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Abstract

Background: The phenomenon of antibody dependent enhancement as a major determinant that exacerbates disease
severity in DENV infections is well accepted. While the detailed mechanism of antibody enhanced disease severity is unclear,
evidence suggests that it is associated with both increased DENV infectivity and suppression of the type I IFN and pro-
inflammatory cytokine responses. Therefore, it is imperative for us to understand the intracellular mechanisms altered
during ADE infection to decipher the mechanism of severe pathogenesis.

Methodology/Principal Findings: In this present work, qRT-PCR, immunoblotting and gene array analysis were conducted
to determine whether DENV-antibody complex infection exerts a suppressive effect on the expression and/or function of
the pathogen recognition patterns, focusing on the TLR-signaling pathway. We show here that FccRI and FccRIIa
synergistically facilitated entry of DENV-antibody complexes into monocytic THP-1 cells. Ligation between DENV-antibody
complexes and FcR not only down regulated TLRs gene expression but also up regulated SARM, TANK, and negative
regulators of the NF-kB pathway, resulting in suppression of innate responses but increased viral production. These results
were confirmed by blocking with anti-FccRI or anti-FccRIIa antibodies which reduced viral production, up-regulated IFN-b
synthesis, and increased gene expression in the TLR-dependent signaling pathway. The negative impact of DENV-ADE
infection on the TLR-dependent pathway was strongly supported by gene array screening which revealed that both MyD88-
dependent and –independent signaling molecules were down regulated during DENV-ADE infection. Importantly, the same
phenomenon was seen in PBMC of secondary DHF/DSS patients but not in PBMC of DF patients.

Conclusions/Significance: Our present work demonstrates the mechanism by which DENV uses pre-existing immune
mediators to defeat the principal activating pathway of innate defense resulting in suppression of an array of innate
immune responses. Interestingly, this phenomenon specifically occurred during the severe form of DENV infection but not
in the mild form of disease.
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Introduction

Dengue is the most prevalent vector-borne disease occurring in

tropical and subtropical regions with an estimated 50 to 100

million people infected each year. This includes 500,000 cases of

life-threatening disease which are dengue hemorrhagic fever

(DHF) and dengue shock syndrome (DSS) [1,2]. Dengue viruses,

members of family Flaviviridae, are a group of four genetically

distinct serotypes known as DEN-1 to -4. The genome of these

viruses is a single-stranded positive sense RNA which is appro-

ximately 11 kb in length and encodes for three structural (C, prM,

E) and seven non-structural (NS1, NS2A, NS2B, NS3, NS4A,

NS4B, NS5) proteins [3].

Infection with dengue virus (DENV) causes two clinically

distinct syndromes which are dengue fever, a mild form of the

disease and DHF/DSS, a life-threatening disease. The patho-

physiology of DHF/DSS development is of interest among

researchers since the incidence of DHF/DSS is 25–80 times

higher in people previously exposed to DENV than in DENV-

naı̈ve individuals, indicating the significance of pre-existing

immune mediators such as aberrant T cells, cytokine storms and

the enhancing activity of the subneutralizing antibodies [4,5,6].

Among these mediators, the presence of enhancing antibodies

stand out the most because it is the only risk factor that can explain

DHF/DSS development in primary infected infants due to the

finding that the peak incidence of DHF/DSS development in

infected infants correlates with the decline of maternally derived

protective antibodies to non-protective or subneutralizing levels.

Moreover, these infants do not experience DHF/DSS accompa-

nying a primary dengue virus infection after the maternally

derived antibodies have completely disappeared [7,8,9,10]. This

epidemiological data is supported by in vitro enhancement
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infection experiments in which neat plasma from healthy infants

born to dengue-immune mothers enhances dengue virus infection

in a manner that correlates with the age-related DHF/DSS

development in infants [11,12]. To further support the role of

subneutralizing antibodies, investigators have been able to mimic

this phenomenon in a mouse model and in rhesus monkeys

[13,14]. The role of enhancing antibodies in exacerbating disease

severity has been reported in other types of infection. For example,

Leishmania is known to exploit host IgGs facilitating the entry of

Leishmania amastigotes into macrophages. The entry of amasti-

gotes-antibody complexes via Fcc receptor ligation does not only

allow the numerous parasites to penetrate into macrophages but

also suppress the development of cell-mediated immunity resulting

in progressive non-healing leishmaniasis in mice [15,16].

The mechanism by which enhancing antibodies exacerbate

dengue disease severity has not been fully established. However,

severe dengue is associated with high levels of circulating DENV,

and enhancing antibodies have been proposed to facilitate DENV

production by at least two mechanisms. Firstly, enhancing

antibodies function as a bridge between infectious DENV particles

and FcR on cell surfaces resulting in an increased number of

infected cells [17,18]. Interestingly, Rodenhuis-Zybert et al.

recently demonstrated that enhancing antibodies not only promote

entry of the mature DENV but also assists entry of non-infectious

virions or immature DENV particles into FccR bearing cells [19].

Once inside the target cells, these immature viruses replicate

effectively. This phenomenon, if occurring in natural dengue virus

infections, could significantly contribute to disease severity.

The second mechanism proposed is one in which infection via

Fc and FcR ligation switches the intracellular response from an

antiviral mode into an immune suppressive mode [20]. This

suppression mediates the severity of the secondary dengue virus

infection. Thus, to gain more information on the intrinsic role of

enhancing antibodies, we further investigated the mechanism of

immune evasion induced by DENV-ADE infection.

Once attacked by viruses, host cells immediately recognize the

invaders using several types of sensing systems [21]. One of these

systems is the Toll-like receptors or TLRs pathway, and six TLRs

have been reported to recognize viral invaders. For example, the

extracellular TLR-2 and TLR-4 detect viral particles/viral

proteins on the cell surface, while the endosomal TLRs recognize

viral nucleic acid components such as dsRNA, ssRNA and

unmethylated DNA with a CpG motif [22]. Upon ligation to the

invader, TLRs trigger a signaling cascade through the recruitment

of a set of TIR-domain-containing adaptors including MyD88,

TIRAP (MAL), TRIF (TICAM) and TRAM (TICAM2). Based on

the MyD88 molecule, the TLR signaling cascade can be divided

into two principle pathways, the MyD88-dependent and MyD88-

independent (or TRIF-dependent pathway) signaling pathways.

While most TLRs trigger the MyD88-dependent signaling

pathway via the TIR-containing cytosolic adaptor MyD88,

TLR-3 and TLR-4 initiate their signals through TRIF activation

[23]. Both MyD88-dependent and TRIF-dependent signaling

pathways can activate type I IFN and inflammatory cytokines via

NF-kB and the IRFs family [24,25].

Activation of the TLRs signaling pathway in response to viral

infection has been intensively studied [26,27,28,29]. For example,

the response against hepatitis C virus infection is mediated by the

TLR2 and TLR3 signaling [30,31], while West Nile Virus (WNV)

can be recognized by TLR-3, eliciting an antiviral response

shaping innate as well as adaptive immunity in in vivo experiments

[32,33]. TLR-3 and TLR-7 have been reported to play important

roles in inhibiting dengue virus infection in U937 and HEK293

cells, respectively [34,35].

The present study investigated the effect of DENV-antibody

complex infection on TLR-dependent signaling in a monocytic

cell line. The experiments were conducted in vitro and ex vivo,

meaning that infected THP-1 cells and PBMCs from infected

patients were used, respectively. This is the first study to show the

negative effect of enhancing antibodies on the expression and

function of the antigen recognition pathway in human monocytic

cells. Results showed that preexisting subneutralizing antibodies

were able to ligate infectious DENV particles to both FccRI and

FccRIIa. Upon ligation, activation of TLR-negative regulators

and down-regulation of membrane as well as cytoplasmic TLRs

was pronounced, resulting in suppression of TLR-dependent

immune activation. These results were also found in secondary

DHF PMBC but not in secondary infection DF PBMC.

Methods

Ethics statement
The protocol for patient enrollment and sample collection is

approved by The Committee on Human Rights Related to

Human Experimentation, Mahidol University, Bangkok, Thai-

land. Dengue-infected patients, which hospitalized at Queen

Sirikit National Institute of Child Health, Bangkok, Thailand,

were enrolled to the study after the parents/guardians have giving

written informed consent. All clinical investigation must have been

conducted according to the principles expressed in the Declaration

of Helsinki.

Clinical sample
The enrolled patients were 5–10 years of age. Blood samples

were obtained twice, once on the day of admission (fever day) and

the other on 30 days after admission (convalescence day). Plasma

and PBMCs were separated immediately and were kept frozen at

280uC until required. The patient’s disease severity was graded as

DF or DHF according to WHO criteria. All enrolled cases were

classified as secondary infection by haemagglutination inhibition

(HI) titre and IgM ELISA assay [36].

Virus and cell culture
Virus. DENV-2 strain 16681 was used in this study. Virus

was propagated in LLC-MK2 cells and kept at 280uC. The

titer of stock virus was determined by plaque assay on LLC-MK2

cells [37].

Author Summary

Dengue is the most common vector-borne viral disease in
humans, with 50–100 million infections per year. The
severity of dengue ranges from an acute febrile illness, DF,
to a life-threatening vascular leakage syndrome with or
without shock, DHF/DSS. Determinants of these syn-
dromes are mainly host factors including non protective
but cross reactive antibodies which are known as
preexisting enhancing antibodies. These antibodies en-
hance disease severity through increasing the virus
infected cell mass and facilitating intracellular virus
replication. Here we demonstrate that DENV exploits
preexisting subneutralizing antibodies to defeat the
pathogen recognition system and to down regulate the
TLR signaling pathway resulting in suppression of an array
of innate immune responses. Furthermore, we also show
that this phenomenon specifically occurs in the severe
form of dengue but not in the mild form of disease.
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Cell culture. THP-1 cells were obtained from ATCC and

were cultured in Iscove’s modified Dulbecco’s medium (IMDM)

supplemented with 10% fetal bovine serum (Gibco, USA) at 37uC
in a 5% CO2 atmosphere.

Enhancing antibodies
Convalescent serum from a patient infected with DENV

serotype 3 (DENV-3) at a 1: 10,000 dilution was used in all

DENV-ADE infection experiments [38].

ADE infection in THP-1 cells
Antibody-dependent enhanced infection of DENV-2 16681 into

THP-1 cells was conducted as described [38]. Briefly, THP-1 cells

were infected with a complex between DENV-2 16681 and the

enhancing antibodies at the MOI of 0.01 pfu/cell. After an hour of

incubation at 37uC, cells were washed and were further cultured in

growth medium. The infected cells and supernatants were

harvested at 3, 6, 12, 18, 24 hours and every 24 h for 3 con-

secutive days. In this experiment, sets of control were performed

which were THP-1 cultures infected with DENV at the MOI of

5.0 and 10.0 pfu/cell, THP-1 cells infected with UV-treated-

DENV-Ab complexes and the mock-infected THP-1 cells.

Blocking FccR using FccRI (CD64) and FccRIIa (CD32)
antibody

THP-1 cells were pre-incubated at 37uC for 90 minutes with

either an anti-human FccRI MAb or an anti-human FccRIIa

MAb (R&D System, Inc., Minneaspolis, MN) or both antibodies,

at a concentration of 5 mg/ml of each antibody. After incubation,

cells were washed with IMDM before being infected with DENV

or DENV-antibody complexes.

Viral RNA copy-number titration by fluorogenic real-time
RT-PCR or qRT-PCR

RNA was extracted from supernatants using TRIZOL (Invitro-

gen, CA, USA). The purified viral RNA was then monitored by

real time RT-PCR using QuantiTect Probe RT-PCR (Qiagen,

Germany) as described by Houng et al [39]. Real time RT-PCR

amplification, data collection and analysis were performed using a

Roter-GeneTM 3000 (Corbett Research, Sydney, Australia). The

RNA copy number was calculated using dengue serotype-specific

copy standards.

Oligonucleotide microarray analysis
Total RNA was extracted from infected cells using the QIAgen

RNAeasy Kit (QIAgen, Germany). Biotin-UTP labeled cRNA

probes were synthesized using 3 mg of cDNA amplified from the

total RNA template (Superarray Inc., Frederrick, MD, USA). The

labeled cRNA (6 mg) from each sample was then incubated with

Oligo GEArray Human Toll-Like Receptor Signaling pathway

(OHS-018.2) membranes containing 113 TLR-related genes. The

hybridized membranes were washed and hybridization signals

were detected using a chemiluminescent system according to the

manufacturer’s instruction. The intensity of hybridization was

determined by ImageMaster TotalLab version 2.00 (Amersham

Pharmacia, England) and was acquired in TIFF format. The

digital TIFF image files were then analyzed by ClonTech

AtlasImage software, version 2.7 (CloneTech, CA, USA). The

background was automatically subtracted and standardization of

all the signals was performed by normalizing the raw data with b2-

microglobulin (b2-m) and Glyceraldehyde 3-phosphate dehydro-

genase (GADPH). The correlation between two data sets was

tested using Pearson’s correlation with P-value,0.05. Two-fold

and 0.5 fold difference in expression between normalized gene

intensities compared between control, DENV, and DENV-ADE

samples were considered as significant up-regulation and down-

regulation, respectively.

Quantitation of gene expression levels by real time RT-
PCR

The qRT-PCR was used to investigate levels of gene expression.

In brief, RNA was extracted from harvested cells using the

QIAgen RNAeasy Kit (QIAgen, Germany) and then subjected to

first-strand cDNA synthesis before amplification by qRT-PCR

using specific primers. The primer sets for TLR-3, TLR-4, TLR-7,

TRIF, TRAF-6, TRAM, IRAK-4, and ACTIN are : TLR-3:

forward,59-AGG AAC TCC TTT GCC TTG GT-39 ; reverse,

59 – TTT CCA GAG CCG TGC TAA GT- 39; TLR-4: forward,

59 –TGG ATA CGT TTC CTT ATA AG- 39 ; reverse, 59 –CAA

GTA CAA GCA AAG TCA TTC- 39 ; TLR-7: forward, 59 –CCT

GGA AAC TTT GGA CCT CA- 39 ; reverse, 59-CCA CCA

GAC AAA CCA CAC AG- 39 ; TRIF: forward, 59 – CCC TGT

GGA CAG TGG AAG AT- 39 ; reverse, 59 –CAA GAC CCT

TCA CCC AGA AA- 39; TRAF-6: forward, 59-GTT GCT GAA

ATC GAA GCA CA- 39; reverse, 59 –CGG GTT TGC CAG

TGT AGA AT- 39 ; TRAM: forward, 59 – GGG TGA TGT TCG

TGT CTG TG- 39 ; reverse, 59 –ACT GAG GCG CTG AGG

TAA AA- 39 ; IRAK-4: forward, 59 –CCT TTG CCT TCC ATT

GTG AT- 39 ; reverse, 59 –GTT TTG GCT TAC GGT TCT

GC- 39; SARM: forward, 59 –TTG CCA AGC AGC AAT GTT

AG- 39 ; reverse, 59 –TCT CCT CCC AAC CAG AAA TG- 39;

TANK: forward, 59 –CAG GCA TGC ATG GAT AGA GA- 39 ;

reverse, 59 –TTC AAG CAG AGG AAC ACA GC- 39; Beta-actin:

forward, 59- CCT GGC ACC CAG CAC AAT-39 ; reverse,

59GGG CCG GAC TCG TCA TAC- 39 The qRT-PCR was

carried out using the SYBR system (Invitrogen, Oregon, USA),

using actin as a control.

Semi-quantitation of protein production by
immunoblotting

Levels of SARM, TRAF6, IRAK4, TLR7, IKK-a, and Rel-A

protein production were semi-quantitated using immunoblotting.

The intensity of each specific protein was detected using mono-

clonal antibodies as previously described [38].

Detection of cytokine production by ELISA
Level of IFN-b production was quantitated using a PBL

Medical Laboratories Kit (Piscataway, New Jersey, USA) accord-

ing to the manufacturer’s protocol.

Statistical analysis
Values were expressed as mean 6 standard deviation (SD) of at

least three independent observations. Statistical significance was

tested by Student’s t-test, One-way ANOVA, as indicated in the

legend of figure. P-values,0.05 were considered significant.

Results

DENV-ADE infection is mediated through both FccRI and
FccRIIa

Two types of FcR, FccRI (CD64) and FccRIIa (CD32), have

been reported by several investigators to participate in the entry of

DENV-antibody complexes in in vitro systems [17,40,41,42]. In the

present study, the synergistic role of FccRI and FccRIIa in

DENV-ADE infection in THP-1 cells was investigated. THP-1

cells were pretreated with either anti-FccRI or anti-FccRIIa

ADE Infection Suppresses TLR-Signaling Pathway
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antibodies or both before being infected with either DENV or

DENV- enhancing antibody complexes. The level of viral

production was monitored by assaying RNA copy number and

the number of infectious virions using real-time RT-PCR and

plaque assay, respectively. As demonstrated in Fig. 1a–b, blocking

of FccRI or FccRIIa significantly suppressed viral production in

DENV-ADE infection of THP-1 cells. The largest reduction in

viral production was found in cells pre-treated with both anti-

FccRI and anti-FccRIIa antibodies, suggesting that FccRI and

FccRIIa synergistically mediate the entry of DENV-enhancing

antibody complexes into THP-1 cells.

Our previous report demonstrated that DENV-ADE infection

significantly suppresses IFN-b production in THP-1 cells (20).

Therefore, the level of IFN-b production was used as a marker to

test the synergistic role of FccRI and FccRIIa on DENV-ADE

infection. THP-1 cells were pretreated with anti-FccRI and anti-

FccRIIa before being infected with DENV-enhancing antibody

complexes, and the production of IFN-b was assayed at 24 hr of

infection using ELISA. As shown in Fig. 1c, blocking of ADE-infection

via FccRI and FccRIIa completely restored IFN-b production. Taken

together, these results show that DENV-enhancing antibody

complexes use both FccRI and FccRIIa for entry.

ADE-infection suppresses TLR-dependent signaling
pathways in THP-1 cells

We previously reported that one of the intrinsic roles of ADE-

infection is suppression of type I interferon via the RIG-I/MDA-5

signaling pathway [20]. Since type I interferon production is also

activated via the TLR pathogen recognition pathway [43], we

therefore investigated whether DENV-ADE infection has any

effect on TLR expression and/or the TLR-dependent signaling

pathway. To answer this question, THP-1 cells were infected with

either DENV alone or infected with DENV- enhancing antibody

complexes. The expression of a surface membrane TLR (TLR-4),

endosomal TLRs (TLR-3, TLR-7) and TLR-signaling molecules

(TRIF, TRAF-6 and IRAK4) were monitored using qRT-PCR and

immunoblotting. As illustrated in Fig. 2, THP-1 cells infected with

DENV-2 significantly stimulated TLR-3, TLR-4, TLR-7, TRIF and

TRAF-6 expression. This data correlated with the level of IFN-b
production as shown in Fig. 1c. In contrast, DENV- enhancing

antibody complex infection significantly suppressed TLR and

TLR-signaling molecules in comparison to infection by DENV

alone. This data is supported by anti-FccRI and anti-FccRIIa

treatment in which blocking of DENV-ADE infection via these

two receptors restored the expression of TLR(s) and TLR-

signaling molecules. This data is also supported by the increased

IFN-b production as shown in Fig. 1c. Collectively, DENV-ADE

infection could interfere with TLR-dependent signaling via FccRI

and FccRIIa ligation which corresponded to the reduction of IFN-

b production. In addition, pre-treatment with anti-FccRIIa

antibodies restored a higher level of TLRs and TLR-signaling

molecules than pretreatment with FccRI (Fig. 2).

To ensure that phenomenon found in this study is not due to the

effect of higher level of viruses produced during ADE-infection

mode, control experiments were preformed. THP-1 cultures were

infected with DENV at the MOI of 5.0 and 10.0 pfu/cell, or with

UV-treated-DENV-enhancing Ab complexes, or were mock

infected. THP-1 cultures infected with the MOI of 10.0 replicated

DENV to the same level as ADE-infected mode. In contrast,

infection by higher MOI of DENV activates stronger TLR-3 and -

4 expressions (Figure S1). THP-1 cells infected with UV-DENV-

Ab complexes revealed no suppressive effect on IFN-b production

(data not shown).

Taken together, this information indicated that suppression of

TLRs and TLR signaling pathway demonstrated in our study is

due to the infectious immune complexes infection.

DENV-ADE infection but not DENV-infection activates
negative regulators of TLR-signaling pathway in THP-1
cells

Suppression of the TLR-dependent signaling pathway may due

to down-regulation of TLR synthesis and/or blocking of TLR-

signals. Unfortunately, negative regulators of TLR synthesis have

not yet been identified. Thus we investigated whether or not

down-regulation of the TLR-dependent signaling pathway is due

to DENV-ADE infection activating negative regulators of TLRs

signaling such as SARM and TANK and so the levels of SARM and

TANK gene expression were investigated. As shown in Fig. 3,

expression levels of SARM and TANK were significantly increased

at 3 hr post DENV-ADE infection, but not in DENV infection.

Suppression of TLR-dependent signaling pathway in
secondary DHF patients

Since THP-1 is a monocytic cell line it may not be an ideal

physiological model of the natural response during DENV

infection. Therefore, to confirm the phenomenon found in

Figure 1. Kinetics of DENV-replication and IFN-b production in
THP-1 cells infected with DEN-2 or DENV-Ab complexes. THP-1
cells were pretreated with anti-FccRI or/and FccRIIa antibody before
being infected with DENV-2 or DENV-enhancing antibody complexes.
Supernatants were harvested every 24 h. post inoculation and were
subjected to DENV RNA synthesis, infectious virion production and IFN-
b production using qRT-PCR, plaque assay and ELISA, respectively.
(A and B) Levels of viral RNA synthesis and infectious virus production.
Three independent experiments were performed and results are
expressed as mean 6 SD. Asterisk indicates significant differences
between DENV-ADE infected cultures with or without anti-FcR antibody
pretreatment at P#0.05. Triangle indicates the significant differences
between DENV-ADE infected cultures pretreated with anti-FccRI or with
anti-FccRIIa at P#0.05. The significant differences were tested using
ANOVA analysis, SPSS program. (C) Quantitation of IFN- b production by
ELISA. Supernatant fluids harvested at 24 hr. of infection were
quantitated for IFN-b production. Asterisk indicates signicficant
differences in IFN-b production from DENV-ADE infected cells
pretreated with anti-FcR antibodies or mock pretreatment. The P
values were obtained from ANOVA analysis.
doi:10.1371/journal.pntd.0000924.g001
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THP-1 cells, expression levels of TLR-3, TLR-4, TLR-7 and

TRAF-6 in PBMCs obtained from secondary DF and secondary

DHF patients, on fever and convalescent days were determined by

qRT-PCR. Interestingly, expression of these genes was signifi-

cantly down-regulated in secondary DHF patients but not in DF

patients (Fig. 4), suggesting that the TLR-dependent signaling

pathway is activated during the mild form of DENV-infection but

not in the severe form of the infection.

TLR and TLR-dependent gene expression profiles in THP-
1 cells infected with either DENV or DENV-enhancing
antibody complexes

To further elucidate the impact of ADE-infection on TLR-

dependent signaling, a TLR-specific oligonucleotide array analysis

was conducted to differentiate responses between DENV infection

and infection by DENV-enhancing antibody complexes. As shown

in Table 1, the expression of 27 out of 113 TLR-related genes was

significantly altered during DENV-ADE infection. These genes

were categorized on the basis of their functions as TLR, TIR

containing adaptor molecules, effector molecules, NF-kB associ-

ated molecules, JNK/p38 pathway, IRF pathway, IFN-inducible

genes and others. Among these 27 genes, 21 and 6 genes were

down- and up-regulated during DENV-ADE infection, respec-

tively. Most of the down-regulated genes are associated with both

the MyD88-dependent and -independent signaling pathways such

as TLR-4, TIRAP, IRAK-2, IRAK-4, TRIF (TICAM1) and TRAM

(TICAM2). This data indicates that both MyD88-dependent and -

independent pathways were suppressed. The expression of TLR-3

and -7 were not included in this table since their expression were

suppression less than two folds, 1.7 and 1.6 folds, respectively.

Expression of the other types of TLR was undetectable in our

array analysis.

The suppressive effect was also strongly seen in the NF-kB

signaling pathway, in which genes required for IkB degradation

and NF-kB activation such as MAP3K7IP1 (TAB1), MAP3K7IP2

(TAB2), TRAF-6, UBE2N and MAP3K7 were down-regulated. This

observation was confirmed by the reduction of NF-kB signaling

molecules including the REL complex, NF-kB2, CHUK (IKK-a)

and MAP4K4 while NF-kBIE, an inhibitor of NF-kB, was up-

regulated. In addition, suppression of the IRF pathway and IFN-

inducible genes was also pronounced during ADE-infection. In

addition, the expression of SARM gene was 1.5 folds increased

while the activation of TANK gene was undetectable during ADE-

infection.

Taken together, these data imply that DENV-ADE infection

may activate host negative regulators which in turn down regulate

the MyD88-dependent, MyD88–independent and NF-kB signal-

ing pathway, supporting the in vitro and ex vivo experiments

described above.

Validation of cDNA array analysis by qRT-PCR
To validate data obtained from the oligonucleotide array

analysis, qRT-PCR was used to monitor the expression of 3 genes

including of TICAM2, TIRAP and IRAK-4 at 3, 6, 12, 18, 24 hours

post inoculation. The observed copy numbers of these represen-

Figure 3. Activation of TANK and SARM during DENV and DENV-
Ab infection. THP-1 cells were infected with DENV alone or with DENV
enhancing antibody complexes. The expression levels of (A) TANK and
(B) SARM were quantified by qRT-PCR at various time points. Three
independent experiments were performed and results are expressed as
mean 6 SD. Asterisk indicates the significant difference between DENV-
ADE infection and DENV infection at P#0.05. (C–D) detection of SARM
at the protein level using immunoblotting.
doi:10.1371/journal.pntd.0000924.g003

Figure 4. Suppression of the TLRs-dependent signaling
pathway during natural DENV infection. PBMCs obtained from
DF and secondary DHF patients (n = 15 for each group) on fever and
convalescence days were subjected to monitoring the mRNA copy
numbers of (A) TLR-3, (B) TLR-4, (C) TLR-7 and (D) TRAF-6 by qRT-PCR.
The expression levels of these genes were expressed as mean 6 SD of
three independent experiments. Asterisk indicates significant differenc-
es at P#0.05 using ANOVA analysis.
doi:10.1371/journal.pntd.0000924.g004

Figure 2. Expression levels of TLRs and TLR-signaling molecules during DENV or DENV-Ab complexes infection. THP-1 cells were pre-
treated with either anti-FccRI antibody or anti-FccRIIa antibody or both before being infected with DENV or DENV antibody complex. RNA was
extracted from harvested cells at the indicated times and RNA copy numbers of (A) TLR-4, (B) TLR-7, (C) TLR-3, (D) TRAF-6 and (E) TRIF were quantified
using qRT-PCR. Three independent experiments were performed and results are expressed as mean 6 SD. Asterisk indicates significant differences
between DENV-ADE infection, DENV infection, DENV-ADE infected cells pretreated with anti-FccRI antibody or anti-FccRIIa antibody or pretreated
with both antibodies, at P#0.05 using SPSS, ANOVA analysis. Significant differences between DENV-ADE infected cells pretreated with anti- FccRI and
anti-FccRIIa antibody at the indicated P values were tested using Student’s t-test. Figure 2 (F–I) are TRAF6, IRAK4 and TLR7 protein production
detected by immunblotting using specific monoclonal antibody.
doi:10.1371/journal.pntd.0000924.g002
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tative genes are shown in Fig. 5a–c. The levels of expression of

these genes were significantly down-regulated in THP-1 cells

infected with DENV-ADE infection meaning that data from qRT-

PCR confirmed the cDNA analysis. In addition, the protein levels

of IKK-a and Rel-A were determined using specific monoclonal

antibodies. As shown in fig 5 d–e, degradation of phosphorylated

Table 1. List of genes that expression levels were altered during DENV- or DENV-Ab complex infection.

Genes Fold changes (mean±SD)

DENV-ADE/Mock DENV/Mock DENV-ADE/DENV

Down-regulated genes

TLRs

Toll-like receptor 4 (TLR-4) 3.1861.12 11.1463.2 0.2960.04

TIR domain containing adaptors

Toll-interleukin 1 receptor (TIR) domain containing
adaptor protein (TIRAP)

1.2361.17 2.4961.31 0.4960.08

Toll-like receptor adaptor molecule 2 (TICAM-2) 29.9765.40 64.35622.05 0.4760.09

Toll-like receptor adaptor molecule 1 (TICAM1) 1.1960.30 26.8561.99 0.4460.09

Effector molecules

Interleukin-1 receptor-associated kinase 2 (IRAK-2) 1.3560.18 5.5560.72 0.2460.04

Interleukin-1 receptor-associated kinase 4 (IRAK-4) 35.1662.56 82.4962.43 0.4360.02

Mitogen-activated protein kinase kinase kinase 7
interacting protein 1 (MAP3K7IP1)

1.6361.38 3.6861.74 0.4460.09

Mitogen-activated protein kinase kinase kinase 7
interacting protein 2 (MAP3K7IP2)

9.2563.84 42.65626.95 0.2260.04

Ubiquitin-conjugating enzyme E2N
(UBC13 homolog, yeast) (UBE2N)

5.5560.36 17.1060.35 0.3260.03

TNF receptor-associate d factor 6 (TRAF6) 1.9660.45 4.4262.32 0.0960.04

Mitogen-activated protein kinase kinase kinase 7 (MAP3K7) 0.5160.34 2.7660.56 0.1860.01

NF-kB signaling molecules

Nuclear factor of kappa light polypeptide gene
enhancer in B-cells 2 (p49/p100) (NFkB2)

6.4260.91 16.9060.35 0.3860.12

Conserved helix-loop-helix ubiquitous kinase (CHUK) 98.1262.00 225.20648.17 0.4360.09

V-rel reticuloendotheliosis viral oncogene homolog A (RELA) 4.9860.90 16.2068.06 0.2860.12

V-rel reticuloendotheliosis viral oncogene homolog B (RELB) 3.3260.07 7.4360.30 0.4460.01

JNK/p38 pathway

Mitogen-activated protein kinase kinase kinase
kinase 4 (MAP2K4)

0.6160.03 1.2460.94 0.4960.02

IRF pathway

Interferon regulatory factor 1 (IRF-1) 0.8160.57 5.2660.25 0.1560.03

IFN inducible genes

Protein kinase, interferon-inducible double stranded
RNA dependent activator (PKRRA)

26.2860.23 68.4061.20 0.3860.12

Peroxisome proliferator-activated receptor alpha (PPARA) 4.4360.28 14.0860.47 0.3160.11

Up-regulated genes

NF-kB pathway

Inhibitor of kappa light polypeptide gene enhancer
in B-cells, kinase beta (IKBKB)

3.7062.61 1.6061.30 2.5461.34

Inhibitor of kappa light polypeptide gene enhancer
in B-cells, kinase gamma (IKBKG)

6.2460.45 2.3860.21 3.0161.76

Nuclear factor of kappa light polypeptide gene enhancer
in B-cells inhibitor, epsilon (NFkBIE)

2.0561.05 0.9760.27 2.1160.82

Cytokines

Interleukin 10 (IL-10) 4.4460.05 1.7460.02 2.5561.50

Interleukin 6 (IL-6) 81.1660.93 1.4960.31 54.4660.29

Other

Glypican 1 (GPC1) 8.4561.14 4.1061.16 2.0561.06

doi:10.1371/journal.pntd.0000924.t001
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Figure 5. Validation of cDNA array expression data by qRT-PCR and immunoblotting. RT-PCR was carried out using total RNA from THP-1
cells infected with either DENV or DENV-enhancing antibody complexes. The mRNA copy numbers of (A) TICAM2, (B) TIRAP and (C) IRAK-4 were
monitored by qRT-PCR at indicated time points. The level of (D) IkB-a and (E) NF-kB productions were semi-quantified using immunoblotting. Three
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IKK-a and suppression of Rel-A production was significant in

DENV-ADE infection mode suggesting that immune complexes

infection suppesses NF-kB pathway.

Discussion

Even though the presence of antibodies that enhance dengue

viral infectivity has been known since 1977 [44], the mechanism(s)

as to how these antibodies increases viral infectivity and

exacerbate disease severity is only just being understood. Our

reports and others show that enhancing antibodies is not only

facilitating virus entry, but also alter the intracellular responses and

that the synergism between the extrinsic and the intrinsic roles of

enhancing antibodies significantly increases viral burst size and the

total virus yield.

The first mechanism by which antibodies enhance DENV

infectivity occurs at the plasma membrane. In this process,

enhancing antibodies facilitate the interaction between virus

particles and the FcR on target cells. This event gives rise to a

higher chance of virus penetration resulting in a greater number of

infected cells. The significance of Fc and FcR ligation on ADE-

infection has been confirmed using genetically engineered

antibody variants which can not bind to FcR [45]. These

engineered antibodies abrogate ADE-infection and protect mice

from ADE-induced lethal challenge. The types of FcR involved in

DENV-antibody complex infection have been investigated

intensively by several groups of investigators as well as by our

group and all agree that both FccRI and FccRIIa facilitate ADE-

infection in natural DENV target cells and in DENV susceptible

cell lines [12,16,20,41]. Moreover, we observed that FccRIIa

enhanced the infectivity in THP-1 cells more efficiently than

FccRI did (Fig 1a and Fig. 2). Our finding is supported by the

previous report using FccR transfected COS-7 cells in which

FccRIIa enhances dengue virus immune complex infectivity more

efficient than FccRI. This difference may due to mode of virus-

immune complex internalization mediated by these two types of

FcR [42]. In the other experimental system, engatement of

immune-complexes to FccRI signals through c-chain to initiate

proinflammatory cytokines production and to transport the

complexes to MHC-II mediated antigen presentation while

interaction between immune-complexes and FccRIIa impaires

proinflammatory cytokine production and antigen presentation

[46]. Whether this phenomenon can be applied to DENV-

immune complex infection remains unclear.

Investigation of the intrinsic role of enhancing antibodies has

pointed toward suppression of the innate immune response in which

type I interferon and proinflammatory cytokine production are

revealed as the main targets [38] and the mechanism of suppression

is partly due to ADE infection up regulating negative regulators of

the RIG-I/MDA5 signaling pathway [20]. In the present work, we

expanded our investigation horizontally to another type I interferon

stimulating pathway, the TLR-signaling pathway. Toll-like recep-

tors, some of the most important pattern recognition receptors, are

abundant on monocytes/macrophages and dendritic cells, the main

in vivo target cells for DENV, and TLRs are key players in priming

innate responses upon viral infection. They detect invaders and

trigger antiviral defenses, interferon and pro-inflammatory cyto-

kines. Interferon then exerts an antiviral activity through activating

the JAK/STAT signaling pathway resulting in the activation of

interferon stimulated genes which subsequently inhibit viruses by a

non-cytolytic mechanism. In turn, invaders can circumvent the

interferon response to be able to propagate in the host cell. DNA

viruses including hepatitis B virus (HBV) use their envelop and non-

envelope proteins to suppress TLRs expression as well as to inhibit

responses elicited by TLRs stimulation [47,48,49]. The vaccinia

virus uses the A46R and A52R proteins to inhibit TLR-signaling

molecules such as TRIF, TRAM and IRAK-2 resulting in ablation

of type I IFN production [50,51]. Respiratory syncytial virus (RSV)

strain A2 and Measles virus (MeV), a member of the Paramyxovir-

idae family, can antagonize TLR-7 and TLR-9 induced type I IFN

and proinflammatory cytokine production in epithelial cells,

hematopoietic cells (T lymphocytes, B lymphocytes, monocytes)

and pDC [52]. Similar to A46R and A52R of the vaccinia virus, the

NS3-4A heterodimer of Hepatitis C virus inhibits the TLR-3

mediated antiviral response by degrading TRIF while NS5A has

been reported to bind directly to MyD88 leading to inhibition of the

MyD88-dependent signaling pathway [53,54]. Moreover, the entire

genome of hepatitis C virus has also been found to suppress TLR-3,

-4 and -7 in HepG-2 cells [55]. Similar events are also reported

during DENV infection. DENV use nonstructural proteins to block

phosphorylation and to down-regulate expression of major

components of the JAK/STAT pathway causing reduced activation

of IFNa/b stimulating genes [56,57]. All of the antagonists

mentioned above are viruses or viral products. However, high-

jacking of pre-existing host immune factors by viruses to interfere

with the TLR-dependent signaling pathway has not been reported.

We are the first group that has been able to show that DENV

exploits pre-existing subneutralizing antibodies to defeat the TLRs

system. Upon engagement between FcR and DENV-antibody

complexes or entry of DENV into monocytic cells via FcR,

expression of TLR-3,-4, -7 and TLR signaling molecules were

dramatically decreased in parallel to the decreased production of

IFN-b. This observation was further confirmed in experiments that

showed that production of IFN-b and expression of TLRs were

restored when ADE-infected cells were pretreated with anti-FcR

antibodies. This data indicates that entry of DENV via FcR

preferentially switches off the TLR-dependent IFN stimulating

pathway. The switch off mechanism was mediated at the TLRs

gene expression level and through activation of the negative

signaling regulators, TANK and SARM (Fig. 6). Unfortunately, the

events occurring upstream of TLRs expression and of SARM and

TANK activation are unknown, and therefore require further

investigation. However, Kurane and colleagues have demonstrated

that functional ITAM is essential for ADE infection [58].

The events shown in Fig. 6 are well supported by the array

analysis in which ADE-infection suppressed TLR gene expression

and down-regulated the TLR-signaling cascade while several

negative regulators of TLR-cascade were up-regulated. Impor-

tantly, this phenomenon was also found in natural DENV

infection in which TLRs (TLR-3, -4, and -7) and TRAF6 were

strongly suppressed in PBMC from secondary DHF patients but

not in PBMC of mild disease, secondary DF patients. Taken

together, the data obtained from in vitro as well as ex vivo studies

indicate a significant collapse of the TLR-dependent signaling

pathway during DENV-enhancing antibody complex infection.

In conclusion, the present study and our previous report on the

suppression of TLR-signaling during DENV-ADE infection of

THP-1 human monocytic cells clearly show that initiation of

infection by DENV-enhancing antibody complexes defeats the

major pathogen recognition pattern pathway resulting in suppres-

independent experiments were performed and results are expressed as mean 6 SD. Asterisk indicates significant difference at P#0.05, using ANOVA
analysis. (F) is the representative of IkB-a and NF-kB western blotting.
doi:10.1371/journal.pntd.0000924.g005
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sion of innate antiviral responses. How dengue immune complexes

can have such broad effects on cells is not clear. FcRs are well

known in their roles in regulating a multitude of innate and

adaptive immune responses. After crosslinking by immune

complexes, ITAM initiates either negative or positive signals

through several types of adaptor molecules such as Syk/ZAP

family PTKs, Src family kinase and SHIP-1, SHP-1 etc.

[59,60].The inhibitory activities of SHIP-1, SHP-1 and Lyn/

P13k can be can be seen on multiple signaling pathways including

TLRs [61,62]. Even though direct role of these adaptors on RIGI/

MDA5 remain unclear but TLRa and RIGI/MDA5 pathways

crosstalk at several steps, thus, the negative effect against TLRs

possibly block RIGI/MDA5 pathway. Finally, DENV immune

complexes formed with neutralizing or partially neutralizing

antibodies fail to suppress innate immunity but permit limited

infection of monocyte/macrophage resulting in mild disease is

crucial problem requiring further study.

Supporting Information

Figure S1 (A) THP-1 cells infected with DENV alone activates

TLRs. THP-1 cells were infected with DENV-enhancing antibody

at the MOI of 0.01 pfu/cell or infected with DENV alone at the

MOI of 0.01, 5.0 and 10.0 pfu/cell. (B) and (C) Kinetic of

replication and the level of TLR-3 and -4 gene expressions were

monitored.

Found at: doi:10.1371/journal.pntd.0000924.s001 (0.15 MB

DOC)
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