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Avoiding gauge ambiguities 
in cavity quantum electrodynamics
Dominic M. Rouse1*, Brendon W. Lovett1, Erik M. Gauger2 & Niclas Westerberg2,3*

Systems of interacting charges and fields are ubiquitous in physics. Recently, it has been shown that 
Hamiltonians derived using different gauges can yield different physical results when matter degrees 
of freedom are truncated to a few low-lying energy eigenstates. This effect is particularly prominent 
in the ultra-strong coupling regime. Such ambiguities arise because transformations reshuffle the 
partition between light and matter degrees of freedom and so level truncation is a gauge dependent 
approximation. To avoid this gauge ambiguity, we redefine the electromagnetic fields in terms of 
potentials for which the resulting canonical momenta and Hamiltonian are explicitly unchanged by 
the gauge choice of this theory. Instead the light/matter partition is assigned by the intuitive choice of 
separating an electric field between displacement and polarisation contributions. This approach is an 
attractive choice in typical cavity quantum electrodynamics situations.

The gauge invariance of quantum electrodynamics (QED) is fundamental to the theory and can be used to greatly 
simplify calculations1–8. Of course, gauge invariance implies that physical observables are the same in all gauges 
despite superficial differences in the mathematics. However, it has recently been shown that the invariance is 
lost in the strong light/matter coupling regime if the matter degrees of freedom are treated as quantum systems 
with a fixed number of energy levels8–14, including the commonly used two-level truncation (2LT). At the origin 
of this is the role of gauge transformations (GTs) in deciding the partition between the light and matter degrees 
of freedom, even if the primary role of gauge freedom is to enforce Gauss’s law. Despite its long history15–19, this 
has led to new questions about which gauge most accurately describes the physics.

Two common gauge choices of non-relativistic QED 9,10,14 are the Coulomb gauge, which has the advantage of 
describing photons as purely transverse radiation modes, and the multipolar gauge, which is most useful when 
the leading order (dipole) terms are dominant in a multipole expansion of the fields20–22. Interestingly, within 
the 2LT the multipolar gauge is usually found to agree more closely with exact, gauge invariant calculations than 
the Coulomb gauge9,10. This has been attributed to the fact that in the Coulomb gauge the light/matter interac-
tion strength scales with the transition frequency between the relevant matter levels, while in the multipolar 
gauge the coupling instead scales with the energy of the radiation mode. Therefore, transitions between well-
separated matter levels can be non-negligible in the Coulomb gauge9,10. Further, Ref.14 suggested that the 2LT in 
the Coulomb gauge converts the local potential into a non-local one, which no longer only depends on position 
but now also on the gauge-dependent canonical momentum. This is further discussed in Refs.23–25 for a variety 
of physical settings.

The implication of these results is that the multipolar gauge is usually more accurate when the matter system 
is quantised and truncated to two levels. We should stress, however, that all gauges are equivalent and yield 
the same results if no approximations are made—a situation in which the so-called Power–Zienau–Woolley 
Hamiltonian is appropriate (found in for instance Ref. 2). Nonetheless, after approximations are made (such as 
a 2LT or a Born–Oppenheimer approximation) separate gauges can yield differing results, since energy levels 
have different meanings in different gauges. With regards to this, it has been emphasised8,11 that there exist a 
continuum of possible GTs, each with a unique light/matter partition and therefore also 2LT; depending on the 
physical setting, gauges other than the common choices can offer more accurate 2LTs8,11,26. Recently, it has also 
been reported that time-dependent light/matter couplings can lead to gauge ambiguities27.

In this Article, we first review the conventional approach in section “Conventional approach”, after which we 
reformulate QED such that gauge ambiguities do not manifest, see Fig. 1, in section “New approach”. We thus 
separate gauge issues from the choice of light/matter partition, for which we now offer an alternative interpreta-
tion. Our reformulation builds on previous work on the dual representation of QED28–33. We then show that 
the dual representation recovers the multipolar-gauge Hamiltonian of the conventional theory when the light/
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matter partition is chosen appropriately. We also provide a physical explanation as to why this choice is optimal 
for systems typical of QED, e.g. dipoles in a cavity. Additionally, in section “Accuracy of two-level truncations”, 
we numerically compare the accuracy of 2LTs in different light/matter partitions for the example of dipoles in 
a cavity. The results are discussed in section “Discussion”. We provide further details, extensions to the model, 
and derivations in the Supplementary Material.

Conventional approach
We first outline the conventional approach, and how gauge ambiguities arise in it (see Supplementary Material 1 
for full mathematical details). Let us consider a generic system of charges qµ at positions rµ described by a charge 
density ρ and current density J . Their dynamics are governed by the Maxwell equations and Lorentz force: 

Conventionally, the electric and magnetic fields are parametrised in terms of vector and scalar potentials 
A and A0 as E = −∇A0 − Ȧ and B = ∇ × A respectively, leading immediately to Faraday’s law and source-
less magnetic fields 34. The remaining equations are derived by minimizing the action of the minimal-coupling 
Lagrangian2,4,5,7,8

with the Lagrange density

where the mechanical degrees of freedom are A0 , A and rµ , respectively. The physical fields are unchanged by 
the introduction of a scalar field

so long as 

(1a)∇ · B(x) = 0,

(1b)∇ × E(x) = −Ḃ(x),

(1c)∇ · E(x) = ρ(x)/ε0,

(1d)∇ × B(x) = µ0J(x)+ ε0µ0Ė(x),

(1e)mµr̈µ = qµ
[
E(rµ)+ ṙµ × B(rµ)

]
.

(2)Lm =
∑

µ

1

2
mµṙ

2
µ +

∫
d3x Lm(x),

(3)Lm(x) =
ε0

2

[
E2 − c2B2

]
+ [J · A(x)− ρA0],

(4)χ(x) =

∫
d3x′ χ̃ (x, x′),

(5a)A′
0(x) = A0(x)+ χ̇(x),

Figure 1.   A schematic of the electromagnetic potentials in the conventional and new approaches. On the left, 
the electromagnetic fields are parametrised using conventional A - and A0-fields, respectively, whereas on the 
right, the C - and C0-fields are used. The various relations and equivalences between the gauges are also shown. 
In particular note that gauge ambiguities manifest when the matter levels are truncated using the A-fields.
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where a primed variable indicates one transformed by the χ-field. Under this transformation the Lagrangian L′m 
has a modified Lagrange density given by

The canonical momenta of this arbitrary-gauge Lagrangian, p′µ = ∂L′m/∂ ṙµ and �′ = δL′
m/δȦ , can be found as2 

where

Importantly, p′µ and �′ are explicitly gauge dependent and so correspond to different canonical momenta in 
every gauge2,8. After eliminating A0 using the continuity equation, the arbitrary-gauge Hamiltonian is found as2

Gauge ambiguities can occur, particularly in the strong light/matter coupling regime, when approximations 
to the Hamiltonian are introduced. A prominent example of this is expressing the matter Hamiltonian using a 
truncated number of energy levels; this approximation has different meanings in each gauge. When quantizing, 
the gauge dependent classical momentum p′µ is promoted to its quantum counterpart p̂′µ (along with the position 
rµ → r̂µ ). The truncation to N + 1 discrete energy levels follows next for each charge:

where Ûext is the external electrostatic interaction binding the charges. Each ‘matter’ eigenstate in Eq. (10) refers 
to a different physical system in each gauge and so truncation means losing different information. Formally, only 
when N → ∞ do all observables agree in different gauges, though for weak light/matter coupling a low-level 
truncation is usually sufficient for good agreement.

New approach
The canonical momenta in the theory outlined above inherit their gauge-dependency from the minimal-coupling 
Lagrangian [Eq. (2)], as the vector and scalar potentials are only defined up to the scalar function χ . To remove 
gauge ambiguities, we will therefore derive a theory which is described by a Lagrangian depending only on the 
physical fields.

The total charge and current densities of any system can be partitioned into bound and free contributions 
as ρ = ρb + ρf  and J = Jb + Jf

34. This naturally allows one to distinguish two contributions to the electric and 
magnetic fields: E = (D− P)/ε0 and B = µ0(H+M) with P and M being the polarisation and magnetisation 
fields. Our aim now is to parametrise the displacement and magnetic fields D and H using a dual vector potential 
C and scalar potential C0 such that 

This is the crucial point of this Article, and as we will show, it avoids gauge ambiguities in the formulation of 
cavity QED. The parametrization in terms of C-fields relies on the absence of free currents Jf  , a common cavity 
QED setting 8–11,14. Other examples of defining the physical fields in this way can be found in28–33, although here 
we extend the formulation to include the magnetization field and therefore move beyond the standard electric 
dipole approximation.

The polarization field P and the magnetisation field M are sourced by the bound charge and currents, 
respectively: 

We also note that Maxwell’s equations Eqs. (1c) and (1d) become: 

(5b)A′(x) = A(x)−∇χ(x),

(6)L
′
m(x) = Lm(x)− J(x) ·∇χ(x)− ρ(x)

∫
d3x′ Ȧ(x′) ·

∂χ̃(x, x′)

∂A(x′)
.

(7a)p′µ = mµṙµ + qµA(rµ)− qµ∇χ(rµ),

(7b)�′(x) = −ε0E(x)− φ′(x),

(8)φ′(x) =

∫
d3x′ ρ(x′)

∂χ̃(x, x′)

∂A(x)
.

(9)H ′ =
∑

µ

1

2mµ

[
p′µ − qµA(rµ)+ qµ∇χ(rµ)

]2
+

∫
d3x

(
1

2ε0

[
�′(x)+ φ′(x)

]2
+

B2(x)

2µ0

)
.

(10)T̂′
µ ≡

p̂′2µ

2mµ

+ Ûext

(
r̂µ
)
→

N∑

n=0

ǫn,µ
∣∣ǫ′n,µ

〉〈
ǫ′n,µ

∣∣,

(11a)D(x) = ∇ × C(x),

(11b)H(x) = ∇C0(x)+ Ċ(x).

(12a)∇ · P(x, r) = −ρb(x, r),

(12b)∇ ×M(x, r) = Jb(x, r)− Ṗ(x, r).

(13a)∇ ·D(x) = ρf (x),
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when written in terms of the displacement field D and magnetic field H . Note that interestingly, within this for-
malism Eqs. (1a)–(1b) and Eqs. (1c)–(1d) switch roles, as Eqs. (1a)–(1b) are dynamical equations for the C-field 
with Eqs. (1c)–(1d) serving as the Bianchi identity, whereas the opposite is true for the A-field.

We now specify a system to illustrate the theory, and for simplicity we will choose a single dipole formed of an 
electron at position r and a hole at the origin. The bound charge density and current of this dipole are described 
by ρb(x, r) = −eδ(x − r)+ eδ(x) and Jb(x, r) = −eṙδ(x − r) , respectively. The theory is easily extended to more 
dipoles, and in Supplementary Material 2 we add a background ionic lattice which allows for phonon-mediated 
processes within the system. There are no free charges or currents ( ρf = Jf = 0 ) and so a symmetry emerges 
when comparing Eq. (13) to Maxwell’s equations Eqs. (1a) and (1b)20,28–34. We will exploit this symmetry to 
parametrise the displacement and magnetic fields according to Eq. (11).

The restrictions on P and M given by Eq. (12) produce the correct bound charge density and current if2,8,27

and

where

However, these are not unique and Eq. (12) are also satisfied by P → P̃ = P+ P̃V and M → M̃ = M− M̃V where 

for general fields V and V0 and quantities dependent on these are denoted with a tilde. Such a transformation does 
not change the physics, but alters the light/matter partition. We emphasise that, in contrast, for the conventional 
A-field theory the light/matter partition is encompassed by gauge freedom.

All that remains to complete the theory is to write a Lagrangian that reproduces the remaining Maxwell equa-
tions [Eqs. (1a) and (1b)], and Lorentz force equation [Eq. (1e)], when minimised with respect to the mechanical 
degrees of freedom C0 , C and r respectively. We find that the required Lagrangian is

which for M → 0 agrees with Refs. 33,64 and we prove in Supplementary Material 3 that this Lagrangian satisfies 
all the necessary equations of motion.

Equations (11) are invariant under gauge transformations C0 → C0 + ξ̇ and C → C −∇ξ for any arbitrary 
scalar field ξ , but importantly so is the Lagrangian in Eq. (18). This is because the Lagrangian is written only in 
terms of the physical fields. Additionally, this means that the Lagrangian is invariant under the transformations 
in Eq. (17). It is also possible to verify this with a Lagrangian written in terms of the mechanical variables C0 , 
C and r . For B and E to be invariant under this transformation, there must be an implicit change to the fields C 
and C0 , which we write explicitly as D → D̃ and H → H̃ where

This is a direct consequence of the transformation in Eq. (17) changing the light/matter partition; a redistri-
bution of the contributions of D⊥ and P⊥ to E⊥ , and likewise H and M to B . Note that we have here introduced 
the Helmholtz decomposition of a vector W = W� +W⊥ into parallel W‖ and perpendicular W⊥ components, 
satisfying ∇ ×W� = 0 and ∇ ·W⊥ = 0 respectively.

The gauge-invariant Lagrangian in Eq. (18) leads to the crucial result that the canonical momenta in the new 
theory are also no longer gauge dependent, although they do depend on the light/matter partition through V 
and V0 . We find that the canonical momenta are 

(13b)∇ ×H(x) = Jf (x)+ Ḋ(x),

(14)P(x, r) = −e

∫ 1

0
d� rδ(x − �r),

(15)M(x, r) = −ṙ × θ(x, r),

(16)θ(x, r) = −e

∫ 1

0
d� �rδ(x − �r).

(17a)P̃V (x, r) = ∇ × V(x, r),

(17b)M̃V (x, r) = V̇(x, r)+∇V0(x, r),

(18)
L =

1

2
mṙ2 +

∫
d3x

ε0

2

[
c2B2(x)− E2(x)

]

=
1

2
mṙ2 +

∫
d3x

ε0

2

[
c2
(
Ċ +∇C0 +M

)2
− (∇ × C − P)2

]
,

(19)D̃(x) ≡ ∇ × C̃(x) = E(x)+ P̃(x, r),

(20)H̃(x) ≡
˙̃
C(x)+∇C̃0(x) = B(x)− M̃(x, r).

(21a)p̃ =
∂L̃

∂ ṙ
= mṙ −�0(r)− �̃(r),
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 where �0(r) =
∫
d3x θ(x, r)× B(x) and

We derive Eq. (21) in Supplementary Material 4. We see that the field canonical momentum is always the 
magnetic field whilst the matter canonical momentum is dependent on the light/matter partition.

To derive the Hamiltonian, we must be able to invert Eq. (21a) to write ṙ as a function of p . This puts a con-
straint on the allowed V and V0 fields in the transformations in Eq. (17). Here we assume that this constraint is 
met which results in �̃ being independent of ṙ , in which case we find that the Hamiltonian is

where we have introduced an external potential Ûext . Equation (23) is derived explicitly in Supplementary Mate-
rial 4 but follows the standard procedure. The gauge independence of Eq. (23) follows from the absence of 
magnetic monopoles, and as such the primary constraint ∇ · B = 0 can be satisfied without altering the light/
matter partition. Note that, differently to A-field theory, Gauss’s law can be enforced as an initial condition33. The 
constraint on inverting Eq. (21a) manifests as an additional term in Eq. (23) with the form

This term vanishes when Eq. (21a) can be inverted, e.g. for (V,V0) = (0, 0) and (V,V0) = ( 12 r × x, 0).
Before quantising the fields, we must choose a light/matter partition. In the conventional theory this requires 

a choice of gauge, however, the gauge choice here does not alter this partition. Instead, this freedom is encom-
passed in the choice of P⊥ and M . We show now that by choosing V = V0 = 0 we arrive at the usual multipolar 
gauge Hamiltonian of the conventional theory. This means that choosing V = V0 = 0 must result in the same 
light/matter partition as that in the multipolar gauge of the conventional theory. After making this choice we 
can now remove the tildes on the fields. We must then also choose a gauge in order for the quantisation procedure 
to be well-defined. This is because there are redundant variables in the Lagrangian, just as in a free A-field theory. 
Here we pick the Coulomb-gauge analogue of ∇ · C = 0 and C0 = 0 , but we note that the gauge does not affect 
the light/matter partition nor the form of the Hamiltonian. We quantise the fields by enforcing [
Ĉ⊥
i (x), �̂j(x

′)

]
= iδ⊥ij (x − x′) , where

and fk = (2νkV)−1/2 is the coupling strength to the mode with frequency νk = c|k| in volume V, ǫk� are polari-
sation vectors orthonormal to k , and ĉk� ( ̂c†k� ) is the photon annihilation (creation) operator for the C-field. 
We note that for different choices of V and V0 , the ladder operators in Ĉ⊥ describe different bosons. After the 
matter parts of the Hamiltonian are also quantised and expanded into eigenstates (truncated to N + 1 levels) 
the Hamiltonian can be written as

where d̂ = −er̂ . To arrive at Eq. (26), we make the electric dipole approximation (EDA) ( k · r ≪ 1 ) which allows 
us to evaluate the fields at the origin, set P ≃ −erδ(x) and ignore the smaller magnetisation interactions governed 
through �0 . The quantization process is analogous to the A-field theory, which is given in detail in Supplementary 
Material 3. We are now free to choose polarisation vectors in such a way that the polarisation of the physical 
fields as computed using C and A-fields overlap. It then follows that the C-field Hamiltonian in Eq. (26) has the 
same mathematical form as the multipolar gauge Hamiltonian for the A-field, which is a reflection of the light/
matter partitions being identical. In Table 1 we highlight the differences between the A - and C-field approaches.

Accuracy of two‑level truncations
We now turn to the question of whether a 2LT for the matter system is possible. In Fig. 2 we display the accuracy 
of the C-field Hamiltonian in an arbitrary gauge, with P⊥ and M chosen such that the light/matter partition is 
equivalent to the A-field in the multipolar gauge, along with the conventional A-field in the Coulomb gauge. In 
both cases we truncate to two or three dipole levels, which we give details on shortly. Here, we use only a single 
radiation mode that is resonant with the transition between the two lowest dipole levels, and Ûext is an infinite 
square well potential whose anharmonicity makes it amenable to few-level expansion. In the strong coupling 
limit, g̃ → 1 , both truncated Hamiltonians become inaccurate, importantly for different reasons. As discussed in 
Ref. 9, we expect a theory that limits the coupling between states far separated in energy space to most accurately 
model the physics, such as our C-field Hamiltonian with (V,V0) = (0, 0) or, equivalently, a multipolar A-field 
Hamiltonian. In such a theory, we expect the dynamics to be limited to a manifold containing few states, and 

(21b)�̃(x) =
δL̃

δ
˙̃
C(x)

= B(x),

(22)�̃(r) =
∂

∂ ṙ

∫
d3x B(x) · M̃V (x, r).

(23)H̃ =
1

2m

[
p̃+�0(r)+ �̃(r)

]2
+ Ûext +

∫
d3x

(
B2(x)

2µ0
+

1

2ε0

[
D̃⊥(x)− P̃(x)

]2)
,

(24)
(
1− ṙ ·

∂

∂ ṙ

)∫
d3x B(x) · M̃V (x, r).

(25)Ĉ⊥(x) =
∑

k�

ǫk�fk

(
ĉ
†
k�e

−ik·x + ĉk�e
ik·x

)
,

(26)Ĥ =

N∑

n=0

ǫn|ǫn��ǫn| +
∑

k�

νk ĉ
†
k�ĉk� −

1

ε0
d̂ ·

[
∇ × Ĉ⊥(0)

]
+

1

ε0

∑

k�

f 2k νk

(
d̂ · ǫk�

)2
,
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so accuracy is much improved by going from two to three levels. In contrast, the Coulomb gauge couples many 
energy states, and should thus be inaccurate when truncated to two, or three, levels.

We here appeal to discussion of the physics of the situation as the most natural way of determining a sensible 
light/matter partition. Importantly, there are two length-scales of the problem: the size of the dipole L and the 
wavelength of the light � . First, for polarisation fields to be well-approximated by a dipole moment at the origin, 
i.e. P ∝ d̂δ(x) , we must have � ≫ L . Polarisation fields can, of course, be used nonetheless, but at a computa-
tional cost. Second, it is easy to see that the transition dipole moment dn,m scales with the size of the dipole L, 
as |�d̂�| ∝

∣∣〈r̂
〉∣∣ ∝ L . Similarly, the momentum expectation value must scale as 1/L, from unit considerations. 

Thus for a small dipole where L ≪ � , the momentum matrix elements pn,m become large, whereas the dipole 
matrix elements dn,m are small. This therefore necessarily limits the coupling between well-separated energy states 
when relying on a dipolar coupling, allowing the dynamics to take place in a small energy manifold. For a large 
dipole, the situation is reversed, and we should note that the polarisation field becomes computationally more 
intensive to use in the same limit (i.e. higher order multipolar modes must be accounted for). This suggests a 

Table 1.   Comparison of A-field and C-field representations. Gauge dependent parameters are denoted 
with a prime. C/m (“C/m”) denotes the Coulomb/multipolar gauge (-analogues) in the A-field ( C-field) 
representation respectively, however the choice of gauge is inconsequential for predictions of the C-theory. We 
define �D(r) =

∫
d3x θ(x, r)×D(x).

A-field approach C-field approach

B = ∇ × A H = ∇C0 + Ċ

E = −∇A0 − Ȧ D = ∇ × C

A
′ =

{
A
⊥ C

�0/e m
C
′ =

{
C
⊥ “C′′

�D/e “m′′

�′ =

{
−ε0E

⊥ C
−D m �̃ = B

p
′ =

{
mṙ + eA⊥ C
mṙ −�0 m p̃ = mṙ −�0 − �̃

Figure 2.   The relative error in calculating the lowest energy spacing of the full Coulomb gauge and C
-field Hamiltonians for an infinite square well potential. The axes are η = (1/2π)x10ν = x10/�rad , where 
x10 =

〈
ǫ′
0
|x|ǫ′

1

〉
 is the approximate dipole size. The electric dipole approximation is satisfied when η ≪ 1 . To 

vary η , we vary ν whereas x10 is constrained such that the first dipole transition is resonant with the radiation 
mode ( ǫ1 − ǫ0 = ν ), which in practice results in tuning the length of the well. Along the horizontal axis, we plot 
the magnitude of the vector potential f. Importantly, the physically relevant second axis g̃ = gC

10
/ω10 = gm

10
/ν 

is plotted on the diagonal where gi
10

 is the transition strength between the two lowest lying states in gauge i. 
Here g̃ > 1 indicates ultra-strong coupling. We also show approximate regions where different types of QED 
experiments sit with respect to η and g̃ in the plot, with markers indicating individual experiments given in 
Table SM1 of Supplementary Material 5. References for the experimental data: Rb gas in optical cavity35–38; 
Quantum dot arrays39–43; Superconducting circuits44–48; Rare earth spins in µwave resonator49,50; Exciton 
polaritons49,50; Exciton polaritons in dyes51–54; Intersubband polaritons in quantum wells55–59; Electron cyclotron 
resonances60–63.
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physical origin to the success of the C-field/multipolar gauge A-field Hamiltonians. Indeed, we only see limited 
improvement by going from two to three levels for the Coulomb gauge. This is further discussed in Supplemen-
tary Material 6 where we repeat the calculation with a non-resonant cavity mode, shown in Fig. SM1. We should 
finally also note that in both cases we must keep counter-rotating terms, as they contribute significantly in the 
strong-coupling regime65.

We now give details on the numerics performed in Fig. 2. The Hamiltonians have Hilbert spaces Hm ⊗Hp , 
where Hm ( Hp ) is the Nm ( Np ) dimensional Hilbert space of the matter (single mode photon field). Written in 
matrix form the Coulomb gauge Hamiltonian of the conventional QED formulation is

where e and m are the electron charge and mass, ν is the energy of the photon mode and Id is the identity opera-
tor of dimension d. Equation (27) is derived in Supplementary Material 1. The vector potential is A = f (a + a†) 
where a is the annihilation operator matrix of dimension Np and f is the field amplitude. Note that throughout 
this example we assume that the dipole aligns with the polarisation of the field mode. The matter energy levels 
are contained within

where |ǫn� and ǫn are the eigenstate and eigenenergy solutions to the Schrödinger equation, and n is an integer. 
In Fig. 2 we use the one dimensional infinite square well potential which is zero within 0 ≤ x ≤ L and infinite 
outside this range. This leads to the well known eigenenergies and position space wavefunctions

Finally, the momentum matrix is p =
∑Nm

n,m=1 pn,m|ǫn��ǫm| where the matrix elements are

with n, m integer. For a detailed reference on the infinite square well see Ref. 66.
For a single photon mode the C-field Hamiltonian with (V,V0) = (0, 0) (and equivalently multipolar of the 

conventional QED formulation) is

where D = ∇ × C = −if (c† − c) , c is the Np-dimensional C-field photon annihilation matrix and the dipole 
matrix d = −ex where x =

∑Nm
n,m=1 xn,m|ǫn��ǫm| with elements

In Fig. 2 we compare the error in truncating the matter Hilbert spaces to Nm = 2 , which is the 2LT, for the 
Coulomb and C-field (V,V0) = (0, 0) Hamiltonians. To do so we calculate the energy difference of the two low-
est eigenstates in the matrices of Eqs. (27) and (32), working in units � = 1 = ε0 . For both Hamiltonians we do 
this for Nm = 2 and Nm large enough for convergence of this energy transition. The latter is the same for both 
gauges and gives the exact gauge-independent value for this energy transition. For all calculations Np is also large 
enough such that the transition is converged with respect to this.

Discussion
We stress that we are free to work in any C-field gauge without affecting the light/matter partitioning, which may 
offer additional freedom. The C-field gauge should also be chosen to reflect the physical situation: for instance if 
the system centre-of-mass is moving a Lorenz gauge is appropriate, whereas a Coulomb gauge is a good choice 
for static systems. The latter may be useful also if boundaries between different regions are considered, which is 
not the case for A-field Coulomb gauge where a generalisation is required to make the problem tractable67. In 
the example of a small dipole in a cavity, the C-field aligns with the multipolar gauge in the A-field representa-
tion, and so we agree with the conclusion of Refs.9,10,14 that this A-field gauge choice most accurately represents 
the physics of small, bound dipoles.

The equivalence between the C-field and A-field approaches warrants further consideration. For example, 
what choice of V and V0 leads to a C-field Hamiltonian that is analogous to the Coulomb gauge of the A-field 

(27)HCb = Hm ⊗ INp +
e

m
p⊗ A+

e2

2m
INm ⊗ A2 + νINm ⊗ a† · a,

(28)Hm =

Nm∑

n=1

ǫn|ǫn��ǫn|,

(29)ǫn =
π2n2

2mL2
,

(30)ψn(x) = �x|ǫn� =

√
2

L
sin

(nπx
L

)
.

(31)pn,m =

{
4�
iL

nm
n2−m2 n+m odd

0 n+m even,

(32)HC−field = Hm ⊗ INp −
1

ε0
d ⊗D+

1

ε0
f 2νd2 ⊗ INp + νINm ⊗ c

† · c,

(33)xn,m =





− 8L
π2

nm
(n2−m2)2

n+m odd

0 n+m even (n �= m)
L/2 n = m.
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approach? Additionally, it would be interesting to find the set of (V,V0) transformations that are allowed, i.e. 
that cause Eq. (24) to vanish.

In conclusion, we find that for systems without free currents and where a truncation of the matter system 
to few levels is desirable – typical of cavity QED situations – the C-field representation is an attractive choice: it 
completely removes the dependence of physical predictions after a level truncation on the choice of gauge. In 
other words, in the C-field representation, a gauge transformation does not set the light/matter partition. Instead 
this freedom is moved into the choice of P⊥ and M , which may be a more attractive choice. The C-field approach 
to QED offers an alternative route, distinct from gauge-fixing in the conventional A-field representation, to 
choosing the correct light/matter partition for a given system. In any case, the accuracy of results obtained in 
the (matter-truncated) C-representation are independent of the choice of gauge and limited only by the validity 
of the few-level truncation, decided by the chosen light/matter partition and the system being modelled.
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