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Anaesthesia, Hospital of Nykobing, University of Southern Denmark, Odense, Denmark,
3Department of Anaesthesiology and Operative Intensive Care Medicine,
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Objective: In older patients receiving general anesthesia, postoperative

delirium (POD) is the most frequent form of cerebral dysfunction. Early

identification of patients at higher risk to develop POD could provide the

opportunity to adapt intraoperative and postoperative therapy. We, therefore,

propose a machine learning approach to predict the risk of POD in elderly

patients, using routine intraoperative electroencephalography (EEG) and

clinical data that are readily available in the operating room.

Methods: We conducted a retrospective analysis of the data of a single-center

study at the Charité-Universitätsmedizin Berlin, Department of Anesthesiology

[ISRCTN 36437985], including 1,277 patients, older than 60 years with planned

surgery and general anesthesia. To deal with the class imbalance, we used

balanced ensemble methods, specifically Bagging and Random Forests and

as a performance measure, the area under the ROC curve (AUC-ROC). We

trained our models including basic clinical parameters and intraoperative EEG

features in particular classical spectral and burst suppression signatures as well

as multi-band covariance matrices, which were classified, taking advantage of

the geometry of a Riemannian manifold. The models were validated with 10

repeats of a 10-fold cross-validation.

Results: Including EEG data in the classification resulted in a robust and

reliable risk evaluation for POD. The clinical parameters alone achieved an

AUC-ROC score of 0.75. Including EEG signatures improved the classification

when the patients were grouped by anesthetic agents and evaluated separately

for each group. The spectral features alone showed an AUC-ROC score of 0.66;

the covariance features showed an AUC-ROC score of 0.68. The AUC-ROC

scores of EEG features relative to patient data di�ered by anesthetic group.

The best performance was reached, combining both the EEG features and

the clinical parameters. Overall, the AUC-ROC score was 0.77, for patients

receiving Propofol it was 0.78, for those receiving Sevoflurane it was 0.8 and
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for those receiving Desflurane 0.73. Applying the trained prediction model to

an independent data set of a di�erent clinical study confirmed these results for

the combined classification, while the classifier on clinical parameters alone

did not generalize.

Conclusion: A machine learning approach combining intraoperative frontal

EEG signatures with clinical parameters could be an easily applicable tool to

early identify patients at risk to develop POD.

KEYWORDS

electroencephalography, artificial intelligence, prediction model, machine learning,

aging, postoperative delirium, surgery

1. Introduction

Postoperative delirium (POD) is a common complication

and the most frequent cerebral dysfunction after surgery

requiring general anesthesia among elderly patients. It manifests

as a disturbance of consciousness, attention, perception,

memory, and cognition as well as a disruption of the sleep-wake

rhythm and can lead to adverse long-term complications such

as increased mortality, prolonged hospital stays, and persisting

cognitive impairments (Aldecoa et al., 2017). Even though it

is such a common condition with severe complications, it is

often overlooked. This is mainly caused by the predominant

hypoactive motor aspect of POD in older patients, hence not

being noticed by physicians and nurses on a busy peripheral

ward. Early identification of patients at high risk for POD could

significantly improve the clinical routine in postoperative care.

Based on a reliable prediction tool, patients with higher risks

could be the focus of monitoring and prevention, decreasing the

daily workload to those patients of concern.

Predisposing risk factors for POD have been identified

as frailty, aging, lower cognitive abilities, and preexisting co-

morbidities (Aldecoa et al., 2017; Culley et al., 2017). In

addition to these classical risk factors, several machine learning

approaches have been developed for predicting the risk of POD

with the goal of early diagnosis and prevention during or directly

after surgery. These approaches rely on different databases, such

as electronic health record data (Wang et al., 2020; Bishara et al.,

2022) or MRI data (Kyeong et al., 2018) and often focus on one

type of surgery (Kyeong et al., 2018;Wang et al., 2020). EEG data

has been used as well (van Sleuwen et al., 2022; Tesh et al., 2022),

however, not to predict POD specifically, but to predict clinical

outcomes and the severity of delirium in general for diagnosis

and treatment once patients might have developed delirium on

the ward.

There have not been machine learning models using routine

intraoperative EEG monitoring data, even though EEG has

shown characteristic signatures during surgery connected to the

classical risk factors. On the one hand, preexisting cognitive

dysfunction in older patients is associated with reduced

intraoperative alpha-band power (Gutierrez et al., 2019; Koch

et al., 2019). On the other hand, patients at higher age more

readily present intraoperative burst suppression activity and

show reduced intraoperative alpha-band power (Purdon et al.,

2015). Both of these are associated with a higher risk to develop

POD (Soehle et al., 2015; Fritz et al., 2016; Koch et al., 2021).

In the present study, we use the raw EEG files from the

BIS Neuromonitor (BISTMMedtronic). We complement the

EEG data with clinical patient data that is routinely available

in the operating room. Apart from the medication directly

connected to the surgery, we only take the American Society

of Anesthesiology (ASA) score, the age of the patient, and the

duration of the operation into account. On this basis, we aim

to develop a robust machine learning model to predict POD,

showing that incorporating EEG signatures improves the risk

evaluation.

2. Methods

To predict the risk of developing POD, we retrospectively

analyzed the intraoperative raw EEG files from the single-

center study SuDoCo at the Charité-Universitätsmedizin Berlin,

Department of Anesthesiology [ISRCTN 36437985] (Radtke

et al., 2013). The study included 1,277 patients and POD was

diagnosed based on the Diagnostic and Statistical Manual of

Mental Disorders (DSM IV) assessments twice daily starting

in the recovery room until the evening of postoperative day

7. The patients were labeled as POD patients if POD was

diagnosed in at least one of the assessments. To ensure patients

had no delirium before the surgery, they underwent Mini-

Mental State Examination, and patients who had scores < 24

were excluded from the overall study. The anesthetic procedure

was not controlled by the study regime, and anesthesiologists

conducted general anesthesia according to the standard

operating procedures of the Charité-Universitätsmedizin Berlin.
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Intraoperative frontal EEG channels (Fp1, Fp2, F7, and

F8) used by the BIS monitor were recorded (Radtke et al.,

2013). Since we used only the raw EEG recordings, there

were no event markers in the EEG. Our analysis does not

refer to any processed EEG parameters given in the BIS

monitor by any inbuilt algorithms. The recordings vary in

length, 254 of the recordings were partial recordings of

the operation. We excluded any patient with missing EEG

recordings or that had <20 min of intraoperative EEG data

left after preprocessing, which will be discussed in the next

subsection. Additionally, we excluded patients with missing

clinical data.

During preprocessing, we extracted the burst suppression

features for each patient from the EEG data (see Section 2.1),

as well as two time-dependent features: the spectral features and

the covariance features (explained in detail in Section 2.2.1). The

latter two represent a sequence of 2 min time frames of the EEG

data. The spectral features contain the frequency spectrum for

each time frame, while the covariance features contain multi-

band covariance matrices for each time frame. The two time-

dependent features are classified separately. For some steps

in the preprocessing (Section 2.1) and the classification of

the covariance features, we use the Riemannian framework

(Barachant et al., 2013; Congedo et al., 2017; Congedo, 2018;

Barthélemy et al., 2019). All the data analysis is performed

in the programming language Julia, importing the python

packages imbalanced-learn (Lemaître et al., 2017) and scikit-

learn (Pedregosa et al., 2011).

The burst suppression features were added to the clinical

patient data and then classified. The following features of the

clinical patient data were used: the administered anesthetic

agents (categorical), whether a patient received benzodiazepine

(binary), the age (numeric), the length of the operation

(numeric), and the ASA score (numeric). The three classifiers

corresponding to the categories of features were then combined

into a final risk evaluation (Figure 1).

2.1. EEG data preprocessing and feature
extraction

We focus on two main types of artifacts: high amplitude

artifacts and frequency artifacts. For the first category, we use

an amplitude filter, excluding high amplitude artifacts. Since we

have different subjects and settings under which the data was

recorded, the amplitudes scale differently in different recordings.

Hence, we do not define a fixed threshold to exclude the

amplitude artifacts but use the 99% quantile of the amplitudes

for each patient. The data is re-referenced by themean (common

average reference). Afterward, we apply a bandpass filter (0.3–50

Hz) for the frequency artifacts.

After applying the two filters, the data is automatically

segmented (see Supplementary Section S1.1). The segmentation

takes the amplitude artifacts and potential edge artifacts

introduced by the band-pass filters into account, leaving us

FIGURE 1

Overview of the used features and classifiers. For each patient, there are two general types of data: the EEG data and the patient data. From the

EEG data, three types of features [time-dependent: covariance and spectrum, numerical: burst suppression ratio (BSR), and longest suppression

phase (LSP)] are extracted (Section 2.1). From the patient data, the data easily available in the operating room is used. These features are

classified by di�erent classifiers (covariance, spectrum, patient+burstsupp, combined risk evaluation, and patient data classifier; Section 2.2) and

then evaluated and compared (Section 3).
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with a series of separated time segments between artifacts. Any

segments smaller than 1s are removed from the series to ensure

an accurate estimation of the spectrum and covariance matrix

for each segment.

After z-scoring the data, the estimation of the spectral

density or frequency spectrum is done using the Welch method

(Welch, 1967; Congedo, 2018) for each segment. This is the basis

for the spectral features. Furthermore, we extract additional

intraoperative signatures (Purdon et al., 2013), namely the

burst suppression ratio (BSR) and the longest suppression

phase (LSP), and calculate burst suppression probability for

each time point, estimating a burst suppression timeline

(Supplementary Section S1.3). Burst suppression is an EEG

pattern, where periods of almost no EEG activity alternate with

periods of high activity. To calculate the BSR, we determined the

suppression time in the EEG—with very little to no activity—and

we divided this by the duration of the time interval recorded,

which in our case was the length of the recorded EEG file

reduced by the removed artifacts.

For the covariance features, we use a multi-band signal.

To calculate the multi-band signal, we filter the EEG data

to the delta (0.3–4 Hz), theta (4–8 Hz), lower alpha (8–12

Hz), higher alpha (12–15 Hz), lower beta (15–20 Hz), higher

beta (20–30 Hz) frequency bands. The resulting filtered EEG

data in each of the frequency bands is then stacked with the

burst suppression timeline. This artificially creates a higher

dimensional data set with more channels. The covariance

matrices are estimated for each segment using the Oracle

Approximating Shrinkage (OAS) method (Chen et al., 2010),

ensuring that the covariance features are symmetric positive

definite (SPD) matrices and therefore lie on the Riemannian

manifold of SPD matrices (Supplementary Section S1.2). We

identify further outlier segments by applying a variation of

the Riemannian potato (Barachant et al., 2013; Barthélemy

et al., 2019) on the covariances. The Riemannian potato method

identifies outlier segments on the Riemannian manifold, by

calculating the distance of the segment’s covariance matrix on

the manifold to a mean that adjusts over time. For covariance

matrices that are too far away from the mean in the affine-

invariant metric (Supplementary Section S1.2), we remove the

corresponding segments from the spectral as well as the

covariance data.

For both, the series of spectra and the covariance matrices,

the corresponding segments are grouped by 2-min time frames,

and then the mean is calculated for each time frame, giving a

representation for every 2 min of the filtered operation.

2.2. Classification

After the preprocessing, we have two categories of data

for classification, the EEG-based time series data, which are

the covariance and spectral data, and the patient data with

additional features extracted from the EEG recordings, namely

the BSR and the LSP (Figure 1).

Since the data set exhibits a pronounced class imbalance

(many more patients with than without POD), we use balanced

ensemble methods, which can resolve this challenge (Hido et al.,

2008; Galar et al., 2012). Hence, the patient data is classified by

a balanced random forest classifier (Chen and Breiman, 2004).

For the spectral and covariance data, in addition to the class

imbalance, each patient has a different number of time frames

depending on the length of their surgery. Therefore, we apply

two sampling strategies for the two levels of imbalance. The

sampling is embedded in a Bagging classifier, which uses support

vectormachines (SVMs) as a base estimator to classify individual

time frames.

2.2.1. Time-dependent features

There are two kinds of time-dependent features used in

this study: the spectral and the covariance features. For each

patient, there is a series of spectra and covariances calculated

during preprocessing, which means we have a series of high-

dimensional data as features for each patient. They represent a

series of 2-min time frames from each patient’s surgery. To deal

with this data, we chose a Bagging approach, which deals with

the different levels of data and imbalance: the patient level and

the time frame level.

For training, we first undersample on the patient level,

leaving out patients, then we undersample on the time frame

level, leaving out time frames for the remaining patients

(Figure 2). We, second, use each time frame as a separate data

point for training a weighted SVM, keeping the patient label

for each time frame corresponding to a patient. We train the

SVM in the Euclidean space, which requires a few extra steps for

the covariance matrices (Figure 3). Third, we check, whether a

trained SVM reaches a set threshold on all time frames of the full

data set and save the model to apply to the test set if it reached

the threshold. Should the threshold not be reached within a

set number of iterations, here 5, it is reduced by 2.5%. This is

repeated until the number R of saved estimators is reached. The

evaluation is done for all time frames TP of the test patients

P. The probability to develop POD is averaged over the time

frames TP and number of estimators R using the predicted

classification cPr,t for each time frame t from each estimator r.

This results in the mean ratio of time frames that were classified

as POD:

pPclassifier =
1

RTP

R∑

r=1

TP∑

t=1

cPr,t

for both classifiers, the spectral classifier spec and the

covariance classifier cov. We use this as the probability
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FIGURE 2

Bagging classifier schematic for time-dependent data. The Bagging approach saves R SVM estimators trained on the training set to classify all

time frames in the test set and calculate a probability to develop POD for each patient in the test set. The SVMs are trained on sampled time

frames as data points, the result of two stages of sampling on the training set: the strategy for patient sampling and the strategy for time frame

sampling. The covariance features are projected to a Euclidean space before classification (Figure 3). If the AUC-ROC on the whole training set is

good enough, the SVM is saved.

given by this classifier to predict whether a patient will

develop delirium.

The sampling is done differently for the two types of

time-dependent features. For both features, we randomly

undersample the majority class on the patient level to reduce

class imbalance, keeping at least 1
3 of the majority class. For

the spectral features, we then randomly sample a fixed number

of time frames from each patient, ensuring, that patients

with longer surgeries do not have a higher impact on the

classification. For the covariance features, we sample again a

fixed number of time frames, but the number depends on the

class. We sample more time frames from the minority class,

the POD patients, to make the data set more balanced and

have a more diverse set of covariance matrices for the minority

class. The latter, we found, improves classification, probably

because a better reference point for the tangent space is found

this way.

To be able to classify the covariance features with a SVM in

the Euclidean space, they have to be projected into a euclidean

space. Covariance matrices are SPD matrices, which form a

Riemannian manifold, where a Riemannian metric describes the

distance between two points (Supplementary Section S1.2). We

can project the covariance features to a tangent space of the

manifold, which is Euclidean, and there the SVMs are trained.
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FIGURE 3

Projection of covariance features to the Euclidean tangent space. (A) The test set (gray, top) and the training set (green, bottom) are projected to

the same tangent space of the reference point R. (B) The reference point R is calculated by taking the Riemannian mean of the Riemannian class

means of the training set on the manifold, ensuring that the reference point is balanced regarding the di�erent classes.

The tangent space of a Riemannian manifold depends on the

point, it is calculated from, the reference point, and is different

at each point. Therefore, we find a reference point suitable for

our training data and project the training and test set to the

corresponding tangent space (Figure 3A; Congedo et al., 2017;

Zanini et al., 2018). We chose a balanced Riemannian mean

(Supplementary Section S1.2) of the sampled time frames as a

reference point (Figure 3B). To calculate the balanced mean, the

mean is first taken over the time frames of each class and then

the mean of the two class means is calculated.

2.2.2. Clinical and burst suppression features

The clinical features and the burst suppression features used

in the patient and patient+burstsupp classifier respectively are

numerical or categorical features for each patient. Therefore,

this is a classical classification of imbalanced data per patient.

We use a balanced random forest classifier (Chen and

Breiman, 2004; Lemaître et al., 2017) for classification in

both cases.

For patient data, we used only information that is

readily available in the operating room. As such, we use
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which medications are used for anesthesia induction

namely Propofol, Thiopental, or Etomidate, and which

medications are used for the maintenance of anesthesia

namely Propofol, Desflurane, Sevoflurane, or Isoflurane.

Additionally, we use the ASA score, whether the patient

received Benzodiazepine for premedication, the age of the

patient, and the length of the operation. For the latter there is

typically an estimation available before the operation, here we

use the exact length. These are the features used in the patient

data classifier.

The second classifier using the patient data to train

adds the burst suppression signatures we extracted from the

intraoperative EEG data to the patient data as additional

features. This is the patient+burstsupp classifier. Specifically,

we add the burst suppression ratio (BSR) and the longest

suppression phase.

The full overview of the data used can be found in Table 1

(Supplementary Figures S1, S2). Significance was calculated

by Pearson Chi-Square test for the ASA score and use of

Benzodiazepines, and with the Kruskal-Wallis Test for age,

surgery length, burst suppression ratio and mean longest

suppression phase.

As is typical for random forest classifiers, the probability

pclassifier for each patient P is based on the probability pPtree
given by each decision tree in the forest. Let F be the number

of trees, then for the classifiers patient and patient+burst the

probability for patient i to develop POD is given by pP
classifier

=
1
F

∑F
tree=1 p

P
tree.

2.2.3. Risk evaluation

To combine the three probabilities into a final risk

evaluation, we calculate

pcomb = max (ppatient+burst , min (pspec, pcov)) (1)

for the probability prediction of the patient+burstsupp, spectral,

and the covariance classifier. However, each of these classifiers

can have a different optimal threshold for classification because

the data is imbalanced and the classifiers are based on different

averages taken. The optimal threshold for classification on the

training set is the value, that maximizes the true positive rate

(TPR) while minimizing the false positive rate (FPR) if every

probability below the threshold is classified as negative and every

probability above the threshold is classified as positive for POD

(Calvert and Khoshgoftaar, 2019; Johnson and Khoshgoftaar,

2019; Zhang et al., 2020). This is solved by finding the threshold

thclassifier that maximizes the g-mean g =
√
TPR(1− FPR)

for each classifier (Kubát and Matwin, 1997; Johnson and

Khoshgoftaar, 2019). The risk evaluation then takes the optimal

thresholds calculated on the training set into account. For each

classifier, the optimal threshold thclassifier can be adjusted to

th
shifted
classifier

= 0.5 by shifting the probabilities by shift = 0.5 −

thclassifier , resulting in: p
shifted
classifier

= pclassifier+ shift. We test, how

much the AUC-ROC score of pcomb improves on the training set

when the probabilities are shifted to have an optimal threshold

of 0.5 for all classifiers or two out of three. The shifts resulting

in the highest AUC-ROC score of pcomb are saved and applied

TABLE 1 Overview SuDoCo data.

No POD POD

Anesthetic

agent for

maintenance

Propofol
Desflurane

(+Bolus)

Sevorflurane

(+Bolus)
All Propofol

Desflurane

(+Bolus)

Sevorflurane

(+Bolus)
All

Number of patients 256 295 306 864 39 102 61 203

Age in years 68.9± 5.54 69.0 ± 6.23 69.6± 6.31 69.2± 6.06 71± 7.15 71.4± 6.65 73.4± 6.06 71.9± 6.61

ASA score 2.35± 0.57 2.44± 0.61 2.47± 0.586 2.41± 0.59 2.72± 0.56 2.56± 0.55 2.75± 0.54 2.65± 0.56

OP length in h 2.40± 1.39 2.86± 1.64 2.57± 1.52 2.61± 1.53 3.41± 1.79 4.31± 1.99 3.45± 1.97 3.88± 1.98

Benzo- diazepine 11 14 15 50 1 8 5 14

BSR 0.24± 0.08 0.182± 0.11 0.161± 0.09 0193± 0.1 0.260± 0.1 0.190± 0.12 0.169± 0.06 0.197± 0.1

Mean LSP in s 62.9 47.2 47.3 51.9 63.8 94.2 69.5 80.4

Overview of the data and groups used for classification. Desflurane and Sevoflurane include possible additional Propofol bolus. Values with significant p-values are marked in green.

Significance was calculated by Pearson Chi-Square test for the ASA score and use of Benzodiazepines, and with Kruskal-Wallis Test for age, surgery length, burst suppression ratio, and

mean longest suppression phase. The full table with all the p-values and additional data is available in Supplementary Table S1.
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to the test set. If only two probabilities are shifted, the third

shift is set to 0. Therefore, Equation (1) can be rewritten as

pcomb = max (p
shifted
patient+burst

, min (p
shifted
spec , p

shifted
cov )).

We chose to use the maximum formulation in the

calculation for pcomb (1) to ensure a high negative predictive

value (NPV). For the NPV calculated for the final results, the

classification threshold is set at 0.5. To retain a better prediction

for small values of pclassifier , we set pcomb = pm, if pm < 0.25,

with pm = mean(pclassifier) being the common average of the

probabilities for all classifiers (patient + burst, spec, cov) with a

high enough AUC-ROC on the training set.

3. Results

From the initial 1,277 patients in the SuDoCo study,

we excluded 210 patients, due to missing data (98) or

EEG files shorter than 20 min after preprocessing (112).

Patient characteristics of the included 1,067 patients are given

in Table 1.

When the data is trained on the whole data set, there is no

apparent benefit of using EEG signatures for the classification.

The results shown are the ROC curves and AUC-ROC scores

over 10 repeats of a 10-fold cross-validation (Figure 4). The

AUC-ROC score of the combined classifier is only 0.6% better

than the patient classifier, and there is no improvement due

to the burst suppression features. However, if we look at the

different medications given for anesthesia maintenance, we

see that the classifiers perform differently for the different

medication groups. In particular, the EEG-based classifiers for

the spectrum and the covariance perform significantly better

for Propofol than for the inhalational anesthetics and the

combined classifier improves over the patient classifier for

Propofol.

Therefore, we investigated the medication groups and

classifiers separately. For Propofol, the classification of the

spectral features and burst suppression features improves.

For Sevoflurane, the burst suppression features improve

classification overall, while the covariance features improve by

4% (Supplementary Figure S3, Figure 6. Consequently, if the

FIGURE 4

Cross-validation-results for training on all medications. Results shown for each medication group, left all, 2. Propofol, 3. Desflurane and right

Sevoflurane, for each of the classifiers patient (features: anesthetic agent, benzodiazepine, ASA, Age, OP length) (blue), covariance (green),

spectrum (orange), patient+burstsupp (patient and burst suppression features) (red), combined risk evaluation (violet). (A) ROC-AUC values in

box plot over 10 repeats of 10-fold cross-validation. (B) Mean ROC-curves for 10 repeats of a 10-fold cross-validation.
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three groups are trained on separately, the performance of

the combined risk evaluation improves for Sevoflurane and

Propofol (Figure 5). For both medications, the addition of EEG

signatures to the combined model improves the classification

of POD.

Training the classifiers for the Propofol and Sevoflurane

group on the corresponding training data, for which the

classifiers perform best (Supplementary Figure S3), gives the

best overall result (Figure 6). The spectral classifier for Propofol

reaches an AUC-ROC score of 0.72 and the addition of

burst suppression features to the patient data, improves the

classification AUC-ROC by 0.05. For Sevoflurane the covariance

classifier performs at 0.68 and the burst suppression features

account for an improvement of 0.01 over the patient classifier.

The combined risk evaluation is best in every medication group

reaching a AUC-ROC of 0.78 for Propofol (NPV 0.92), 0.73 for

Desflurane (NPV 0.89), 0.80 for Sevoflurane (NPV 0.92), and

0.77 (NPV 0.91) overall.

3.1. Validation on a separate study

To investigate the robustness of our classifiers, we used

our models trained on the SuDoCo study data and classified

the patients from a different study, the BioCog study. The

BioCog study (BioCog project, 2014-2017) is a multicenter

study, where intraoperative EEG recordings were done at

the Charité-Universitätsmedizin Berlin (Campus Virchow

Klinikum and Campus Mitte) from October 2014 until April

2017. Intraoperative raw EEG files were available from 78

patients. The EEG was recorded with the SEDline monitor

(SEDline Root, Masimo, Irvine, USA) at the Fp1, Fp2, F7, and

F8 electrode positions. We used the same preprocessing steps

as included in our trained model, excluding six patients with

missing data or with <20 min of EEG recording left after

preprocessing (Table 2).

For each medication group, the patient+burstsupp and the

combined classifier show a robust and good performance: an

AUC-ROC score of 0.8 for Sevoflurane, 0.87 for Propofol, and

1.0 for Desflurane, 0.85 for all medications (Figure 7). The

patient data classifier does not show these results. The EEG-

based classifiers alone, however, perform fairly well. To use the

covariance classifier, we project the new data covariancematrices

on the manifold to the saved reference point (Zanini et al., 2018,

Supplementary Section S3). We correct the probability results

for each group and classifier to an optimal threshold of 0.5 with

the optimal thresholds calculated on the SuDoCo training set

(Section 2.2.3).

4. Discussion

Our results indicate that including routine EEG

measurements in a POD risk evaluation gives a robust and good

prediction both in cross-validation and in a separate study. Both

studies include older patients without any focus on a specific

surgical population. The combined classifier, incorporating

patient data and signatures from the intraoperative EEG

monitoring, outperforms any of the approaches using only one

of the two.

Using only our limited patient data appears to be sensitive

to small shifts in the patient data, as we can see for our

validation study, where the Age is generally older while the

ASA score is lower than in the SuDoCo study (Tables 1, 2,

Supplementary Figures S2, S3). Including the EEG signatures

made the results more robust to shifts in the patient data, even

though the EEG was recorded with a different monitor.

Adding markers to the EEG for the beginning and end of

the operation, specifically at the first cut and the last stitch,

FIGURE 5

Comparison of combined risk evaluation. Results shown for Propofol, Desflurane, and Sevoflurane comparing the combined risk evaluation

when the classifiers are trained on the corresponding medical group and when they are trained on the whole data set.
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FIGURE 6

Cross-validation-results for training on group-specific data. Results shown for each medication group, left all, 2. Propofol, 3. Desflurane and

right Sevoflurane, for each of the classifiers patient (features: anesthetic agent, benzodiazepine, ASA, Age, OP length) (blue), covariance (green),

spectrum (orange), patient+burstsupp (patient and burst suppression features) (red), combined risk evaluation (violet). The medication group all

includes all medications, the classifiers for each patient are based on the given medication group shown on the right. If patients do not fall into

one of the groups, receiving other mixed medications, they are classified by the classifier trained on all medications. (A) ROC-AUC values in a

box plot over 10 repeats of a 10-fold cross-validation. (B) Mean ROC-curves for 10 repeats of a 10-fold cross-validation.

might also improve the results by making the preprocessing

more precise. Generally, we cannot make any claims about other

combinations of anesthetic agents because there were very few

instances in the training set. Furthermore, while the transfer of

the model to the validation study shows proof of concept and

robustness, the very good results on the validation set, especially

for Desflurane, might be the result of the few such patients in

the validation set. The 38 Sevoflurane patients in the validation

set, however, show results closer to the cross-validation results,

which was expected (Table 2).

We show that taking the medication into account can

improve the results of the overall risk evaluation, by improving

the classifiers using the EEG features. This is probably partly due

to the different class imbalances, for the different medication

groups (Tables 1, 2). The main reason, though, is the effect

on the EEG of the different medications. Taking away those

differences should increase the similarities of the training and

test set. However, contrary to our expectations, this did not work

for every medication group. The effect might be counteracted

by the fact, that we make the training set smaller when we

look at the groups separately, which explains why the approach

only worked partly. From literature (Soehle et al., 2015), one

would expect the burst suppression features to improve the

prediction for all medication groups, which did not work for the

Desflurane group in cross-validation. However, it did improve

the transfer to a new dataset for all medications. The study did

not include the dosage of the anesthetic agent given, this might

have weakened our results since the sensitivity to anesthetic

agents varies within the older population (Cooter Wright et al.,

2022).

Even when including little prior knowledge about the

patient, the cross-validation results for Propofol and Sevoflurane

are comparable to the POD prediction results achieved by

Bishara et al. (2022), using electronic health record data

of 24,885 adults, reporting an average AUC-ROC of 0.82

for older patients. This shows the potential of incorporating
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TABLE 2 Overview data BioCog.

No POD POD

Anesthetic

agent for

maintenance

Propofol
Desflurane

(+Bolus)

Sevoflurane

(+Bolus)
All Propofol

Desflurane

(+Bolus)

Sevoflurane

(+Bolus)
All

Number of patients 16 11 33 61 4 2 5 11

Age in years 71.9± 5.69 70.2± 3.46 71.8± 5.26 71.6± 5.04 71.3± 5.125 72.0± 1.41 76.6± 8.59 73.8± 6.69

ASA score 2.19± 0.54 2.09± 0.3 2.21± 0.42 2.18± 0.43 2.5± 0.58 2± 0.00 2.20± 0.84 2.27± 0.65

OP length in h 1.88± 1.57 2.61± 1.41 4.52± 3.5 2.54± 1.95 3.41± 1.79 4.31± 1.99 2.55± 1.45 4.04± 2.08

Benzo- diazepine 2 4 11 18 0 1 1 2

BSR 0.203± 0.16 0.151± 0.29 0.156± 0.22 0.158± 0.154 0.286± 0.16 0.266± 0.21 0.269± 0.45 0.268± 0.29

Mean LSP in s 150.1 59.6 62.3 86.5 597 15.1 162 293.3

Desflurane and Sevoflurane include possible additional Propofol bolus.

FIGURE 7

Validation results on BioCog study for a model trained on the group-specific data of the SuDoCo study. All (72 patients), Propofol (20 patients),

Desflurane (13 patients), Sevoflurane (38 patients).

EEG monitoring data into machine learning algorithms to

predict POD. Unfortunately, there are very few publications

for older patients of a general surgical population. A Random

Forest classifier in Wang et al. (2020) reached an AUC-

ROC score of 0.96 for 912 patients undergoing microvascular

decompression surgery, trained on patient data features,

and validated on a test set. A logistic regression model

trained on MRI data (Kyeong et al., 2018) predicted POD

for 57 older patients with a femoral neck fracture with a

cross-validation AUC-ROC of 0.92. However, collecting the
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required data before surgery is time-consuming and expensive.

Limiting the patient data to readily available information,

without any additional examinations or measurements, is

more practical.

Generally, one has to be mindful of biases in the prediction.

While the risk evaluation allows focusing efforts on a group

with high risk in a busy clinical ward, it disadvantages false

negative patients. This is why our risk evaluation favors false

positives. The limited clinical data combined with the EEG data,

we believe, are less prone to societal biases than other clinical

parameters. Nevertheless, the training set is imbalanced and

before introducing any such approach into a clinical setting,

one would need to investigate carefully, if there are any relevant

biases and how to address them.

Our approach remains easily applicable because the

patient data used is available in the operating room.

EEG is already used routinely to monitor the depth of

anesthesia and therefore widely available and affordable.

Incorporating the EEG signatures into a POD prediction

method has the potential to improve the overall results

and robustness.

5. Conclusion

Incorporating EEG data into a machine learning approach

gives a reliable risk evaluation for POD. We could show that

adding EEG signatures to the approach improves classification

compared to using limited patient data with classical risk factors,

such as age, the ASA score, and the length of the operation.

However, this only works, if we take the different maintenance

medications into account because they affect the EEG. Including

the medication in EEG monitors might, therefore, generally be

useful. For future work, it might be interesting to investigate

Desflurane a little closer, since the POD incidence in that

group is higher than in the other groups and burst suppression

signatures do not seem to be a relevant risk factor for most

of these patients. The patient information we use is limited to

six features and could quickly be typed into future monitoring

equipment. Our approach shows that using EEG data in a

machine learning approach could be used as a software tool

in EEG monitors to give a risk evaluation for POD at the end

of surgery.
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