
Virtual Screening Models for Prediction of HIV-1 RT
Associated RNase H Inhibition
Vasanthanathan Poongavanam, Jacob Kongsted*

Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M, Denmark

Abstract

The increasing resistance to current therapeutic agents for HIV drug regiment remains a major problem for effective
acquired immune deficiency syndrome (AIDS) therapy. Many potential inhibitors have today been developed which inhibits
key cellular pathways in the HIV cycle. Inhibition of HIV-1 reverse transcriptase associated ribonuclease H (RNase H) function
provides a novel target for anti-HIV chemotherapy. Here we report on the applicability of conceptually different in silico
approaches as virtual screening (VS) tools in order to efficiently identify RNase H inhibitors from large chemical databases.
The methods used here include machine-learning algorithms (e.g. support vector machine, random forest and kappa
nearest neighbor), shape similarity (rapid overlay of chemical structures), pharmacophore, molecular interaction fields-based
fingerprints for ligands and protein (FLAP) and flexible ligand docking methods. The results show that receptor-based
flexible docking experiments provides good enrichment (80–90%) compared to ligand-based approaches such as FLAP
(74%), shape similarity (75%) and random forest (72%). Thus, this study suggests that flexible docking experiments is the
model of choice in terms of best retrieval of active from inactive compounds and efficiency and efficacy schemes. Moreover,
shape similarity, machine learning and FLAP models could also be used for further validation or filtration in virtual screening
processes. The best models could potentially be use for identifying structurally diverse and selective RNase H inhibitors from
large chemical databases. In addition, pharmacophore models suggest that the inter-distance between hydrogen bond
acceptors play a key role in inhibition of the RNase H domain through metal chelation.

Citation: Poongavanam V, Kongsted J (2013) Virtual Screening Models for Prediction of HIV-1 RT Associated RNase H Inhibition. PLoS ONE 8(9): e73478.
doi:10.1371/journal.pone.0073478

Editor: Nicolas Sluis-Cremer, University of Pittsburgh, United States of America

Received June 13, 2013; Accepted July 19, 2013; Published September 16, 2013

Copyright: � 2013 Poongavanam, Kongsted. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work has been supported by the Lundbeck Foundation and the The Danish Councils for Independent Research and the Villum Foundation. The
funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: kongsted@sdu.dk

Introduction

According to a recent report from the UNSAIDS, it is estimated

that more than 34 million people are living with a HIV-1 type

infection worldwide and 2.5 million new HIV infections occur

every year. Currently, 14.8 million people are eligible for HIV

treatment, however only 8 million people are under treatment due

to various reasons which includes economical issues [1]. Although

AIDS related mortality has been reduced by 24% (1.7 million in

2011) compared to 2005 data (2.3 million), development of

improved anti-HIV regiments is still required. To control HIV

progression, several viable chemo-targets have been identified

[2,3] in the HIV replication cycle, such as fusion or entry of HIV

with the host CD4 receptor, reverse transcription of viral RNA

into viral DNA (by reverse transcriptase), integration of viral DNA

with host DNA (by integrase), and maturation of new viral protein

(by protease). Although significant improvements have been made

in HIV therapy within the last decades, there is still a strong

demand for improving AIDS therapy due to an increasing drug

resistance [4,5]. Reverse transcription of genomic single strand

RNA into double strand DNA (dsDNA) by viral reverse

transcriptase (RT) is a key process in replication of HIV and

dsDNA is subsequently integrated into the genome of the host cell.

RT has two catalytic domains in order to carry out the reverse

transcription process. Very briefly (1) the DNA polymerase

domain uses cellular RNA primer (specifically tRNAlys3) to

synthesize single strand viral (2) DNA (RNA dependent DNA

synthesis), subsequently, the synthesized HIV (2) DNA is

hybridized with a viral RNA template to form a RNA:DNA

hybrid duplex, (2) RNase H domain removes the RNA strand

from the hybrid and facilitate the first strand transfer which leads

to formation of purine rich sequence of HIV RNA (also called

‘‘polypurine tract’’ (PPT). Here, PPT serves as a primer for the

synthesis of viral (+) DNA strand and subsequently the RNase H

removes the PPT portion after priming of (+) DNA synthesis. The

majority of the currently marked antiviral drugs that have been

approved by FDA (The Food and Drug Administration) for the

treatment of HIV infection are RT inhibitors which particularly

inhibits at the polymerase domain [6]. Due to the high rate of viral

mutation and resistance to current drug regiments [7], consider-

able attention has in recent years been paid to less explored target

sites within the HIV replication process [8–10], one such target is

the inhibition of RT associated RNase activity [11].

RNase H is one of the two domains of the p66 (66 kDa) subunit

of reverse transcriptase. From mutation and x-ray crystallographic

studies [12–15] the structure of the RNase H domain has been

well characterized. It is composed of five standard mixed sheets,

which are surrounded by four helix, and eight loops in the center

of the domain. The active site of RNase H consists of four highly

conserved amino acids Asp-443 (D443), Glu-478 (E478), Asp-498

(D498) and Asp-549 (D549) (Figure 1A/B) and two catalytically
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active magnesium ions (Mg2+). Moreover, it has been shown that

mutation of any of these residues abolishes the enzyme activity.

This is because these residues provide a favorable environment for

stabilizing metals (Mg2+), which is essential for a proper binding

and positioning of the RNA:DNA duplex during the digestion

process [16]. Over the past years a large number of RNase H

inhibitors have been designed, synthesized and some entered into

the clinical trial, but none of these have yet reached the market.

Furthermore, these inhibitors all show a low level of specificity

towards RNase H, meaning that many of these compounds also

inhibit polymerase [17–19]. Two mechanisms of RNase H

inhibition have been proposed; (i) compounds that blocks metal

binding at the active site, (also called ‘‘active site directed RNase

Inhibition’’) and (ii) compounds that binds at the allosteric site of

RNase H [20]. Both classes of compounds show high level of

ligand diversity in general, however, the active site directed RNase

H inhibitors are unique in the sense that the majority of inhibitors

are rich on hydrogen bond acceptor sites, which is believed to

form chelation with the magnesium ions [14,15,21–23]. Repre-

sentative examples of molecules belonging to this class of site

directed RNase H inhibition is shown in Figure 1C.

With an increasing number of high resolution 3D structures of

HIV-1 RT associated RNase H domain and deposit of known

inhibitor data in public databases, ligand and structure-based

modeling tools may readily be used for designing selective

inhibitors. Because of the rapid advancement in high throughput

screening (HTS) approaches, the availability of screened com-

pounds is increasing exponentially; for example, Parniak et al.

screened nearly 100000 NCI chemical compounds for the HIV-1

RNase H inhibitor and deposited these at the PubChem database

(AID: 372) [24]. This enormous information can subsequently be

analyzed and trained for new lead identification through

cheminformatics and bioinformatics approaches, e.g. a fingerprint

based-decision tree method has been applied to classify inhibitors

of the RNase H with success rate of approximately 99% for 10-fold

cross validation (sensitivity = 57%, specificity = 99%) [25]. Very

recently, ligand based virtual screening was successfully performed

using shape-based similarity searching methods [26] for identifi-

cation of duel inhibitors of HIV-1 RT. Subsequently the models

were applied to screen the NCI chemical database and finally

found 4 out of 34 molecules to shown inhibition at micro molar

concentrations (2–22 mM). Thus computer-aided approaches such

as molecular docking, 3D-QSAR, pharmacophore modeling,

machine learning methods and shape-similarity based virtual

screening has emerged as effective methods for identification novel

compounds [27–29]. It has previously been observed from

validation of virtual screening experiments that docking methods

performed best in identifying high affinity CYP1A2 inhibitors

compared to machine learning based screenings (correctly

predicted 21 out of 41 tested). However, the models developed

with random forest were found to be very efficient since it required

only 39 two-dimensional physicochemical descriptors (or proper-

ties) for new prediction [27].

The aim of the present study is to develop virtual screening

models for HIV-1 RT associated RNase H inhibition through

conceptually different computational methodologies, for instance,

Figure 1. HIV-1 RT associated RNase H model and ligands structures. Panel A: The model of HIV-RT associated RNase H domain is shown
with a bound ligand (cyan, ball and stick model). The catalytically important residues, magnesium ions (green sphere) and bound water (cyan sphere)
have been highlighted. The docking pose of the bound ligand is shown in pink (ball and stick model), Panel B: 2D representation of ligand-protein
interaction. Panel C: Representative molecules belong to the class of site directed RNase H inhibition.
doi:10.1371/journal.pone.0073478.g001
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using ligand and structure information. To this end, five screening

methods have been evaluated and it is suggested which of these

methods is best suite for efficient identification. The methods

applied comprises (1) pharmacophore modeling, (2) ligand flexible

docking, (3) grid based pharmacophoric -fingerprint for ligand and

proteins (FLAP), (4) machine learning algorithms, (such as random

forest, support vector machine, kappa nearest neighbor) (5) rapid

overlay of chemical structures (ROCS). This is, to our knowledge,

the first time that such conceptually different methodologies have

been assessed with respect to efficacy and efficiency in virtual

screening setup for identification of RNase H inhibitor of HIV-1

reverse transcriptase.

Materials and Methods

Ligand preparation
A set of 135 HIV-1 RT associated RNase H inhibitors was

collected from the literature [14,15,22,29–40]. This dataset

consists of different scaffolds including highly active pharmaco-

phores as represented in Figure 1C. In addition to these literature

compounds, structure and biological activities (reported in binary

format, i.e active as 1 and inactive as 0) of 99766 compounds were

collected from the PubChem Bioassay database (AID: 372) [24].

In brief, the inhibition of HIV-1 RT associated RNase H

catalyzing the RNA:DNA duplex (substrate) to fluorescein

labeled-RNA strand was measured. Fluorescein tagged substrates

show very low background fluorescence and upon hydrolysis the

fluorescence increases up to 50 folds. Compound inhibition is

thereby proportional to the fluorescence intensity [41]. Of the

Figure 2. The overall workflow of the present study.
doi:10.1371/journal.pone.0073478.g002
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99766 compounds retrieved from PubChem, 1863 compounds

were removed, due to lack of either activity data or structures and

in come cases the structures existed as duplicate entries. The

remaining structures were imported into the Standardizer tool

[42] (version 5.12.2) in order to refine the structures by

normalization of chemo-types (e.g. tautomerization, aromatization

and remove steric clashes). The remaining 97903 compounds,

which includes 760 active and 97143 inactive, were processed for

further steps. The overall workflow of the present study is shown in

Figure 2.

3D conformation generation
Both set of compounds (literature and PubChem) were

converted into 3D structures using OMEGA [43] (a conformation

generating tool). As default OMEGA reports multi-conformer for

all compounds using the MMFF95S force field, however, in the

present study only a single conformer i.e. the one possessing the

lowest energy was used.

Subset Selection
Bioactivities and structures were imported into KNIME (version

2.6.3) [44], an open source data integration platform, which

provides a variety of data mining/chemistry applications and data

analysis nodes. In this study we used KNIME for subset selection

purposes as well as for machine learning model developments. In

order to reduce the computational time, we selected a small subset

of inactive (n = 971 compounds, ‘‘Subset_inactive’’) of the

PubChem dataset, which represents the whole inactive in the

dataset. The selection was made randomly as implemented in

KNIME and activity threshold for the inactive compound was 0–

50 (% of inhibition). Of the 760 active compounds in the

PubChem dataset, 20 highly active and structurally diverse

compounds were randomly chosen using KNIME (activity

threshold .80% of inhibition) and stored for enrichment study

as known binder (n = 20, ‘‘Subset_actives’’). Structures and

bioactivities of subsets used in this study are provided in the

supplementary material.

Template selection
Canvas (version 1.5) chem.-informatics tool [45] was used to

perform a hierarchical clustering based on the dendritic finger-

prints and Tanimoto similarity (TS) as method of metric

(TSAB = c/a+b2c, a = bits set to 1 in molecule A, b = bits set to

1 in molecule B, c = number of 1 bits common to molecule A and

B). From the 135 compounds in the literature dataset, 22

individual clusters were obtained with merging distance cutoff

0.80. This was reduced to 15 clusters (merging distance cutoff

0.93) and two highly active compounds (in terms of pIC50) from

each cluster were selected as template (n = 30, ‘‘subset_active_lit’’)

for pharmacophore search and enrichment study. A representative

compound for each cluster as well as the full list of compounds

used as known actives for validation is provided in the

supplementary material [Figures S1, S2]. Special care was taken

to verify that the x-ray bound ligands were also part of the subset

selected as template.

Machine learning methods and Feature selection
methods

Various commonly used machine learning (ML) techniques

such as support vector machine (SVM), kappa nearest neighbor

(kNN) and random forest (RF) were applied. These methods also

represent common approaches for classification. A detailed

account of the theory behind these methods can be found

elsewhere [46]. All the classification models were constructed using

Weka [47], which provides a set of classification and regression

methods, and attribute selection methods. In the present study,

various automatic feature selection procedures were applied such

as CfsSubsetEval (correlation-based feature subset selection

evaluator) with BestFirst and Genetic search algorithms. All

machine learning based classification and attribute selections used

in this study were performed with Weka nodes as implemented in

KNIME.

Molecular descriptors and fingerprints
Ligand information for classification was obtained from

molecule descriptors and fingerprints. A set of 494 two-dimen-

sional descriptors and 269 fingerprints (including MACCS

structural keys and Sub-structure fingerprints) were calculated

using PaDEL [48], a descriptor computing software as imple-

mented in KNIME. Descriptors used in this study includes

physical properties, atom and bond counts, adjacency and distance

matrix descriptors containing BCUT and GCUT descriptors, Kier

& Hall connectivity, kappa shape indices, subdivided surface areas,

and pharmacophoric features. Fingerprints represents small ‘‘sub-

structures’’ consisting of one to ten non-hydrogen atoms and

enumerates very simple features, but when used in combination

they can prove to be very specific and useful in distinguishing the

characteristics among the small molecules. Low variance descrip-

tors (variance upper bound set to 0.0), and insignificant

fingerprints (bits) were removed before the model optimization.

Pharmacophore modeling
Pharmacophore modeling was carried out using the Phase

(version 3.1) [49] module of the Schrödinger molecular modeling

suits [50]. Phase uses LigPrep for the structure cleaning process,

which includes generating possible tautomers, and ionization states

(at pH 7), followed by generating conformers using the ‘‘Conf-

Gen’’ macro-model search algorithm with thorough sampling.

The OPLS2005 force field was chosen with a distance-dependent

dielectric solvent model. Phase develops the pharmacophore

hypothesis in three steps; (1) creation of pharmacophoric sites from

active compounds using six common features: hydrogen bond

donor (D), hydrogen bond acceptor (A), hydrophobic region (H),

negatively charged region (N), positively charged region (P) and

aromatic rings (R), (2) perceiving common pharmacophore, group similar

pharmacophores according the inter-site distance (the distance

between pairs of sites in the pharmacophore) using tree-based

partitioning methods, and (3) finally, the surviving hypothesis from

these partitioning procedures will be scored and ranked. The quality

of the pharmacophore alignment was assessed using the RMSD

(distance tolerance set to 1.2 Å) and the quality of the hypothesis

assessed using survival score, sites, vector, and selectivity scores

[see supplementary material for score description]. In the current

setting, at least 4 common pharmacophore points must match with

the selected active compounds and other settings were chosen as

defaults.

Structural similarity search
The rapid overlay of chemical structures (ROCS) software [51]

from OpenEye was used for shape-based structural similarity

search [52]. Shape similarity can be determined, in part by

comparing the shape of a query molecule with a reference

molecule. This program is particularly designed to screen a large

database using a solid-body optimization process (uses only heavy

atoms for superposition) that maximizes the molecular overlap

(volume and atomic features). ROCS uses the ImplicitMillsDean

force field that defines six pharmacophoric color fields, such as

Virtual Screening Models for RNase H Inhibition
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hydrogen bond donor, hydrogen bond acceptor, hydrophobic

region, anions, cations, and rings. Once the overlap is optimized,

the shape similarity is computed using TanimotoCombo (ranges

0–2, high score indicates the higher shape and color similarity).

TanimotoCombo provides the scores that include both shape

similarity fit and color similarity fit (chemical pattern). The ROC

program reads SMILES, 2D, or 3D structures as input and

generates possible low energy conformations using the OMEGA

3D structure generating module as implemented in ROC.

Fingerprint for Ligands and Proteins (FLAP)
The software FLAP [53] was used to build and validate ligand

based virtual screening models. FLAP uses fingerprints derived

from GRID molecular interaction fields (MIFs) and GRID atom

types are characterized as quadruplets of pharmacophoric

features. The GRID approach is a well assessed concept for

determining energetically favorable interaction sites in molecules

with known structure using chemical probes e.g., H, O, N1, and

DRY probes which describes the shape, hydrogen bond acceptor,

hydrogen bond donor and hydrophobic interactions, respectively.

FLAP creates a common reference framework in two steps: first,

the MIFs of the molecules are calculated using the GRID force

fields, and the resulting MIF’s are condensed in complexity by

extracting points (quadruplets or hotspot) representing the most

favorable interactions. Second, each quadruplet of these points is

used to generate different superpositions of the test molecules onto

a template molecule. The quadruplets of each molecule are stored

as a pharmacophoric fingerprints and used to evaluate their

similarity. Superposition of quadruplets is assessed through Probe

scores and Distance score, which represents the degree of overlap

of the MIFs for each probe individually as well as for their

combinations and overall difference of probe score between the

ligand and template, respectively. In addition, FLAP calculates

Global Sum score (Glob_Sum) and Global Product scores

(Glob_Prod). The former score is produced by summing all the

scores of the individual probes together and the later score is

produced by multiplying all the scores of the individual probes

together. All similarity measures ranges from 0.0 (bad) to 1.0

(good), except the Distance, where 0 is good. GRID probes H, N1,

DRY and O were used for the FLAP modeling. The rational

choice for these four specific probes is justified by the fact that they

represent distinct ligand-protein interaction features. The distance

(i.e. spatial resolution) between two GRID points was set to

0.75 Å.

Automated docking and scoring: preparation of protein
and ligands

A computational model of the HIV-1 RT associated RNase H

domain was constructed from an X-ray crystal structure with

resolution of 1.4 Å from the Protein Data Bank (PDB ID: 3QIO)

[15]. In the deposited crystal structure of RNase H domain with

N-hydroxy quinazolinediones (bound active site inhibitor), 12

residues were missing and the structure was determined with

manganese (Mn2+) ions instead of the two catalytically active

magnesium ions. Atomic coordinates for the missing residues were

generated using the Swiss-Model [54]. Subsequently, the protein

model was imported into the Maestro module available in the

Schrödinger package and the protein was further optimized using

the Protein Preparation Wizard [55]. This optimization includes

adding hydrogen atoms, assigning correct bond orders and

building di-sulfide bonds and replacing the Mn2+ ions with Mg2+

ions. The protonation states of all of the ionizable residues were

predicted by PROPKA [56] provided in the Protein Preparation

Wizard in the presence of the Mg2+ ions at the active site. An

optimized structure model was energy minimized (only hydrogen

atoms) using the OPLS2005 force field.

The receptor grid generation module of Glide [57] was used to

define the active site for the docking experiments. As this protein

model has a bound ligand (3-hydroxy-6-(phenylsulfonyl)quinazo-

line-2,4(1H,3H)-dione), the ligand was set as the centroid of the

grid box (size of the active site is 20 Å from ligand position). Water

molecules in the active site beyond 3 Å from the bound ligand

were deleted.

Ligand flexible docking protocol
Glide (version 5.8), a grid-based exhaustive search algorithm

was used for all docking experiments [57]. Glide uses a series of

hierarchical filters to find possible ligand pose in the active site,

and the program has the option to treat the ligand fully flexible or

rigid during the docking run. In addition, glide provides three

docking precision modes, namely, XP (extra precision), SP

(Standard precision) and HTS (High-throughput screening)

modes. Each mode are used in slightly different context, e.g., the

HTS mode is used to screen a relatively large database (uses more

restricted conformational sampling), the SP mode uses a softer

scoring function that adapt at identifying ligands that have a

reasonable propensity to bind in the receptor, and the XP mode

uses a complete minimization, and scoring (and additional terms

used over SP, e.g. solvation) from large ensembles of docking poses

(requires more CPU time), thus this mode is specially used for top-

ranked compounds. Glide uses an in-build docking scoring

function resulting in a Glidescore (SP and XP). In the current

setting, all three docking modes were analyzed for the virtual

screening. Together with the different ligand preparation settings

(original and Epik process [58] from LigPrep) this resulted in a

total of 6 docking runs (Table 1) for all sets of ligands in the

dataset. Epik is an application that generates possible protonation

states, tautomers and metal binding sites in the ligand.

Validation of virtual screening models
The computational models of each experiment were validated

according to their assessment parameters, e.g., the pharmacophore

goodness was evaluated according to its survival score. The quality

of the machine learning models was assessed using the terms,

Sensitivity (the proposition actives being predicted as actives),

Specificity (proposition of inactive being predicted as inactive), G-

mean (a measure of balanced prediction of each of the two classes)

and Matthews’s correlation coefficient (MCC) (The quality of the overall

binary classification model and models are considered to be

predictive if MCC is higher than 0.4.).

Sensitivity~
TruePositive(TP)

TruePositive(TP)zFalseNagative(FN)
ðEq:1Þ

Specificity~
TrueNegative(TN)

TrueNegative(TN)zFalsePositive(FP)
ðEq:2Þ

G{Mean~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sensitivity

p
|Specificity ðEq:3Þ

MCC~
(TP � TN){(FP � FN)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(TPzFP)(TPzFN)(TNzFP)(TNzFN)

p ðEq:4Þ

Virtual Screening Models for RNase H Inhibition
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In addition, 10-fold cross validation was also carried out as

implemented in Weka from KNIME. The virtual screening

effectiveness is evaluated in terms of the enrichment factor (EF) as

a function of the percentage6that is covered of the complete

ranked database, meaning that the proportion of active molecules

found from a test database in which a small number of actives

have been hidden in a large inactive compounds. Thus,

EF (x)~factive(x)=x ðEq:5Þ

where fActive is the percentage of the actives found after assessing

x% of the ranked database. Successful screening implies EF..1.

In addition to the EF, the enrichment is also assessed with a

receiver operating characteristic (ROC) value and area under the

curve (AUC). This denotes how good the model is in discriminat-

ing active compounds from inactive. ROC/AUC values range

from 0.0 (poor) to 1.0 (ideal) and 0.5 represents a random

prediction.

Table 1. Summary of enrichment factor estimation from various docking scenarios.

Enrichment run Models Dataset Number of compounds Docking Scenarios Enrichment factor ROC

Active Inactive 1% 2% 5%

Pubchem Actives 1 Original 20 971 HTS 20 11 8.5 0.82

2 SP 29 15 8.9 0.91

3 XP 24 15 8.0 0.72

4 Epik 36 1526 HTS 21 12 6.0 0.90

5 SP 20 12 6.0 0.90

6 XP 15 9.9 4.0 0.77

Literature Active 7 Original 30 971 HTS 29 24 9.9 0.81

8 SP 32 27 11.0 0.83

9 XP 29 17 9.2 0.68

10 Epik 59 1526 HTS 31 17 8.7 0.88

11 SP 30 21 10.0 0.89

12 XP 10 13 8.6 0.83

Combined Active
datasets

13 Original 50 971 HTS 20 19 8.7 0.81

14 SP 20 20 10.0 0.87

15 XP 20 14 8.7 0.70

16 Epik 95 1526 HTS 20 14 7.6 0.89

17 SP 20 16 8.0 0.90

18 XP 12 10 6.8 0.81

Note: ROC = Receiver Operator Characterics, XP: Extra precision, SP: Standard precision, HTS: High throughput screening.
doi:10.1371/journal.pone.0073478.t001

Figure 3. HIV-1 RNase H ligands chemical space. Scatterplot from principal component analysis (first two PCs). Inhibitors are shown in red, the
subset of non-inhibitors is shown in black, and the remaining non-inhibitors are shown in gray.
doi:10.1371/journal.pone.0073478.g003
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Results and Discussion

As mentioned in the introduction the aim of the current study is

to develop and validate virtual screening models that can

efficiently be used to find highly selective and potent HIV-RT

RNase H inhibitors. To achieve this goal, we used conceptually

different in silico methods as detailed above. Below, we will present

and discuss our virtual screening experiments for efficient

identification of inhibitors for the targeted protein.

Characterization of the dataset
The drug-likeness of the dataset was assessed by calculating the

Lipinski’s ‘‘rule-of-five’’ descriptors and count how many of these

that fail each rule. The result shows that .97 of the compounds in

the dataset did not violate any of the four properties (e.g.,

hydrogen bond donor, hydrogen bond acceptor, logP, molecular

weight) and only 3% of the molecules in the dataset violates one or

two rules. As mentioned in the method section developing models

with large number of compounds (e.g., ,97000) significantly

reduce the computational efficiency and highly imbalanced class

distribution, which leads to over prediction of major class, e.g.,

active (minor class) predicted as inactive (major class). Thus we

decided to select a subset of the compounds which represents the

rest of the active and inactive compounds in the whole dataset. A

subset consisting of 971 inactive compounds was selected using

random sampling from KNIME, and projected to the rest of the

inactive compounds in the dataset to check the chemical space of

this subset and the rest of the compounds in the dataset using a

principal component analysis (PCA). The PCA was computed

using the SIMCA-P program (Version 10.0. Umetrics, Umeå,

Figure 4. Pharmacophore hypothesis. Schematic representation of hypothesis 1 (left panel) and hypothesis 2 (right panel) for HIV-1 RT
associated RNase H inhibitors. The metal ions chelation of N-hydroxyimides is shown in orange with distances measured by Klumpp et al.
doi:10.1371/journal.pone.0073478.g004

Figure 5. Inhibitors binding mode. Panel A. Capravirine, Panel B. Illimaquinone. RNase H active site is shown with important residues, water (cyan
spheres) and magnesium ions (green spheres).
doi:10.1371/journal.pone.0073478.g005
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Sweden). It was observed from the scatter plot (Figure 3) of the first

two PCs (R2 = 0.69, Q2 = 0.59) that there is a small cluster located

in the lower left part of the scatter plot and inspection of these

compounds reveals that there is no structural similarity within this

cluster. In addition, the scatter plot suggests that the subset

(n = 971) clearly reflects the whole dataset. This indicates that this

subset could be used for validation (as inactive class) of the virtual

screening models. This step certainly improves the computational

efficiency of the various model validations. Furthermore, the

distribution of active and inactive compounds in the projected

space was analyzed and the results suggest that, based on the

physicochemical properties (2D) of both classes, there was no

significant discrimination found between the two classes. However,

inactive compounds slightly have a large number of heavy atoms,

a larger topological surface area and a higher number of largest

chains compare to the active compounds (see the scatter plots

provided in the supplementary material, Figure S3, Table S1). In

terms of hydrogen bonding capability, a greater number of

acceptors were observed in the active group compared to the

inactive group, which have a greater number of hydrogen bond

donors. This indication is consistent with the common structural

features of RNase H active site inhibitors as reported previously

[15,17].

Pharmacophore models of RNase H Inhibitor
For the development of a pharmacophore, we have considered

19 diverse inhibitors having pIC50 values from 5.0 to 8.6 against

RNase H activity. Of the 19 compounds in the dataset, four were

x-ray crystal bound inhibitors. The list of compounds used for the

pharmacophore model is provided in the supplementary material

(Figure S4). The Pharmacophore models were generated with two

scenarios; in scenario 1, all 19 compounds were used for model

building (default). In scenario 2, we further impose that the x-ray

crystal bound ligands must match in the final hypothesis. The

scenario 1 resulted in two hypotheses, which contains AAAR

(hypothesis-1, survival score: 2.54, selectivity: 0.99 and matches: 11)

and AARR (hypothesis-2, survival score: 2.40, selectivity: 1.12,

matches: 11) features (A: Hydrogen bond acceptor, R: Ring). A

schematic representation of the pharmacophore is shown in

Figure 4. Scenario 2 also resulted in a AAAR feature, which is very

similar to hypothesis 1 of scenario 1, except the inter-site distance.

The inter-site distance measures the distance that separates the

feature on the molecule from the centroid of the hypothesis

feature. The hypotheses built from this study are in good

agreement with previously established mechanism of RNase H

inhibition, as most of the inhibitors chelates with magnesium ions

in the active site. From the hypothesis it is observed that the

Table 2. Summary of machine learning models from 2D descriptors and fingerprints (Test set prediction).

Descriptors Attribution selection
ML
Methods Models Confusion Matrix Sens. Spec. G-M MCC

Overall
Accuracy

TP FN TN FP

2D Descriptors BestFirst
(n = 37)

RF 1 141 87 218 74 0.62 0.75 0.68 0.37 0.69

SVM 2 135 93 229 63 0.59 0.78 0.68 0.38 0.70

KNN 3 140 88 210 82 0.61 0.72 0.66 0.33 0.67

GenticSearch
(n = 111)

RF 4 162 66 213 79 0.71 0.73 0.72 0.44 0.72

SVM 5 143 85 228 64 0.63 0.78 0.70 0.41 0.71

KNN 6 152 76 205 87 0.67 0.70 0.68 0.37 0.69

Fingerprints BestFirst
(n = 17)

RF 7 141 87 201 91 0.62 0.69 0.65 0.31 0.66

SVM 8 108 120 238 54 0.47 0.82 0.62 0.31 0.67

KNN 9 150 78 199 93 0.66 0.68 0.67 0.34 0.67

GenticSearch
(n = 55)

RF 10 154 74 212 80 0.68 0.73 0.70 0.40 0.70

SVM 11 117 111 227 65 0.51 0.78 0.63 0.30 0.66

KNN 12 146 82 196 96 0.64 0.67 0.66 0.31 0.66

Descriptors and
Fingerprints

BestFirst
(n = 51)

RF 13 160 68 198 94 0.70 0.68 0.69 0.38 0.69

SVM 14 137 91 216 76 0.60 0.74 0.67 0.34 0.68

KNN 15 139 89 215 77 0.61 0.74 0.67 0.35 0.68

GenticSearch
(n = 345)

RF 16 166 62 206 86 0.73 0.71 0.72 0.43 0.72

SVM 17 149 79 219 73 0.65 0.75 0.70 0.40 0.71

KNN 18 147 81 206 86 0.64 0.71 0.67 0.35 0.68

Han et al. Fingerprints DT# 640 130 98463 535 0.83 0.99 0.91 0.67 0.99

DTc/ 441 329 97923 1075 0.57 0.99 0.75 0.40 0.99

Note: RF: Random Forest, SVM: Support vector machine, KNN: Kappa nearest neighbor, TP: True Positive, FN: False negative, TN: True negative, FP: False positive, Sens.:
Sensitivity, Spec.: Specificity, G-M: G-Mean, AUC: Area under curve, MCC: Mathews correlation coefficient, DT#: Decision tree training model and DTc/ : Decision tree 10-
fold cross validation.
doi:10.1371/journal.pone.0073478.t002
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distance between HBA1 and HBA3 was 4.5 Å and distance

between HBA2 with HBA1 and HBA2 is 2.6 Å. This observation

is in good agreement with previously reported distances of N-

hydroxyimides chelated with metals, three of the two oxygen

atoms in N-hydroxyimides is positioned with divalent metal ions at

a distance of 4 Å (i.e., the distance between two metal ions) and

each metal ions interact with oxygen atoms distance 2 Å) [22]

(Figure 4). Similar results were reported for hydroxytropolones

chelates with Mg2+ ions and the observed distance between two

Mg2+ found to be 3.7 Å [59]. Although the compounds used for

model building have diverse chemical scaffolds, the resulting

hypothesis still had similar distance pattern that favors the metal

chelation in the active site.

Enrichment estimation from docking experiments
Reproducing the crystallographically observed conformation of

the ligand is a minimum requirement to determine whether a

docking setup is applicable to a given system. A receptor model

obtained from Swiss-model was used for all docking experiments.

Initially the N-hydroxy quinazolinedinone (NHQD) was prepared

as described in the ligand preparation section and docked using

the standard precision mode (SP) into the active site. Subsequently

we compared the conformation and position with the bound

ligand conformation measured in terms of the root-mean-square-

deviation (RMSD). The measured RMSD of the docking pose was

0.23 Å and we observed similar interaction with the active site

residues as the bound conformation (Figure 1B); for instance,

HIS539 and Mg2+(2) interact with one of the three oxygen atoms

of NHQD and the neighboring two oxygen atoms interact with

the other Mg2+(1) ion and bound water molecules. It has

previously been reported that the bound water molecules at the

active site of RNase H plays a crucial role in RNA:DNA duplex

digestion. It initiates the hydrolysis process through deproronation

of water by Mg2+(1) and subsequently a OH2 ion attacks the

phosphate of the RNA strand and leads to breaking of the

phosphodiester bond [16,17]. Subsequently, both sets of known

active compounds, namely ‘‘subset_active_lit’’ and ‘‘subset_

actives’’ were docked in the same manner and analyzed for its

hydrogen-bonding (HB) network with residues, including water

and metal. The results indicate that more than 56% of the

inhibitors from both sets form a HB network with H539 and 40%

of the inhibitors interact and form a HB network with two water

molecules namely H2O_17 and H2O_24 in the active site.

Compounds such as N-hydroxyl quinazolinedinone, naphthyr-

idine, pryrimidinol analogues, capravirine (pIC50 = 8.07),

PD126338 and Illimaquinone (pIC50 = 5.26) were found to

strongly interact with magnesium ions in the RNase H active site

(Figure 5).

As mentioned in the method section, in the present study the

docking experiments were used to build virtual screening models,

Table 3. Validation of active subsets as a reference molecule for similarity search.

No Query Compound Enrichment Factor ROC No Query Compound Enrichment Factor ROC

0.5% 1% 2% 0.5% 1% 2%

1 Nevirapine 6.63 4.98 2.51 0.63 26 Naphthyridine-2 0.00 0.06 2.24 0.70

2 Etraviridine 0.00 0.00 0.12 0.68 27 Naphthyridine-3 0.00 0.00 0.00 0.65

3 Naphthyridine-8 0.00 0.00 0.00 0.54 28 Naphthyridine-4 0.00 0.00 0.00 0.63

4 PD126338 10.27 5.13 2.57 0.65 29 Naphthyridine-6 0.00 0.00 0.00 0.63

5 Illimaquinone 0.03 0.73 5.02 0.80 30 Pyrimidinol-8 0.52 2.78 2.39 0.57

6 DHBNH 9.57 5.06 2.53 0.55 31 CID776870 13.86 11.62 6.79 0.60

7 BHMP07 0.00 0.00 0.00 0.41 32 CID 886534 0.00 0.00 0.00 0.55

8 Triazole-2d 0.00 0.00 0.00 0.60 33 CID 867945 0.00 0.00 0.00 0.42

9 Triazole-2e 0.00 0.00 0.14 0.62 34 CID 5348294 0.00 0.00 0.00 0.39

10 Efavirenz 10.27 5.13 3.21 0.66 35 CID 2258538 0.00 0.00 0.00 0.43

11 Naphthyridine-7 4.40 4.85 2.50 0.74 36 CID 5349528 0.00 0.00 0.00 0.53

12 Triazole 0.67 0.00 0.42 0.51 37 CID 5349588 0.00 0.00 0.00 0.47

13 Hydroxyisoquinoline-2 9.68 4.93 3.60 0.77 38 CID 5348178 2.80 3.14 1.64 0.47

14 Hydroxyisoquinoline-20 10.10 5.05 2.62 0.71 39 CID 2251798 0.00 0.00 0.00 0.51

15 Hydroxyisoquinoline-22 0.01 0.19 1.59 0.63 40 CID 5340811 23.34 15.98 8.63 0.58

16 Pyrimidinol4 30.03 15.08 7.54 0.66 41 CID 2263390 0.00 0.00 0.00 0.45

17 Pyrimidinol5 20.22 10.11 5.11 0.66 42 CID 2891629 0.00 0.00 0.00 0.45

18 Pyrimidinol6 28.28 14.77 7.39 0.62 43 CID 2257955 0.00 0.00 0.00 0.45

19 NSC727447 17.21 10.02 5.55 0.76 44 CID 767151 0.00 0.00 0.06 0.48

20 Triazole-2a 0.00 0.39 4.85 0.67 45 CID 1926286 0.00 0.00 0.00 0.48

21 Triazole-2b 0.00 0.00 0.00 0.65 46 CID 9586237 0.00 0.00 0.00 0.37

22 Nitrofuron-10 0.00 0.00 0.00 0.52 47 CID 95786 0.00 0.00 0.07 0.44

23 Merk Cpd 0.00 0.00 0.01 0.68 48 CID 1730618 0.00 0.00 0.00 0.56

24 Capravirine 11.43 10.13 5.17 0.68 49 CID 1732694 0.00 0.00 0.00 0.52

25 GW8248 0.00 0.00 0.00 0.52 50 CID 2263150 0.00 0.00 0.00 0.48

doi:10.1371/journal.pone.0073478.t003

Virtual Screening Models for RNase H Inhibition

PLOS ONE | www.plosone.org 9 September 2013 | Volume 8 | Issue 9 | e73478



which will help in the identification of new compounds for RNase

H inhibition. For validation purpose, the compounds in the set

‘‘subset_inactive’’ were also docked and scored. In this context, the

docking scores (GlideScore) of both sets of active compounds were

added into ‘‘subset_inactive’’, and the enrichment factor (Eq. 5)

was calculated using an in-build script in the Maestro module of

the Schrödinger package. The enrichment factor is calculated

using the number of known actives screened from inactive

compounds at different % of database screening for various

docking scenarios. A summary of the enrichment estimation is

provided in Table 1. The receiver operator characteristic (ROC)

was used to measure the effectiveness of the screening. From the

enrichment analysis (Table 1), it is clear that all the docking

scenarios (1–12) perform remarkably well with respect to finding

actives from compounds that do not bind in the active site. In

general, the enrichment effectiveness of the docking scenario score

from SP (Standard Precision) performs reasonably well

(ROC.0.80–0.91) compared to extra precision or high-through-

put docking modes. We note that it is not completely appropriate

to directly compare different docking modes which have been

developed for different screening situation in drug design purpose

e.g. the extra precision (XP) mode is computationally expensive

(,4 days for 1000 molecules using 4 CPU) and represents a

significantly strict scoring procedure compared to SP. Models

obtained from models 4–6 and 10–12 performed slightly better

than models 1–3 and 7–9. Some models showed early and late

enrichment, for instance, model 8 from ‘‘subset_actives_lit’’, which

found 53% of actives at 2% of screening (early enrichment) and

100% of actives at 77% screen. On the other hand, model 2 from

subset_active found 30% of actives at 2% of screening and 100%

of actives at 58% of screen (late enrichment). In addition, both

active datasets were merged and the EF was calculated. The

obtained merged models (13–18) were found to perform very

similar to models 1–12 (see Table 1). From the enrichment

analysis, one may chose a scenario that finds a considerable

number of actives at early screening from large database.

Machine learning classification models
Recently, machine learning (ML) methods have frequently

begun to be used as virtual screening method, because these

methods are able to relatively easy handle large datasets for

building models to be applied to new predictions. In addition, ML

methods also quickly find chemical patterns within the activity

classes. Here, we developed various ML models for RNase H

inhibition and non-inhibition using physicochemical properties

(2D descriptors) and substructure fingerprints together with the

BestFirst and the GeneticSearch algorithms as attribution selection

methods. For classification, all active compounds (n = 741) and the

compounds in ‘‘subset_inactives’’ were merged to build ML

models. In total 18 models were developed to check which

Figure 6. ROCS. Receiver operating characteristic curve comparison against selected query molecules used for structral similarity.
doi:10.1371/journal.pone.0073478.g006
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combination of descriptor and method performs better for

classification (Table 2). The quality of the models was evaluated

in terms of MCC and G-Mean of Test set prediction. Overall,

models developed from random forest with descriptors and

fingerprint performs better than other methods such as SVM or

KNN. The models developed from other methods were efficient to

predict non-inhibitors (.70%) compared to inhibitors (,70%). It

is highly important to have models that are able to correctly

predict both classes in a reasonably balanced manner, and not

only correctly predicts one of the classes with high accuracy. The

random forest model (4) using 111 descriptors predict 71% of

inhibitors and 73% of non-inhibitors correctly with reasonably

good coefficient (MCC = 0.44), and the quality is also reflected in

the high G-mean score (0.72). In addition, if the random forest

method in combination with the GeneticSearch algorithm on

fingerprints (include MACCS and sub-structures) was used for

model building (10), this resulted in a slightly reduced sensitivity

and no change in the specificity. Overall the accuracy of the

models (13–18) developed from combinations of fingerprint and

descriptors did not change significantly (MCC = 0.43 and accura-

cy = 72%) compared to models developed only with descriptors

(MCC = 0.44 and accuracy = 72%). However, the correct

prediction [16] of inhibitors increased from 71 to 73% and non-

inhibitor prediction slightly reduced from 73 to 71%. We achieved

the best ML models with random forest in combination with 2D-

descriptors.

Han et al. [25] reported classification models using a decision

tree method with approximately 99768 compounds, in which 770

compounds were inhibitors and 98998 compounds were non-

inhibitors. Their training set showed an accuracy of 99% with

significantly good sensitivity (83%) and specificity (99%). However,

a ten-fold cross validation correctly predicts only 57% of the

inhibitors, which is nearly the random prediction. This poor

prediction might be due to an imbalanced distribution of active

and inactive compounds in the dataset as this is a very common

issue in QSAR/classification modeling with HTS dataset [60].

Validation of queries from similarity search
The rapid overlay of chemical structure (ROCS) tool is

frequently being used for similarity based structure search in lead

finding/optimization and it is relevant to validate which query

molecule captures the majority of inhibitors shape and pharma-

cophoric information which discriminates from non-inhibitors. To

the best of our knowledge, this is the first time that a large set of

compounds has been used as query molecule for validation. The

best query molecules could be used for virtual screening to identify

chemically diverse RNase H inhibitors. To do this, we used the

‘‘subset_actives_lit’’ and ‘‘subset_active’’ datasets as query mole-

cules and validated against each dataset using ‘‘subset_inactive’’ as

decay dataset. For example, each one of the ‘‘subset_actives_lit’’

dataset compounds was used as a query molecule and checked if a

particular inhibitor’s shape and chemical pattern (ColorCombo)

are able to find ‘‘subset_actives’’ (n = 20) from inactive compounds

(n = 971). The enrichment factor and ROC were calculated

(Table 3, Figure 6). It is clear from Table 3 that the quality of

validation of each query molecule show a mixed performance, for

example, some query molecules such as Nevirapine, DHBNH,

PD126338, Pyrimidinol 6, CID776870 and CID 5340811 have

good early enrichment, but their overall enrichment in screening is

found to be poor, which is reflected from the low ROC.

Figure 7. Shape and pharmacophore. The best query molecules from ROC validation are shown with hydrogen bonding donor (cyan), hydrogen-
bonding acceptors (red), rings (green) and negatively charged (blue) features.
doi:10.1371/journal.pone.0073478.g007
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Figure 8. FLAP Models. Panel A. Pseudomolecule (Pharmacophoric atoms) shown (left) in gray/blue/red spheres with aligned molecules (wire
representation), modified model 1 (right). GRID 3D molecule interaction fields (MIFs) of models are shown as follows: The green contours correspond
to the DRY probe (energy level 20.63 kcal/mol), blue contours correspond to the N1 probe (energy level 23.83 kcal/mol) and red contours
correspond to the O probe (energy level 21.50 kcal/mol). Panel B. Enrichment plot of screening for 20 known actives from 971 inactive compounds
from the PubChem database. Enrichment plot of model 1–4 (left), Enrichment plot of modified model 1–4 (right).
doi:10.1371/journal.pone.0073478.g008

Table 4. Comparison of various FLAP-pharmacophore models.

Model Alignment fitness Screening

Contributing Parameters AUC
Compounds in edited
Model Contributing Parameters AUC

1 0.95 Glob-Prod 0.69 19 Glob-Prod 0.76

2 0.94 H+N1+N 0.67 20 H 0.69

3 0.92 Glob-Prod 0.73 18 Glob-Sum 0.72

4 0.89 H 0.69 15 H+O+N1 0.75

5 0.85 H 0.69 15 H+N1+H 0.74

Note: H: Shape, O: Hydrogen bond acceptor, N1: Hydrogen bond donor, DRY: Hydrophobic, Glob-Prod: Global Product scores, Glob_Sum: Global Sum score, AUC: Area
under curve.
doi:10.1371/journal.pone.0073478.t004
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Compounds such as Efavirenz, Naphthyridine-7, Hydroisoquni-

noline-2/20, Pyrimidinol 4, NSC727447 and Capravirine showed

good enrichment throughout the screening process and the ROC

for these query molecules were significantly better (0.65–0.76).

Interestingly, Illimaquinone shows poor performance in the

beginning, but after 2% of the database screening, it seems to be

very good, which is reflected in the good ROC value (0.8).

Comparison of the best query molecules in terms of their shape

and pharmacophoric features is shown in Figure 7. Looking at

their color features, many of them have good agreement with

hypothesis 1 (AAAR) derived from the pharmacophore modeling.

Very recently, a compound DHBNH has been used as a query

molecule for screening of the NCI database [26] and successfully

found 4 micro molar inhibitors (2–22 mM). In the present

similarity validation, DHBNH has also been used as query

molecule, and shown good early enrichment. However the overall

performance is nearly random (ROC = 0.5). From the results

discussed from the ROCS validation, one can use the ROCS

method not only to find similar compounds, but after thorough

validation with a diverse set molecules, the query can potentially

be used to find diverse molecules that will show same bioactivity.

Fingerprints for ligands and proteins (FLAP) models
The FLAP program was used for molecular interaction fields

(MIFs)-based pharmacophore virtual screening. Here the sub-

set_active_lit dataset was used to develop pharmacophore and

subsequently applied for validation. FLAP generates possible

ensembles of conformations for each active molecule and keeps the

pharmacophorically similar conformers. Subsequently, the con-

formers were aligned based on the pruned tree search. The aligned

models were used to generate a pharmacophorically psuedomolecule,

which consist of pharmacophoric points. The quality of an aligned

model was assessed using the fitness score and AUC value. The

best 5 aligned models were analyzed. Each model uses different

sets of molecules for alignment and the fitness score ranges were

from 0.85 to 0.95 (Table 4, Figure 8). The best enrichment was

found from model 3 using the Glob-Prod score with an AUC of

0.73 and followed by models 1, 4, 5 which are based on Glob-Prod

and H (denotes shape) similarity parameters with an AUC of 0.69.

However, the quality of all models was improved significantly

when removing compounds that have less global similarity score

(also called the S-score) in every model, for instance, model 1 was

refined by removing 11 actives (having S-score less than 0.8) from

the alignment. The resulting pharmacophore model shows

relatively good enrichment using Glob-Prod parameters and

yielding an AUC of 0.76. In a similar manner, all the remaining

models were refined and showed to possess good enrichment using

various similarity parameters such as N1 (hydrogen bond

acceptors), O (hydrogen bond donor) and H (shape) score.

Figure 9. Comparison of the pharmacophore model with docking experiment. Panel A. First ranked docking poses superimposed with the
pharmacophore (Hypothesis 1, AAAR). Panel B. The first ranked docking pose is shown in the active site of RNase H and important residues are
highlighted, including magnesium ions (green sphere) and water (cyan sphere).
doi:10.1371/journal.pone.0073478.g009

Table 5. Approximate time scale for new predictions using the developed models.

Method Model Overall Accuracy No. Molecules (per hour) Efficacy vs. Efficiency

Pharmacophore Hypothesis 1/2 AAAR .10,000 Efficient

Docking 17 0.90 ,1000 Efficient

Docking 18 0.81 ,100 Efficacy

ROCS Queries ,0.70 .100,000 Efficient

FLAP 1 0.76 ,10,000 Efficacy

Machine Learning 4, 10 70–72% .20,000 Efficient

Note: The approximate time scale includes the dataset processing (such as 3D generation, energy minimization, descriptor calculation) and applications for new
predictions. Queries: molecules Naphthyridine_7, Effavirenz, Hydroxyisoquinoline_20, Pryimidinol_4, NSC 727447 and Ilimaquinone.
doi:10.1371/journal.pone.0073478.t005
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Comparison of the developed models
Comparison of the efficacy and efficiency of the developed

models needs to be done with caution since the methods used in

this study are conceptually different and possesses their own pros

and cons. However, from a virtual screening point of view the

models were compared in terms of how quickly they were able to

find known inhibitors from a large set of non-inhibitors. Among

the methods used to efficiently identify new RNase H inhibitors,

the best performances were achieved with structure-based models

such as docking (83–91%), followed by FLAP (76%), similarity

search (74–77%), and machine learning e.g., random forest (72%).

A summary of the time scale for new predictions based on the use

of the different methods is provided in Table 5. The docking

experiments produced the models (2, 5, 8, 11, 14, 17) with the

highest performance using standard precision (SP). Considering

the methods efficiency for new prediction, ligand based methods

such as similarity search and machine learning models are very

efficient, for instance setting up the machine learning based

models for new prediction would not take more than an hour for

approximately 20000 compounds (this process includes dataset set

preprocess, descriptors calculation and new prediction). However,

the efficacy of ML models is slightly less than the other methods.

Compounds such as NSC727447, Hydroxyisoquninoline_2/20,

Naphthyridine_7 and pyrimidinol_4/5 could be used as reference

molecules for new inhibitor search. From the ROCS experiment,

it was noted that these molecules potentially captures most of the

available known inhibitor structural information (ROC = 66–77%)

and observed very good early enrichment in the screening

experiment. From an efficacy point of view in virtual screening,

ROC and ML methods could be the methods of choice.

Alternatively, docking experiment with standard precision setup

(in Glide) could be used for high enrichment in the virtual

screening process. In addition docking experiments not only take

advantage over the other methods in terms of high enrichment,

but also proposes energetically favorable poses of the ligands in the

binding pocket of a protein and thereby predicts key interactions.

However, from an efficiency point of view docking predictions

might be slow for large chemical database searches. Although the

FLAP model predicts reasonably well (ROC = 0.76), the efficiency

could be slow as compared to the other models. It is important to

analyze if the ligand based pharmacophore model and the best

ranked docking pose of the validation compounds suggest similar

biological interactions or not. In order to compare this, the first

ranked docking pose (XP scoring) for all validation compounds

were superimposed with hypothesis 1 (AAAR). The result suggests

that the information derived from the ligand-based pharmaco-

phore model (AAAR) merely reflects the complementary receptor

as shown in Figure 9. As mentioned previously, hydrogen bonding

acceptors play an essential role in binding with metal chelation.

Conclusions

In the present study we have developed virtual screening models

from various conceptually different computational methods

(structure and ligand based) to efficiently identify HIV-1 RT

associated RNase Inhibitors. Models based on the docking

experiments are superior to other ligand-based models. Consid-

ering efficacy and efficiency, models trained using random forest

with combination of 2D-descriptors and structural fingerprints are

highly efficient methods, however, docking experiments correctly

predicts more than 80% and are relatively less time consuming,

and these could thus be useful for new prediction. In addition

protein-ligand key interaction information from docking could be

useful for lead optimization e.g. after virtual screening.

Moreover, the hypothesis generated from pharmacophore

modeling and molecular interaction fields from the FLAP

experiment illustrates the importance of hydrogen bonding

acceptors and hydrophobic features. These features are in good

agreement with the previously reported x-ray structures of HIV-1

RT associated RNase H. The pharmacophore model suggests that

the inter-distance between hydrogen bond acceptors play a key

role in inhibition of RNase H domain through metal chelation.

The observed distances between HB acceptors are consistent with

previous experimentally measured distances. As discussed, the

docking procedure remains the method of choice for virtual

screening; however, random forest and similarity search method

could also be used alternatively to efficiently screen large database

in order to establish new RNase H inhibitors for highly active

retroviral therapy.
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