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A B S T R A C T   

Background and Purpose: Automatic segmentation methods have greatly changed the RadioTherapy (RT) work-
flow, but still need to be extended to target volumes. In this paper, Deep Learning (DL) models were compared 
for Gross Tumor Volume (GTV) segmentation in locally advanced cervical cancer, and a novel investigation into 
failure detection was introduced by utilizing radiomic features. 
Methods and materials: We trained eight DL models (UNet, VNet, SegResNet, SegResNetVAE) for 2D and 3D 
segmentation. Ensembling individually trained models during cross-validation generated the final segmentation. 
To detect failures, binary classifiers were trained using radiomic features extracted from segmented GTVs as 
inputs, aiming to classify contours based on whether their Dice Similarity Coefficient (DSC) < T and DSC⩾T. Two 
distinct cohorts of T2-Weighted (T2W) pre-RT MR images captured in 2D sequences were used: one retrospective 
cohort consisting of 115 LACC patients from 30 scanners, and the other prospective cohort, comprising 51 pa-
tients from 7 scanners, used for testing. 
Results: Segmentation by 2D-SegResNet achieved the best DSC, Surface DSC (SDSC3mm), and 95th Hausdorff 
Distance (95HD): DSC = 0.72 ± 0.16, SDSC3mm=0.66 ± 0.17, and 95HD = 14.6 ± 9.0 mm without missing 
segmentation (M=0) on the test cohort. Failure detection could generate precision (P = 0.88), recall (R =

0.75), F1-score (F = 0.81), and accuracy (A = 0.86) using Logistic Regression (LR) classifier on the test cohort 
with a threshold T = 0.67 on DSC values. 
Conclusions: Our study revealed that segmentation accuracy varies slightly among different DL methods, with 2D 
networks outperforming 3D networks in 2D MRI sequences. Doctors found the time-saving aspect advantageous. 
The proposed failure detection could guide doctors in sensitive cases.   

1. Introduction 

Locally Advanced Cervical Cancer (LACC) stands as the fourth most 
prevalent cancer among women worldwide [1]. Magnetic Resonance 
Imaging (MRI) is indispensable for cancer lesion management, 
providing high soft tissue contrast [2]. Automatic segmentation offers 
precise tumor delineation, easing the manual workload for radiation 
oncologists [3] and reducing inter-expert variability [4]. Despite its 

significance, automatic tumor segmentation has seen limited application 
in the female pelvic region, specifically in Gross Tumor Volume (GTV) 
segmentation. Several challenges must be addressed in this context. 
LACC tumor boundaries in MR images may appear blurred due to low 
tissue contrast. Moreover, the presence of secretions from the uterine 
cavity, exhibiting a similar intermediate or high-intensity signal as the 
tumor, can pose challenges in defining the upper limit of the GTV in T2- 
Weighted (T2W) MR images. Lastly, the scarcity of public datasets may 
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explain the infrequent application of automatic Deep Learning (DL)- 
based segmentation to cervical cancer. 

Several studies have developed DL-based models for automatic seg-
mentation in cervical cancers, mainly focusing on Clinical Tumor Vol-
ume (CTV) segmentation on Computed Tomography (CT) [3,5–7], and 
MRI [8]. Regarding GTV, Breto et. al. [9], used a region-based con-
volutional neural network (R-CNN) for the segmentation of GTV +
Cervix in 646 onboard MR images. The Dice Similarity Coefficient (DSC)
of 0.84 was reported for GTV + Cervix in their validation. No cohort was 
used for testing their model. In another work, Breto et. al. [10] used 
planning and daily treatment fraction setup (RT-Fr) MR images, from 15 
LACC patients for GTV + Cervix segmentation. A MASK R-CNN network 
[11] was trained and tested in three different scenarios. The first sce-
nario involved using planning images of N − 1 patients for training 
(Leave-one-out or LOO), the second one tested the network on the RT-Fr 
MRIs of the left-out patient, and the third scenario involved including 
the planning MRI of the left-out patient as an additional training sample 
and testing on RT-Fr MRIs. The best results for GTV + Cervix segmen-
tation concluded from the first scenario, with DSC = 0.67 ± 0.30 and 
95th Hausdorff Distance (95HD)=2.7 ± 1.7 mm. Yoganathan et. al. 
[12], trained 2D (axial only) and 2.5D (axial, sagittal and coronal) 
models based on ResNet50 [13] and InceptionResNetv2 (InRN) [14] 
architectures. A total number of 71 T2W MR images from 39 patients for 
cervix image-based High Dose Rate (HDR) brachytherapy were used. 
The best results were obtained by 2.5D InRN with an average of DSC =
0.62 ± 0.14 and 95HD = 6.8 ± 2.8 mm for GTV segmentation. 

Even top DL models for segmentation can struggle with challenges 
such as domain shift, noise, and low image quality, leading oncologists 
to spend significant time adjusting results. This hampers the practicality 
of automatic segmentation for real-world use. Clinical implementation 
of automatic segmentation requires Quality Assurance (QA) tools to 
maintain model consistency over time (routine QA) and accuracy for 
each patient (case-specific QA) [15–19]. QA approaches in medical 
image segmentation can be categorized into two groups. The first group 
involves estimating and visualizing uncertainties [20–26]. The second 
group focuses on predicting segmentation quality [16,26–35,28,36,37]. 

This study aimed to provide significant contributions, including a 
comprehensive comparison of various deep neural network architec-
tures not previously utilized in GTV segmentation for LACC. Addition-
ally, we evaluated the generalizability of these models on T2W MR 
images obtained prospectively from diverse sources, encompassing pa-
tients with or without vagina/rectum opacification across different 
centers, specifically in the context of external beam RadioTherapy (RT) 
applications within a clinical trial. Moreover, we aimed to expedite the 
integration of segmentation results into clinical practice by identifying 
and analyzing segmentation failures using radiomics features. 

2. Materials and methods 

This section covers data, preprocessing steps, and methods for seg-
mentation and failure detection. For more details on data collection, DL 
architectures, and implementation, see Sections S1, S2, and S3 in the 
supplementary data. 

2.1. Patient cohorts 

We collected two cohorts of T2W MR pre-RT images, taken in 2D 
sequences by 30 and 7 different scanners, respectively, from 115 and 51 
patients treated for LACC at different centers. The first cohort (cohort 1 - 
retrospective) was used for model training, and the second cohort 
(cohort 2 - prospective - ATEZOLACC clinical trial (NCT03612791)) was 
used for testing in both segmentation and classification tasks. Tables S3 
and S4 in the supplementary data summarize the characteristics of the 
MRI devices and acquisition parameters for both cohorts. Approximately 
33% of the patients (38 out of 115) in the training cohort and 64% of the 
patients (33 out of 51) in the test cohort underwent rectum/vagina 

opacification for better tumor and organ at risk visibility. 

2.2. DL-based segmentation 

We trained 4 deep neural network architectures namely UNet 
[38,39], VNet [40], SegResNet and SegResNetVAE [41], for both 2D and 
3D segmentation, resulting in 8 different models. More information on 
the applied architectures was provided in Section S2 of the supple-
mentary data. We used 5-fold cross-validation on cohort 1 images for 
training and validation of all networks. Segmentation results were re-
ported using two strategies: single model and ensemble model. In the 
single model approach, the best-performing model with the highest 
average DSC in cross-validation was applied to cohort 2. In the ensemble 
approach, all five models from cross-validation were used on cohort 2. 
The ensemble prediction was obtained by averaging the results of all the 
models [42]. The ensembling strategy decreases the model variance and 
subsequently improves the segmentation performance [43]. For both 2D 
and 3D segmentation, we treated the final segmentation as a 3D volume 
and calculated DSC, Surface DSC (SDSC3mm), and 95HD, defined in 
Section S4 of the supplementary data. Additionally, we presented the 
segmentation results separately for opacified and non-opacified cases. 

2.3. Radiomics-based failure detection 

The best ensemble model from 5-fold cross-validation segmented all 
images in both the training set (cohort 1) and the testing set (cohort 2). 
Using PyRadiomics (v3.0.1), an open-source Python package [44], 93 
radiomic features were extracted from these segmented GTVs, employ-
ing a relative discretization method with 32 bins. 

We utilized different machine learning models such as Logistic 
Regression (LR), Linear Discriminant Analysis (LDA), K-Nearest Neigh-
bour (KNN), Decision Tree Classifier (DTC), Gaussian Naive Bayes 
(GNB), and Support Vector Classifier (SVC). We used the open-source 
library of Scikit-learn [45] in the classification. The classifiers were 
trained with the goal of classifying images for which segmentation 
resulted in a DSC/SDSC3mm < T or DSC/SDSC3mm⩾T, where T is a 
threshold on the selected metric DSC/SDSC3mm. Nested Cross-Validation 
(NCV) [46] was used to select the best classifier and its hyper-
parameters. This strategy enhances ML model performance by nested 
loops: one for model selection, hyperparameter tuning, and feature se-
lection, and another for validating on unseen data. We used 5 outer and 
3 inner folds. The final model, from NCV, was applied to all training 
samples. Recursive feature elimination (Guyon et al. [47]) was used 
individually on outer folds for feature selection. To address class 
imbalance, we applied SMOTE (Chawla et al. [48]) on the training 
cohort. The model was then tested on segmentation failure for detection, 
evaluated with precision (P ), recall (R ), F-score (F ), accuracy (A ), 
and AUC (Sokolova et al. [49]). 

To assess the predictive power of radiomic features in detecting 
failures, we analyzed how the choice of binarization metric and 
threshold impacts performances. We considered different scenarios: 
automatically segmented GTVs with or without post-processing (one 
step after final segmentation, including morphology operations). This 
resulted in 4 cases: DSC W, DSC WO, SDSC3mm W, and SDSC3mm WO. 
Additionally, to select the optimal threshold T, we used a range [bl,bh], 
statistically determined as follows: 

[bl, bh] =
⋂n

i=1
[xi − si, xi + si] (1)  

where bl and bh are respectively the lowest and highest values of DSC/ 
SDSC3mm, xi and si are respectively the mean and standard deviation of 
DSC/SDSC3mm values in ith case out of the n = 4 aforementioned cases. 
Then, we performed the failure detection bh − bl +1 times, based on the 
best classifiers resulting from the aforementioned setting, by selecting 
each time a T ∈ [bl, bh]. In doing so, the T, which resulted in the best 

R. Rouhi et al.                                                                                                                                                                                                                                   



Physics and Imaging in Radiation Oncology 30 (2024) 100578

3

accuracy in the validation, was considered for the final failure detection 
model. 

2.4. Statistical and qualitative analysis 

In the cross-validation for both segmentation and classification, we 
compared the performance of DL and ML models using the metrics 
mentioned earlier to identify the best-performing model. We applied the 
Friedman method [50] to analyze statistically significant differences 
among them. Additionally, segmentation and failure detection were 
clinically evaluated. The radiation oncologist (P-A.L), with 3 years of 
experience, scored the segmentation output into three classes: A (good 
with no/minor correction), B (satisfactory with major correction), and C 
(bad with complete correction or delineation from scratch). The time for 
contour correction, if needed, was measured by the same oncologist. For 
comparison, we considered the approximate time needed for segmen-
tation from scratch per subject, provided by another radiation oncologist 
(L.M, with 5 years of expertise), who segmented 10 randomly selected 
images from the test cohort. The average time for these 10 cases was 
used for manual segmentation from scratch per subject. 

3. Results 

3.1. Automatic GTV segmentation 

Table S1 presents the average validation results obtained from the 5 
trained models in the 5-fold cross-validation for each network in 2D and 
3D segmentation separately on cohort 1. The 2D-SegResNetVAE resulted 
in the best values of DSC = 0.61 ± 0.03,SDSC3mm = 0.57 ± 0.04, 95HD 
= 16.1 ± 2.6 mm, and M=0, respectively compared with the other 
models. The results are statistically different with p − value < 0.05. 
Moreover, Table S2 shows the results of segmentation on cohort 2 (test 
cohort) based on single models, i.e. the best models obtained from 5-fold 
cross-validation. The results of SegResNet and SegResNetVAE in the 2D 
case were the best when considering the output of the single models 
with/without failure i.e., M=1/0. Furthermore, Table 1 presents the 
results of ensembling all the predictions from the 5 models on the test 
cohort. Accordingly, 2D-SegResNet achieved the best performance 
compared to all the other models. Additionally, we calculated different 
metrics, including DSC, SDSC3mm, and 95HD, for the corrected auto- 
segmentation volumes compared to their ground truths in cohort 2. 
We obtained DSC = 0.73 ± 0.26, SDSC3mm=0.71 ± 0.28, and 95HD =
13.7 ± 14.4. In comparison to the segmentation without correction 
(DSC = 0.72 ± 0.16, SDSC3mm=0.66 ± 0.17, and 95HD = 14.6 ± 9.0 
mm), we observed fairly comparable values, although higher for 
SDSC3mm, illustrating performance for the network of the same order of 
magnitude as the inter-expert variability. 

Fig. 1 in sub-figures (a), (b), and (c) displays box-plots of ensemble 
model segmentation results on cohort 2, showcasing DSC, SDSC3mm, and 
95HD. Additionally, Figure S1 illustrates patient-wise segmentation 
outcomes using 2D-SegResNet for the test cohort, presenting both DSC 
and 95HD. The model achieved DSC⩾0.70 in 67% of total images (34 
out of 51 patients), with corresponding values of SDSC3mm and 95HD in 
sub-figures (b) and (c). 

Fig. 2 shows visual segmentation results for two test cohort patients 

using 2D-SegResNet. The model achieved the best DSC =

0.89,SDSC3mm=0.91, and 95HD = 4.0 mm, and the worst DSC = 0.18, 
SDSC3mm = 0.19, and 95HD = 40.9 mm. Additionally, we obtained DSC 
= 0.70 ± 0.17, SDSC3mm = 0.66 ± 0.18 and 95HD = 15.3 ± 9.9 mm for 
opacified cases, and DSC = 0.74 ± 0.10, SDSC3mm = 0.66 ± 0.12, and 
95HD = 13.3 ± 6.7 mm for non-opacified cases in the test cohort. 

Additionally, based on qualitative results, specifically, 62% (32/51), 
27% (14/51), and 5% (3/51) of the images in the test set (cohort 2) were 
scored as A, B, and C, respectively. The radiation oncologist declined to 
score 3.9% (2/51) of the images due to their low quality. 

3.2. Failure detection 

Fig. 3 illustrates the cross-validation results for failure detection. 
Subfigure (a) depicts average DSC and SDSC3mm values resulting from 
segmentation with and without post-processing. Notably, DSC WO 
achieved superior results compared to other cases, with all results 
showing statistical significance (p-value  = 0.018). With DSC WO 
generated the best results, we proceeded to classification using different 
models, as presented in subfigure (b). The results also exhibited statis-
tical significance (p-value  = 0.010). Figure S2 presents the average 
accuracy of the LDA classifier as an example in NCV with different 
thresholds in the range [0.60, 0.80] on the values of DSC WO, resulting 
from the 2D SegResNet were considered. As observed, the LDA achieved 
the highest mean accuracy values, specifically up to the threshold T =

0.65 on the values of DSC WO. 
Table 2 shows classifiers’ results in failure detection on the test 

cohort. LR achieved P = 0.88,R = 0.75,F = 0.81, and A = 0.86 with 
T = 0.67 on DSC WO for cohort 2. Figure S3 illustrates LR classifier 
performance with prediction probability. Additionally, Table S5 in the 
supplementary data lists features selected for LR classification, with the 
top three being original_firstorder_InterquartileRange, original_first-
order_Variance, and original_glcm_ClusterTendency. 

We presented the confusion matrices for binary classification in 
failure detection in Table 3. These matrices were derived from both 
qualitative segmentation scoring (A, B, C) and quantitative assessment 
using DSC WO values. Specifically, 65.6% (21/32) of cases were 
correctly classified as A (no/minor correction), and 75.0% (3/4) as C 
(complete correction), including samples refused during segmentation 
scoring by the radiation oncologist. The average correction time for test 
set cases (cohort 2) was 4.26 ± 3.62 min. Breakdown by category 
revealed: 2.03  ± 1.33 min for A, 7.28  ± 1.43 min for B, and 14.00 ±
2.00 for C, assessed by the same radiation oncologist. Manual segmen-
tation time, reported by another radiation oncologist (L.M), averaged 
approximately 16.0 ± 3.8 min. 

4. Discussion 

In this study, 8 DL models were trained for both 2D and 3D seg-
mentation to compare GTV segmentation in LACC using T2W MRI from 
clinical routine. Results indicated superior performance of 2D Seg-
ResNet and SegResNetVAE models, likely due to their robust design with 
residual connections, asymmetrically larger encoder for feature extrac-
tion, and smaller decoder with a variational auto-encoder (VAE) for 
segmentation mask reconstruction [41]. The differences in data 

Table 1 
Average results of DSC, SDSC3mm, and 95HD(mm) and the total number of segmentation failures M on the testing set (cohort 2), based on ensemble models resulted by 
model averaging in 5-fold cross validation obtained from different network architectures in 2D and 3D segmentation.   

2D 3D 

Network DSC ± SD SDSC3mm ± SD 95HD ± SD M  DSC ± SD SDSC3mm ± SD 95HD ± SD M 

UNet 0.69 ± 0.23 0.65 ± 0.23 18.1 ± 24.1 0  0.54 ± 0.28 0.44 ± 0.25 32.0 ± 36.1 0 
VNet 0.71 ± 0.20 0.66 ± 0.19 14.6± 11.7 1  0.50 ± 0.22 0.32 ± 0.19 30.9 ± 24.0 1 
SegResNet 0.72 ± 0.16 0.66 ± 0.17 14.6 ± 9.0 0  0.57 ± 0.26 0.45 ± 0.23 37.4 ± 53.3 0 
SegResNetVAE 0.70 ± 0.18 0.63 ± 0.18 15.0 ± 10.8 0  0.63 ± 0.21 0.52 ± 0.19 20.5 ± 16.4 0  
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Fig. 1. Box-plots results of the different network architectures on the testing set (cohort 2) for ensemble 2D and 3D segmentation in terms of DSC, SDSC3mm, and 
95HD metrics, respectively shown in sub-figures (a), (b), and (c). 

Fig. 2. The best (a)-(f) and the worst (g)-(l) performing samples in the test cohort for GTV segmentation, by 2D-SegResNet as our proposed ensemble model, shown in 
the first and the second rows, respectively, with DSC = 0.89, SDSC3mm=0.91 and 95HD = 4.0 mm, and DSC = 0.18, SDSC3mm=0.19 and 95HD = 40.9 mm. The images 
(m)-(p) and (q)-(f) correspond to the images in the first and second rows with ground truth visualization in axial, sagittal, coronal, and 3D visualization. Green and 
red colors correspond to ground truth and segmentation output. 

R. Rouhi et al.                                                                                                                                                                                                                                   



Physics and Imaging in Radiation Oncology 30 (2024) 100578

5

acquisition between the retrospective and prospective cohorts for 
training and testing respectively, introduce complexity to the segmen-
tation process. To visualize these disparities, we extracted quality met-
rics from images in both cohorts, following the methodology of Sadri 
et al. [51]. The probability distribution of these metrics, depicted in 
Figure S4, offers a visual representation of the variations and patterns 
across the two cohorts. Image characteristics play a crucial role in the 
quality of tumor volume segmentation, with higher-quality images 
yielding better segmentation outputs [52]. The worst results of 2D-Seg-
ResNet, shown in Figs. 2 (g)-(l), correspond to the first outlier in Fig. 1 
(a), due to poor tumor-to-non-tumor contrast. Our model is effective on 
both opacified and non-opacified MR images, an aspect overlooked in 
prior LACC GTV segmentation studies. 

In clinical practice, GTV delineation in LACC typically relies on 
transverse views, with corrections made on coronal or sagittal planes, 
taking adjacent slices into account. Thus, 3D segmentation is favored for 
preserving spatial context. However, our dataset comprises 2D imaging 
sequences, explaining why 2D segmentation outperformed 3D in our 
study. As shown in Fig. 2, subfigures (n), (o), (p), (r), (s), and (t), axial 
image acquisition can cause misalignment between slices in sagittal and 
coronal directions. Moreover, our dataset had varying slice numbers per 
patient (12 to 90), with ground truth labels interpolated rather than 
manually created for each slice, potentially compromising segmentation 
accuracy. 

Rodríguez et al. [53] utilized a 3D nnU-Net architecture to automate 
GTV delineation from axial T2w MR images in cervical cancers for 

brachytherapy. This single-center study involved 195 patients treated 
from August 2012 to December 2021 with varied 1.5 T and 3T MRI 
settings. Evaluation metrics (DSC, 95HD, MSD) were computed on 39 
test patients, yielding a median DSC of 0.73 (IQR = 0.50–0.80), median 
95HD of 6.8 mm (IQR = 4.2–12.5 mm), and median MSD of 1.4 mm 
(IQR = 0.9–2.8 mm). Notably, significant DSC differences were seen 
with stratification by GTV volumes; lower volumes (0.26–2.83 cc) 
showed the lowest DSC. In our study, 2D SegResNet achieved the best 
median DSC = 0.76 (IQR = 0.64–0.73), median SDSC3mm=0.70 (IQR =
0.61–0.78), and median 95HD = 12.0 mm (IQR = 6.5–20.8 mm) 
compared to other models on the test cohort (cohort 2). Given our 
model’s multi-center training, these results are promising. 

Implemented as a binary classification task, our proposed failure 
detection approach links radiomic features extracted from automatically 
segmented tumors to the success or failure of automatic segmentation. 
During cross-validation, both LR and LDA exhibited nearly identical 
mean accuracy values of 0.78, as depicted in Fig. 3 (b). However, LDA 
had a higher median than LR (0.80 versus 0.79), while LR showed lower 
variance (0.003 versus 0.005). Notably, LR achieved a higher average 
accuracy of A = 0.86 on the test cohort (cohort 2) compared to LDA, 
potentially due to its lower variance. The negative class, encompassing 
samples with DSC⩾0.67, demonstrated a higher accuracy of A = 0.88, 
compared to the positive class with DSC < 0.67, where A = 0.75. 
However, examining the classification confusion results in Table 3 re-
veals that the classification is not perfect; out of 32 cases assessed as A by 
doctors, 21 (65.6%) were classified as 0, indicating no segmentation 
failure by the classifier. Regarding the green values in Table 3, 3 out of 4 
cases (75.0%) categorized as C were correctly identified as 1. Notably, 
training in binary classification utilized the DSC metric rather than 
doctors’ scores to prevent bias caused by subjective scoring. Addition-
ally, an analysis explored whether radiomic assessment indirectly re-
flected image quality indices associated with the machine. Results 
showed that 17 out of 51 cases categorized as 1 (poorly delineated cases) 
originated from different machines/centers. However, 3 out of 4 cases 
scored as C originated from the same center, indicating a potential 
connection. 

Future research should address the limitations of this study. In 
clinical practice, physicians often incorporate additional MR sequences 

Fig. 3. (a) Box-plot results of average accuracy on validation folds resulted from all the applied models by considering different thresholds of DSC and SDSC3mm 

ranging in [0.60,0.80] and application or not of the post-processing step and (b) box-plots results of average accuracy resulted from each ML model by considering 
different thresholds of DSC ranging in [0.60,0.80]. The results are statistically different with p − value < 0.05. 

Table 2 
Results of failure detection on test cohort, in terms of precision (P ), recall (R ), 
F1-score (F ), accuracy (A ), and AUC based on different classifiers.  

Classifier T P R F A AUC 

LR 0.67 0.88 0.75 0.81 0.86 0.91 
LDA 0.65 0.70 0.73 0.71 0.78 0.90 
KNN 0.67 0.64 0.44 0.52 0.75 0.76 
DT 0.64 0.57 0.22 0.32 0.66 0.63 
GNB 0.62 0.62 0.50 0.55 0.75 0.74 
SVC 0.62 0.72 0.50 0.60 0.78 0.80  

Table 3 
Confusion matrix for failure detection. Cases A are shown in red, cases B in blue, and cases C in green.  
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like functional Diffusion-weighted imaging (DWI) and clinical data for 
challenging tumor delineation cases [54]. Therefore, combining 
different MR sequences for automatic segmentation could enhance ac-
curacy, especially for poor-quality MR images. While this study pro-
vided a quantitative evaluation of segmentation, it lacked access to MR- 
LINAC. With the MR-linac’s development, efficient automatic segmen-
tation could facilitate swift and easy implementation of adaptive RT 
during treatment. The evolving landscape of DL networks, such as 
SwinUNetR, nnUNet, [55–57], for medical image segmentation war-
rants evaluation. Additionally, exploring diverse ensembling methods, 
like majority voting on outputs of 2D and 3D segmentation networks, is 
valuable. Enhancements to our failure detection method for clinical 
suitability may involve extracting image quality metrics and integrating 
them with radiomic features from segmented tumors. This approach 
aims to precisely characterize inter-image differences and enhance 
failure detection effectiveness [58]. 

Despite needing improvement, our center implements the model in 
routine clinical practice. The CTV for LACC in external beam RT en-
compasses the uterine body, vagina, bilateral parametria, and pelvic 
nodal regions (common, internal, and external iliacs, obturator, and 
presacral lymph nodes). Thus, a new model is necessary for this clinical 
task. Additionally, the model may have clinical relevance in defining the 
High Risk-CTV for brachytherapy. An ongoing evaluation considers pre- 
brachytherapy images to assess its generalizability. 

5. Compliance with ethical standards 

The utilization of the retrospective training cohort was performed 
under the General Data Protection Regulation (GDPR) and approved by 
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