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ABSTRACT

The Toxicity Probability Interval Design by Ji et al. (2007), which was subsequently modified by the mTPI (Ji et
al., 2010), proposed a more efficient approach to early-phase dose-finding than conventional designs like 3 + 3.
Subsequent authors reported issues with the method, finding that it tends to stay at a dose level when clinical in-
tuition would suggest the toxicity level warrants decrease. Several iterations of refinement proceeded in an effort
to address these issues, including the mTPI-2 and the keyboard method, as well as alternative approaches such as
the BOIN. This author suggests the reason for these safety issues involves the underlying loss function. The TPI
and mTPI used the identify function defined over wide intervals. As explained in this paper, this function and its
domain can be problematic as a model of patients’ loss experience. Later refinements moved the loss function
closer to one more consistent with clinical intuition, and this explains their improved safety performance.
Greater attention to quality as defined by fitness for use, including early evaluation of patient-experience and

clinical-intuition implications of proposed loss functions, may improve future design efforts.

1. Introduction

This paper presents a critical historical look at a sequence of de-
signs. While criticism has had its skeptics [1], insight into past ap-
proaches permits us to improve.

Ji et al. [2] developed the Toxicity Probability Interval (TPI)
method for dose finding. The underlying insight was that a small early-
phase trial cannot meaningfully detect small differences in toxicity, so
it might be an efficient approach to regard an interval around the target
toxicity as having equivalent toxicity. They reported that their method
was more efficient than the conventional 3 + 3 design [2]. The method
was quickly replaced with the calibration-free mTPI method [3], with
consistent pre-specified probability intervals independent of observed
results across all doses evaluated.

Subsequent authors, including Guo et al. [4], Yan et al. [5], and
Zhou et al. [6], reported issues with the method. It tends to stay at a
dose level when there is greater toxicity observed than clinical intuition
might suggest is appropriate [4-7]. Several iterations refining the
method to address these issues have been proposed, including the
mTPI-2 [4], the keyboard method [5], and Pan et al.‘s extension of the
keyboard design to combination trials [8].

As explained below, I suggest the reason for these findings is that the
mTPI method is based on a loss function which is problematic in de-
scribing the empirical losses patients experience when the toxicity level
over- or under-shoots the target. This misspecification of the loss func-
tion results in mis-estimation.

2. Findings

The TPI method [2] divides the interval [0, 1] into 3 sub-intervals
which are assumed to be of equivalent toxicity, and uses a beta-
binomial model. The method makes an escalation, de-escalation, or stay
decision at each dose level. In the original TPI method, not discussed in
detail in this paper, the width of the middle interval was based on the
posterior standard deviation o; of the toxicity found at the ith dose level
evaluated with middle interval [p; — K6;, pr + K,0,], with K and K,
small positive pre-defined constants [2].

The original TPI was quickly superseded by the mTPI [3]. Under the
mTPI, the middle interval is fixed a priori and is the same over all dose
levels evaluated. It is assumed to be a small interval [T —&,T + €]
around the target toxicity; the lower interval is [0, T — ¢[ and the upper
interval is 1T + €, 1]. The mTPI selects with the highest score based on
the score function
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S(I)=P(L) /M (L), i € {e.s.d}

where P (I;) is the posterior probability of toxicity being in interval /;,
and M (I;) is the length of interval I;. If the maximum score corresponds
to the lower (e), middle (s), or upper (d) intervals, respectively, the al-
gorithm escalates, stays, or de-escalates [3].

Guo et al. [4] showed that the mTPI score function under the beta-
binomial model optimizes an identity loss function defined over the
three intervals, loss 0 if the selected interval is the one in which the tar-
geted toxicity probability lies, and loss 1 otherwise. Guo et al. also
showed that selecting the interval with the highest score function re-
sults in the minimum loss, interpretable as a penalty for making wrong
dose-finding decisions, under this loss function [4].

The problem with this loss function is its assumption that losses
within each interval — not just the narrow one around the target, but the
much wider upper and lower intervals — will be identical. While losses
from incorrect toxicity estimates within a small interval around the tar-
get can be reasonably assumed to be equivalent, the same is not the case
for the outer two intervals. If the target toxicity rate was 25%, then toxi-
city rates in the interval [20%, 30%] might reasonably be considered
similar. But the method assumes that 31% and 100%, and 19% and 0%,
can all also be treated as essentially equal. I respectfully suggest that
this is not a clinically reasonable model of empirical patient loss experi-
ence, resulting in the method optimizing an unreasonable model of pa-
tient losses, resulting in the method selecting clinically unreasonable
estimates as optimal.

A more clinically reasonable loss function would tend to be approxi-
mately continuous, with smaller losses for mis-estimates at smaller dis-
tances from target and greater losses for mis-estimates at greater dis-
tances. Clinical intuition would suggest a smaller difference in toxicity
from target generally results in less loss than a larger one. Differences
can be ignored over a small interval. But it may be ethically problem-
atic to ignore them over a large one.!

The problem can be further explained by examination of the score
function. Although Ji et al. [3] characterized the mTPI's score function
as a probability mass function, the score function might better be char-
acterized as a probability intensity function, where the term intensity
function is used with analogy to use of an intensity function in physics
(e.g. energy intensity) or to indicators familiar to clinical trialists like
dose intensity. Intensity functions in this sense constitute a quantity di-
vided by a measure of a space, here the length of an interval. A general
characteristic of intensity functions (in this sense) is that, as quotients,
they can be prone to estimation errors due to overweighting when small
intervals result in small denominators. For this reason, unduly narrow
middle intervals can overweight the middle interval score. Accordingly,
this intensity-function analogy explains the mechanism by which the
mTPI can result in stay decisions when clinical intuition would suggest
escalating or de-escalating. There is a tension between an ethical need
to specify a middle interval sufficiently narrow for the assumption of
toxicity equivalence within the interval to be ethically reasonable, and
an operational need to specify a middle interval sufficiently wide that
dividing by its length does not result in unduly overweighting the score
function.

Improvements to the mTPI method have tended to move the as-
sumed loss function further in the direction of a continuous one. For ex-
ample, Guo et al.‘s mTPI-2 method [4], incorporating additional inter-
vals and intermediate loss levels, resulted in use of a multi-step loss

1 Perhaps a physical analogy might help illustrate the relationship for nonsta-
tistical readers. If one throws a ball in a U-shaped valley, it will bounce off and
head towards the bottom. But in a square valley with vertical cliffs and level
plateaus above the cliffs, once a ball is thrown over the cliff there is nothing to
keep it going to infinity. If everything above the cliff has the same loss function,
then balls landing close to the cliff will not be preferred over ones that roll far-
ther away.
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function, becoming a closer approximation to continuous as more levels
are added. Similarly, Yan, Mandrekar and Yuan's keyboard design
[5,6], which creates a series of “keys” of width equal to the interval
around the target, moved further in the direction of an approximately
continuous loss function by imposing a further rule that the equivalence
intervals (except at the extrema) must be the same width, thereby more
closely approximating continuity, and avoiding denominator-related
estimation problems in the score function. In addition, ensuring that all
interior intervals must have width no wider than the target interval
helped address the mTPI's original problem, positing unduly wide toxic-
ity intervals as having ethically equivalent loss.

3. Interval boundary designs

The Bayesian Optimal Interval Design (BOIN) [9] is an evolution of
the cumulative cohort design (CCD) [10]. Liu and Yuan defined both a
local and a global design, but recommended the local design for use in
practice [9]. The CCD and BOIN are classified by Ji and Yang as interval
boundary designs, distinguishing them from the class of interval de-
signs which include the TPI and its successors [11]. As Ji and Yang ex-
plain, a key difference between an interval design and an interval
boundary design is that interval designs base decisions on the posterior
probability that the toxicity rate pP; lies within an interval, while in in-
terval boundary designs the endpoints of the middle interval serve as
boundaries for assessing the point estimate p; of the toxicity rate. In ad-
dition, interval boundary designs, unlike interval designs, do not use a
classical decision-theoretic framework involving a formal loss function
as an essential element. The optimality suggested by BOIN is based on
an error function that mimics the Type I error in hypothesis testing
[11].

Under the local BOIN design, given a target toxicity probability ¢,
pre-specified lower and upper interval boundaries @, ®; 3 ¢ <@<@,,
and given prior probabilities Zo;: 71> 72; of hypotheses HO: P; = ¢, H1:
Pj = @1, and H2: Pj = @2 respectively for toxicity level p; of the jth dose
level, and number of patients "jn;, the design selects boundaries4;; and
Ay with @1<4,;<@<4,;<¢, minimizing the probability of making an in-
correct escalation decision, using a binomial probability based error
function.

a (21,112) = my; {Bin (njzllj;nj,q}) +1
— Bin (nj/12j - I;n]—, 47)}
+ ;{1 = Bin (njdyjin;. ) }
+ m9;Bin (n;dg; — Liny, )

For estimated toxicity p;, the BOIN design escalates if p;<4;, de-
escalates if ﬁi>12j, and remains at current dose level if 4, j<13j<12j [9].

The analogy to sample size determination in hypothesis testing [9]
provides a way to obtain an implicit loss function. As in a Bayesian hy-
pothesis test, the implicit expected loss is a sum of weighted identity
functions, and the score function is simply the probability of a correct
decision 1 — a (4, 4,). While the mTPI uses a true interval approach, the
local BOIN design's interval boundary approach is analogous to a point
hypothesis test, not an interval hypothesis test. In a point hypothesis
test, rejection of HO is merely evidence that a parameter is not at the
null point value; it is not evidence that it lies at or beyond the alterna-
tive hypothesis point value.” Similarly, escalation or de-escalation deci-
sions in the BOIN design do not require establishing that the toxicity

2 In both frequentist and Bayesian point hypothesis testing, rejection of a
point null hypothesis does not provide reliable evidence for acceptance of the
stated point alternative hypothesis. The alternative hypothesis is merely the
value that will result in rejection of the null hypothesis with a pre-determined
reliability. A boundary is a point at which the likelihood of two hypotheses be-
comes equivalent, and hence must lie between the two. The same is true with
the boundaries in the local BOIN design.
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rate lies (respectively) below or above the interval. Rather, it is suffi-
cient to establish that the toxicity rate lies below or above the target
rate. Accordingly, as in a conventional hypothesis test, the boundaries
must always lie inside the interval, between the null and the alternative
(s). This, in turn, guarantees a principal comparative benefit of the
BOIN design, that the null hypothesis (stay at dose level) can never be
accepted when the estimated toxicity rate lies outside the interval
boundaries. Because the BOIN only considers point alternatives within
the posited interval around the target (including its endpoints), and
simply does not consider alternatives outside it, it never violates the
ethical principal that only toxicity rates within an appropriately small
interval should be considered ethically equivalent. Because of the anal-
ogy to hypothesis testing, the score function is a simple probability, not
a probability intensity as in the mTPI. For this reason, it is not subject to
the principal problem with the mTPI's score function. Because narrow-
ing the interval around the target does not increase the weight of the
target interval's score, prespecifying an unduly narrow interval does not
lead to overweighting the target toxicity score.

4. Discussion

Guo et al. explained the safety issues they observed in the mTPI
method as “Ockham's razor is too sharp” [4]. In their view, based on
Jeffries and Burger's characterization of Ockham's razor® [12], the
problem involved a conflict between simplicity in statistical inference
and clinical considerations regarding patient safety. From this perspec-
tive, the statistical profession's role is to introduce mathematically effi-
cient and simple designs, which the mTPI design successfully did. It is
clinicians who are responsible for applying clinical considerations in se-
lecting a design that is fit for use, such as being safe for their patients. In
this formulation fitness-for-use issues like safety are simply not the sta-
tistician's responsibility. If Ockham's razor is too sharp — if a simple and
efficient design results in safety concerns — then that is the user's prob-
lem and not the designer's.

I respectfully propose that this may be too narrow a conception of
the role and responsibility of the clinical statistician. Loss functions and
their empirical and clinical reasonableness are matters within the statis-
tician's purview. Statisticians are in a position to ascertain and ensure
that models of patient loss are empirically reasonable and clinically ap-
propriate, in collaboration with clinicians and patients, up-front, before
design development gets very far. The statistician's responsibility arises
in no small part because the statistician will often be the only member
of a design team in a position to interpret, and hence assess the practical
clinical implications of, mathematical assumptions and functions. To
ensure this, an ability to cooperate closely with clinicians and an under-
standing of the clinical implications of designs — not just the mathemat-
ics but the meaning -- is an essential part of the needed skill set.

To continue Guo et al.‘s [4] reference to Occam's Razor, if we in-
clude the specification of patient losses as part of the problem a useful
clinical design seeks to solve, then Occam's Razor would select a design
whose model of patient loss experience is both accurate and simple.

From this perspective, the TPI evolution began with a loss model
which was indeed simple. The identify function is one of the simplest
loss functions possible, and reducing the problem to selecting from
three intervals similarly simplifies. But it was inaccurate in the sense of
not appropriately modeling patients’ loss experiences. In the historical
evolution through the mTPI, mTPI-2, and Keyboard designs, each de-
sign iteration made a small improvement by adding new steps and con-
straints to the loss function, but did so at the expense of making the loss
function more complex. As a result, the loss model moved from simple
but inaccurate to more accurate but less simple. Perhaps further im-

e

3 Jeffries and Burger (1992) characterized Ockham's razor as “‘an explanation
of the facts should be no more complicated than necessary,’ or ‘among compet-
ing hypotheses, favor the simplest one.”” [12].
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provement is possible. Perhaps a method using a simpler description of
the losses might be devisable that might result in an ethically appropri-
ate but statistically more efficient approach.

The existing evolution might, however, be adequate to solve this
particular problem. With enough intervals, a step loss function can be
devised that is essentially indistinguishable from a continuous one for
the small sample sizes appropriate to Phase 1 trials. Perhaps this is
enough. In addition, interval boundary designs such as BOIN provide an
alternative which, while still interval-based, avoids ethically unreason-
able escalation and de-escalation decisions of the type this paper dis-
cusses.

For the future, including future design problems not yet posed, I
would respectfully suggest that statisticians start off asking whether a
proposed loss function represents a reasonable model of patient experi-
ence. It might be better to emphasize that loss functions have an empiri-
cal character. We can ask patients, either informally or through sur-
veys, to describe their loss experience and their preferences and wishes
to us. We can turn to clinicians for their clinical experience. It might be
better to ask than to assume. While not having the same obligations as
the physicians we work with, statisticians who devote their careers to
the clinical environment and improving patient welfare should
nonetheless also share their commitment to avoiding harm.

5. Conclusion

W. Edward Deming [13] is perhaps best known as an advocate of the
position that quality (even of statisticians’ work) ought to be judged by
its fitness for use. Consistent with this view, he was also an early advo-
cate of empirical loss functions. He argued against the tendency of sta-
tisticians in his day to treat loss functions as mathematical conve-
niences rather than as central to describing the problem to be solved.
He argued for the importance of careful observation, empiricism, and
subject-matter knowledge in evaluating loss experiences. This advice
appears still relevant today.
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