

To interpret what EEG patterns this model has learned, we
computed the gradient of the z-score at the end of a period with
respect to the input EEG signal. The signal parts with larger
gradient had higher impact on the final z-score, and were thus
more important to the model predictions. Figure 4 shows a 1.9-
min signal with both true and predicted RASS at 0, i.e. awake and
calm state. The important parts (red) showed blinking artifacts, a
sign of wakefulness. In Fig. 5 we demonstrate another example
with both true and predicted RASS at —5, i.e. coma. Here the
important parts (red) showed slow waves and low amplitude,
which are characteristic of depressed levels of consciousness (e.g.
sleep, encephalopathy, and coma).
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DISCUSSION

We have demonstrated a system that can automatically track both
the level of consciousness (LOC) and delirium in the ICU using
frontal EEG signals and deep learning. The results show the
feasibility of providing continuous measures of level of conscious-
ness and delirium for ICU patients. Unlike current behavioral
assessments, our model is based on physiological signals, being
more direct than behavior. The values also have natural
interpretations: for level of consciousness, the discretized levels
map onto RASS scores; for delirium, the predicted value between
0 and 1 is the probability of being delirious. This system has the
potential to improve the management of both sedation and
delirium in ICU.

Multiple studies have studied the classification of level of
consciousness in both operative room and ICU patients. Enge-
mann et al.'” used the extra-trees algorithm to classify 327
patients with unresponsive/minimally conscious state vs. 66
healthy controls. They applied the classifier across different
cohorts, EEG protocols and centers, and obtained AUC ranging
from 0.73 to 0.78. The modest performance confirms the
heterogeneity between cohorts, protocols and centers. Nagaraj
et al.>° used atomic decomposition and a support vector machine
classifier to classify RASS —5, —4 vs. —1, 0 based on 44 patients—a
subset of our dataset. They achieved AUC at 0.91. The results are
comparable to the case of training specifically a binary classifica-
tion achieving AUC 0.89 (95% Cl 0.88-0.91) instead of ordinal
regression (Supplementary Fig. 6). As discussed in their Dataset
Section, they excluded difficult cases and used two RASS
assessments from each patient. Our results are more generalizable
by including more patients and achieving similar performance.
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Fig. 4 Interpretation of EEG patterns learned by the model for RASS 0 based on gradient information. a Trace of the predicted z-score and the
thresholds to discretize it to RASS levels. Here the predicted RASS is always 0. b The corresponding signal and the gradient of the final z-score
with respect to the signal. The red parts have gradient larger than the 95% percentile of the gradient in the segment. Time is in minutes. The
scale is shown on the left middle side representing 50 pV. ¢ A zoomed view of the blue dashed rectangle. Here time is in seconds. The EEG
segment in red shows lateral eye movements, suggesting the patient is awake and looking around

Multiple studies have compared simple features of EEG signals
in delirium vs. non-delirium patients, such as spectral power®' and
functional connectivity,?® anticipating the possibility of continu-
ously tracking delirium from EEG in ICU.?*> Our model provides the
ability to track delirium in continuously with similar AUC as clinical
risk prediction models.?**° van der Kooi et al.?® describe delirium
detection based on EEG collected from 28 delirious and age-
gender matched 28 non-delirious post-cardiothoracic surgery
patients. They found that the relative delta power at F8-Pz channel
during the eye closed condition is increased in delirium patients,
and achieves the best discrimination with AUC 0.99 (95%
0.97-1.00). Of note, our study is carried out in mechanically
ventilated and sedated patients in the ICU, which represents a
more severely ill population than post-operation patients.

Our model exhibits delay in response to the change in level of
consciousness. The change in the predicted value lagged behind
the change in EEG by 0.5-6 min. Although not directly compar-
able, Zanner et al.?’ measured the time delay in BIS, Narcotrend
Index, and cerebral state index when measuring anesthesia depth
in the operating room. They found that 24 to 122 s were needed
before the new state was identified. Similarly, their time delays
were not constant and varied depending on the starting and
ending anesthesia depth. For tracking level of consciousness and
delirium in ICU patients, these delays are acceptable in practice.

The tracking performance for level of consciousness is not
perfect. As seen in Fig. 1¢, the exact agreement between the true
and predicted RASS is low at 24% for using CNN + LSTM. When
allowing one RASS level difference, the agreement increases up to
70%. The discrepancy probably comes from multiple sources. (1)
The behavioral difference between consecutive RASS levels in
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Interpretation of EEG patterns learned by the model for RASS —5 based on gradient information. The panels are similar to those in Fig. 4.

The EEG shows low amplitude slow waves, characteristic of coma. The scale is shown on the left middle side of panel b representing 50 pV

terms of EEG is small. In fact, RASS —1 is defined as eye contact
more than 10s, while RASS —2 is defined as less than 10s. This
distinction may not be possible to accurately sort out in terms of
brain activity. (2) Heterogeneity exists between patients, such as
different ICU admission diagnoses and different sedatives and
analgesics,®® each of which may have a different effect on EEG.
Multiple different EEG patterns may therefore correspond to the
same behavioral state and thus to the same RASS level. For
example, non-convulsive seizures and burst suppression can both
present clinically with coma, but have very different EEGs. The
results highlight the difficulty of inferring a behavioral state (RASS)
from the EEG—more difficult than in the operating room (e.g. BIS).
A future direction is to calibrate the prediction algorithm based on
the existing RASS + EEG observations for a given patient. (3) We
have not considered the differences between effects of various
sedative and analgesic drugs in the ICU. (4) Human error and
variability are inherent in each clinical assessment. We have
measured the technician-nurse agreement in our dataset (Fig. 1,
Supplementary Fig. 8). The median of the mean absolute
difference between technician and nurse assessments across all
patients is between 1.00 and 1.97 RASS levels. Even though formal
studies show good between-rater agreement,” our data show that
in practice the agreement is not as high.

There are some limitations in our approach. (1) Our sample size
for RASS measurement was 174 patients, which may not be large
enough to capture the full range of variation in EEG patterns and
corresponding behavioral states that occur in the ICU. (2) Due to
heterogeneity between patients, the variance of tracking perfor-
mance among patients is large. More detailed stratification of
patients into different phenotypes and training different models
for each phenotype is a possible future approach. (3) The current
model does not consider the different effects of different
sedatives on the EEG. Our model likely mainly reflects EEG

Scripps Research Translational Institute

patterns under propofol, given that patients in our cohort were
mainly sedated using propofol. (4) Our data include no positive
RASS scores during times when both CAM-ICU and EEG are
available, as shown in Supplementary Fig. 1b. We speculate that
there are two likely reasons for this. First, hypoactive delirium is
more common than hyperactive delirium, particularly in ICU
patients. Second, nurses actively adjust sedation levels to prevent
patients becoming agitated or combative while patients remain
on mechanical ventilation, and in our study the EEG leads were
removed when the patient was weaned from mechanical
ventilation. Thus the potential utility of EEG for hyperactive
delirium has to be studied in other cohorts. (5) CAM-ICU
assessments (where incidence is high) were performed only done
once per day. More frequent assessment of delirium status would
better reflect the dynamic course of delirium and provide more
training data.

METHODS

Dataset

The study was a single-center, prospective observational study approved
by the Partners Institutional Review Board (IRB). The IRB waived the
requirement for written signed consent in this study. The EEG signals were
collected from 195 distinct ICU patients. The inclusion criteria were: (1) age
>18 years; (2) on mechanical ventilation; and (3) have at least one RASS or
CAM-ICU assessment during EEG recording. The exclusion criteria were: (1)
any known focal neurologic deficits or dementia; and (2) poor EEG signal
quality by visual inspection (ten patients excluded). The final dataset
contains 174 patients. The average ICU stay was 12-13 days. The most
commonly used sedative was propofol. Patient characteristics are
summarized in Table 2.

npj Digital Medicine (2019) 89
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ICU admission diagnosis: N (%), showing more than ten patients for either
RASS or CAM-ICU

Acute respiratory failure 111 (64%) 77 (63%)
Kidney failure, or chronic kidney disease 51 (29%) 34 (28%)
Surgery (including gastrointestinal) 3 (25%) 30 (25%)
Diabetes mellitus 9 (22%) 30 (25%)
Chronic obstructive pulmonary disease 31 (18%) 1 (17%)
Arrhythmia, congestive heart failure, 7 (16%) 9 (16%)
myocardial ischemia

Sepsis 6 (15%) 19 (16%)
Liver disease or failure 5 (14%) 17 (14%)
Peripheral vascular disease 4 (8%) 6 (5%)
Solid tumor 14 (8%) 11 (9%)

Average infusion rate: mg/h/kg (number of patients receiving each drug,
percentage)
Propofol 2.03 (132, 76%) 1.76 (73, 60%)
0.04 (63, 36%) 0.04 (29, 24%)

0.001 (34, 20%) 0.001 (18, 15%)

Hydromorphone
Dexmedetomidine

Fentanyl 0.0023 0.001 (10, 8%)
(21, 12%)

Ketamine 1.00 (9, 5%) 1.17 (5, 4%)

Midazolam 0.13 (9, 5%) 0.17 (4, 3%)

“The last column shows the RASS assessed during CAM-ICU
PCAM-ICU is unavailable for RASS —5 and —4. We treat them as CAM-ICU = 1

H. Sun et al.

Table 2. Patient characteristics

Characteristics For RASS For CAM-ICU
Number of patients 174 121
Number of assessments 3366 258

RASS: N (% among all assessments), only

included non-positive RASS assessments

0 355 (10.5%) 3 (12.8%)?
-1 696 (20.7%) 4 (13.2%)
-2 660 (19.6%) 4 (17.1%)
-3 848 (25.2%) 7 (26.0%)
—4 621 (18.4%) 7 (10.5%)°
-5 186 (5.5%) 3 (20.5%)°
CAM-ICU: N (% among all assessments)

0 - 60 (23.2%)
1 - 199 (76.8%)
Age: year, median (IQR) 61 (51, 70) 61 (51, 70)
Male: N (%) 117 (67%) 84 (69%)
Race: N (%)

White 154 (89%) 105 (86%)
Black or African 9 (5.2%) 7 (5.7%)
Asian 2 (1.1%) 2 (1.6%)
More than one race 1 (0.6%) 1 (0.8%)
Unknown 8 (4.6%) 7 (5.7%)
BMI: kg/m?, median (IQR) 29 (24, 35) 29 (23, 35)
Days in ICU: day, median (IQR) 12 (7, 20) 13 (8, 20)
APACHE Il at ICU admission: median (IQR) 23 (15, 28) 23 (15, 28)
CClI at ICU admission: median (IQR) 3(2,5) 3(2,5)

RASS and CAM-ICU

To measure the level of consciousness, we used the Richmond agitation-
sedation scale (RASS)” as the target to train the model. RASS was assessed
by ICU nurses and clinical research technicians approximately every 2 h.
RASS has ten levels from —5 to +4 as shown in Supplementary Table 1.
The range from —5 to 0 (inclusive) describes different levels of sedation,
where —5 and —4 indicate coma (unarousable, no response to verbal or
noxious stimulation) and 0 indicates an alert and calm state. The range
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from +1 to +4 (inclusive) describes different levels of agitation which are
associated with hyperactive delirium. In this study we limited RASS
assessments to those of normal or decreased levels of arousal only, i.e. —5
to 0, since (1) there was no positive RASS during CAM-ICU assessments
with EEG signal available in the dataset (Supplementary Fig. 1) and (2)
being combative and agitated can be reliably detected by ICU staff.

To measure delirium, we used the CAM-ICU as the target to train the
model. The CAM-ICU is a screening protocol that is performed about every
24 h® (Supplementary Table 2). While unresponsive patients (RASS = —4 or
—5) are typically not further assessed in formal use of the CAM-ICU, we
treated these patients as CAM-ICU positive for model training purposes,
given the clearly abnormal mental status.

EEG preprocessing

The EEG signals were recorded using Sedline brain function monitors
(Masimo Corporation, Irvine, CA, USA), with 250 Hz sampling rate and 4
frontal electrodes. We re-referenced the signals to 2 bipolar channels: Fp1-
F7 and Fp2-F8. The signals were first notch filtered at 60 Hz, then bandpass
filtered between 0.5 Hz to 20 Hz, and finally downsampled to 62.5 Hz.

We took 1 h EEG segments 30 min before and 30 min after each RASS or
CAM-ICU assessment. This is because the assessment times recorded by
the ICU nurses may be imprecise, since they are recorded after performing
assessments. We therefore included the longer EEG segment to ensure it
included the actual assessment time.

EEG artifact were defined based on the presence of any of the following
in any EEG channel: (1) maximum amplitude higher than 1000 pV; (2)
standard deviation less than 0.2 uV; (3) overly fast changes of more than
900uV within 0.1s; or (4) spuriously staircase-like spectrum, when the
maximum value obtained by convolution with a predefined staircase-like
kernel exceeds an empirical threshold of 10, indicating the presence of
nonphysiologic single-frequency artifacts from ICU machines (e.g. cooling
blankets or pumps).

Deep learning model

The overall deep learning model consisted of convolutional neural network
(CNN) followed by long-short term memory (LSTM), as shown in
Supplementary Fig. 9. CNN extracts useful information from each 4s in
the EEG waveform and LSTM provides the temporal context. The CNN
followed the architecture in Hannun et al.?® It contains 8 blocks mainly
consisting of two convolutional layers (conv) and a skip layer maxpooling
connection. The output from CNN is then fed to a two-layer LSM, followed
by an output layer, which is ordinal regression for RASS and binary
classification for CAM-ICU. The ordinal regression learns a continuous
“z-score” and the thresholds. If needed, we can apply the learned
thresholds to discretize z-score into RASS levels. The binary classification
outputs the probability of being CAM-ICU positive (delirium). The detailed
description of the model architecture and coding details can be found in
Supplementary Methods.

Model training

To avoid the model being overfit to the dataset, we randomly split patients
into ten groups (folds). We took each fold as a testing set, and the other
ninefolds as the training set. For the training set we further randomly
selected 10% of assessments as the validation set, and the remaining 90%
of assessments as the training set. The model with the minimum loss on
the validation set was used, and then results were calculated for the held-
out testing set. The above procedure was repeated for each fold.

To prepare data for CNN, the 1 h EEG signal around each assessment
was segmented into 4 s windows with 2's overlap (Supplementary Fig. 2a).
We removed 4s-segments identified as artifact. 10% of segments were
removed due to artifacts. The input to the CNN has size N x 2 x 250, where
N is the number of 4s-segments, 2 is the number of channels and 250 is
the number of time points in 4s (62.5Hz). The choice of 4s window is
inspired by domain knowledge - in clinical neurology practice, windows of
10's are used, but 4 s is enough to discern features usually used to describe
the EEG, e.g. the presence of delta or theta slowing, epileptiform
abnormalities, and EEG suppression.

Data preparation for LSTM is different. There are 900 4s-segments in
each 1 h EEG signal. Training an LSTM model on such a long sequence is
difficult. Therefore we trained the two layers of LSTM separately while
fixing the parameters in the already trained CNN. The first LSTM layer was
trained using 9.5 min sequences with step size 1 min (Supplementary Fig.
2b). The input had size N x 142 x 2 x 250, where 142 is the number of 4s-
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segments in a 9.5 min sequence. To train the second LSTM layer, we fixed
the first LSTM layer. 1 h sequences were used with size N x 900 x 2 x 250,
where 900 is the number of 4s-segments in a 1 h sequence (Supplemen-
tary Fig. 2c). Sequences with more than 50% of 4s-segments being artifact
were removed, otherwise the artifacts in 4s-segments were kept to ensure
continuity of the sequence. 9% of the sequences were removed.

For the CAM-ICU, since the number of samples was less than that of
RASS, we copied the first M layers of the RASS CNN model to the CAM-ICU
CNN model and fixed them to avoid overfitting; only the layers after the
first M layers were trained. The performance of different M’s is shown in
Supplementary Fig. 3. Here we took M =5 since it achieved the best
validation performance.

In both tasks, to address the imbalance of RASS levels or CAM-ICU scores
in the dataset, we computed sample weights for each level inversely
proportional to the number of examples in this level from the training set.
The models were trained with a minibatch size of 32 and the RMSprop
optimizer with learning rate 0.001.

Model evaluation

The final performance was reported using the testing patients pooled from
all folds. For tracking RASS, the predicted z-score was averaged across all
4s-segments in each 1 h sequence, and then the thresholds learned by the
ordinal regression layer were used to discretize the averaged z-score to
produce the predicted RASS level. We evaluated the RASS tracking
performance using three metrics: (1) balanced mean absolute error (MAE),
i.e. the average absolute difference between true and predicted RASS
levels, weighted by class weights inverse proportional to number of
samples in that class; (2) balanced accuracy when allowing up to one level
difference, weighted by class weights; and (3) binary classification
performance, measured by area under the receiver operator curve (AUC),
for discriminating RASS levels —5 or —4 (“coma”) from —1 or 0 (“awake”),
while discarding other levels. For tracking CAM-ICU, the predicted
probability was averaged across all 4s-segments in each 1h sequence to
get the probability of being delirious.

The accuracy per 4s without averaging (CNN only) is shown in
Supplementary Fig. 7. These accuracies are worse than the averaged
versions. The 4 s window is best thought as a step for local evaluation of
the signal, and these local evaluations are aggregated to compute the
probability of RASS/delirium at the present time, based on the prior EEG.
Our model still reports an updated prediction every 4s (this is the step
size), although the prediction for the present time is based on the past 1 h.
By contrast, in the ICUs in our institution, RASS is manually assessed every
2 h, and delirium is formally assessed only one time per day, thus the
proposed method is an improvement.

Technician-nurse agreement

Since RASS assessments were available from both ICU nurses and clinical
research technicians, we were able to measure the technician-nurse
agreement, as follows. For each assessment done by each research staff
member, we found the closest nurse assessment for the same patient. We
excluded assessment pairs more than 4 h apart.

Baseline methods to be compared

To compare with other deep learning candidates, we built three other
models (1) using EEG waveforms as input and CNN only; (2) using EEG
spectrograms as input and LSTM only; and (3) using EEG band powers as
input and LSTM only. The CNN and LSTM had the same structure as in
Supplementary Fig. 9. The EEG band powers included delta (0-4 Hz), theta
(4-8Hz), and alpha (8-12Hz), as well as the relative band power
normalized by total power (0-12 Hz).

To compare with non-deep learning methods, we extracted the above
band power from each 4s-segment, which were then averaged across 1 h
time. We also extracted the BSR, i.e., the proportion of time within 1h
having signal envelope less than 5 V. After generating these features, we
trained ordinal regression for RASS; and logistic regression, support vector
machine, and random forest for CAM-ICU.

Statistical tests

To compare the performance among multiple algorithms, we used
Kruskal-Wallis one-way analysis of variance (KW-ANOVA), which is a
nonparametric version of ANOVA. The null hypothesis is that the medians
of all groups are equal. We used Dunn's test (two-sided) as the post hoc
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test together with Bonferroni multiple comparisons correction to decide
which pairs had significantly different medians. The confidence intervals
mentioned below are all 95% confidence interval obtained by boot-
strapping 1000 times.

Delays in tracking level of consciousness

For each patient we artificially concatenated two segments of 9.5 min EEG
signals with different RASS levels, denoted as RASS1 and RASS2, where the
absolute difference between RASST and RASS2 was more than one level.
The delay is defined as the time from concatenation point to the first time
the prediction reaches RASS2 + 1.

Reporting Summary

Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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