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Identification 
of a differentiation‑related 
prognostic nomogram based 
on single‑cell RNA sequencing 
in clear cell renal cell carcinoma
Zhi‑Nan Xia1,6, Jing‑Gen Wu2,6, Wen‑Hao Yao1, Yu‑Yang Meng1, Wen‑Gang Jian1, 
Teng‑Da Wang1, Wei Xue1, Yi‑Peng Yu1, Li‑Cheng Cai1, Xing‑Yuan Wang1, Peng Zhang1, 
Zhi‑Yuan Li1, Hao Zhou3, Zhi‑Cheng Jiang3, Jia‑Yu Zhou4 & Cheng Zhang5*

Renal cell carcinoma (RCC) is a kidney cancer that is originated from the lined proximal convoluted 
tubule, and its major histological subtype is clear cell RCC (ccRCC). This study aimed to retrospectively 
analyze single-cell RNA sequencing (scRNA-seq) data from the Gene Expression Omnibus (GEO) 
database, to explore the correlation among the evolution of tumor microenvironment (TME), clinical 
outcomes, and potential immunotherapeutic responses in combination with bulk RNA-seq data from 
The Cancer Genome Atlas (TCGA) database, and to construct a differentiation-related genes (DRG)-
based prognostic risk signature (PRS) and a nomogram to predict the prognosis of ccRCC patients. 
First, scRNA-seq data of ccRCC samples were systematically analyzed, and three subsets with distinct 
differentiation trajectories were identified. Then, ccRCC samples from TCGA database were divided 
into four DRG-based molecular subtypes, and it was revealed that the molecular subtypes were 
significantly correlated with prognosis, clinicopathological features, TME, and the expression levels 
of immune checkpoint genes (ICGs). A DRG-based PRS was constructed, and it was an independent 
prognostic factor, which could well predict the prognosis of ccRCC patients. Finally, we constructed 
a prognostic nomogram based on the PRS and clinicopathological characteristics, which exhibited 
a high accuracy and a robust predictive performance. This study highlighted the significance of 
trajectory differentiation of ccRCC cells and TME evolution in predicting clinical outcomes and 
potential immunotherapeutic responses of ccRCC patients, and the nomogram provided an intuitive 
and accurate method for predicting the prognosis of such patients.
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RCC​	� Renal cell carcinoma
ROC	� Receiver operating characteristic
RS	� Risk score
scRNA-seq	� Single-cell RNA sequencing
TCGA​	� The Cancer Genome Atlas
TIIC	� Tumor-infiltrating immune cell
TME	� Tumor microenvironment
tSNE	� T-distributed stochastic neighbor embedding
WGCNA	� Weighted gene co-expression network analysis

Clear cell renal cell carcinoma (ccRCC) is a malignant tumor typically characterized as proximal renal tubular 
cells, and it is the major histological subtype of renal cell carcinoma (RCC), accounting for about 70% of RCC 
cases1. The incidence rate of RCC ranks third in urologic malignancies and ranks the eighth in all malignancies. 
About 400,000 RCC cases are diagnosed each year globally, which are related to over 175,000 deaths. In addi-
tion, the incidence and mortality rates of RCC have increased in recent decades2,3. More than 20% of ccRCC 
patients may relapse or have distant metastasis after radical nephrectomy, and ccRCC is resistant to radiotherapy 
and chemotherapy. Although remarkable advances have been made in the research of targeted therapy and 
immunotherapy, only a limited number of clinical patients have been successfully treated4. At present, there are 
no sufficiently robust molecular biomarkers that can accurately predict the prognosis of ccRCC patients and 
guide clinical treatment. Hence, it is highly essential to conduct in-depth research at the molecular level to more 
accurately estimate or predict prognosis of ccRCC patients.

Intra-tumor heterogeneity (ITH) defines the distinct genetic alterations and phenotypes between cancer cells 
within the same primary tumor nodule. It has been regarded as a major driver of tumor progression and adapta-
tion, with a notable importance for validation of biomarkers and making reliable clinical decisions5. Moreover, 
a series of studies showed the deterministic nature of clonal evolution with the progression of tumors, and the 
evolutionary landscape in ccRCC was dominated by ITH6–10. Meanwhile, with the change of tumor genome, the 
tumor microenvironment (TME) may consequently change, and vice versa11. The transformation of content and 
properties of TME caused by the coevolution of tumor and non-tumor cells may have different effects on the 
prognosis and treatment of RCC​12,13. Therefore, it is extremely essential to concentrate on a precise comprehen-
sion of ITH and evolution of TME to formulate further effective treatment strategies and reliably estimate the 
prognosis of ccRCC patients.

Bulk RNA sequencing (RNA-seq) technology has provided promising insights into the specific mutations 
or the average expression level of mixed cell populations, while it could not reveal the gene expression status of 
individual cells14. The presentation of single-cell RNA-seq (scRNA-seq) has provided a unique opportunity for a 
comprehensive description of genetic complexity at the cellular level, which has contributed to our understand-
ing of ITH and evolution of TME15. The current study aimed to retrospectively analyze scRNA-seq data from 
the Gene Expression Omnibus (GEO) database, and to explore the correlation among the evolution of TME, 
clinical outcomes, and potential immunotherapeutic responses in combination with bulk RNA-seq data from 
The Cancer Genome Atlas (TCGA) database. Besides, we constructed a prognostic risk signature (PRS) and a 
nomogram to predict the prognosis of ccRCC patients.

Results
Quality control and filtering of scRNA‑seq data.  In our study, 17,665 scRNA-seq data from 7 ccRCC 
samples were acquired from GSE159115 (Fig. 1A,B). Mitochondrial gene expression is a classical quality control 
index of single-cell analysis. The high expression level of mitochondrial gene may indicate poor sample quality, 
which means a large number of cell apoptosis or lysis. We performed quality control and abandoned two sample 
data (matrix 26, 28), because their mitochondrial gene contents were extremely large (Fig. 1C). After our filter-
ing, 15,332 scRNA-seq data from 5 ccRCC samples were retrieved for further research. Sequencing depth was 
negatively correlated with mitochondrial content (Fig. 1D), and it was positively correlated with total intracel-
lular sequences (Fig. 1E). A total of 22,133 genes were fluctuated in all samples, and the first 1,500 genes with the 
most obvious fluctuations were screened for the additional research (Fig. 1F).

Identification of ccRCC subsets by single‑cell trajectory analysis.  To reduce the dimensionality of 
scRNA-seq data preliminarily, principal component analysis (PCA) was applied (Fig. 2A). The top 15 principal 
components (PCs) with significant differences (P < 0.0001) were selected for further analysis. Next, we aggre-
gated 15,332 ccRCC data into 24 clusters according to the t-distributed stochastic neighbor embedding (tSNE) 
algorithm (Fig. 2B), and a total of 1,292 marker genes in each cluster were identified on the heatmap (Fig. 2C). 
Accordingly, 24 clusters were annotated as 9 types of cells, and the results showed that abundant TME existed in 
ccRCC samples (Fig. 2D). The results of trajectory and pseudotime analysis demonstrated that there were three 
branches in differentiated cells that changed over pseudotime (Fig. 2E). The core of pseudotime analysis was 
an unsupervised machine learning algorithm, which could infer the time and sequence of cell differentiation 
according to the single-cell expression data16. In addition, the results showed the relationship among cell trajec-
tories, cell types, and clusters, which could infer the changes of TME by the corresponding cell type and time 
sequence (Fig. 2F,G). It was concluded that the most primitive components in TME are various immune cells, in 
which the number of stem-like cells subsequently increases. The stem-like cells seemed to be the precursors of 
tumor cells16. With the extension of time trajectory, the proportion of tumor cells showed a gradual increasing 
trend, which was in line with the law of tumor development.
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GO and KEGG enrichment analyses of differentiation‑related genes (DRGs) in three sub‑
sets.  We identified differentially expressed genes of each trajectory with a distinct differentiation, which were 
considered as DRGs. To determine the functions of DRGs in the three subsets, the Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway enrichment and Gene Ontology (GO) analyses were conducted. GO functional 
analysis indicated enrichment of DRGs in the three subsets mainly included response to interferon − gamma, 
MHC protein complex, and antigen binding pathway. Respectively, DRGs in subset I were mainly enriched in 
antigen processing and presentation and chemotaxis of various immune cells, those in subset II were involved in 
response to toxic substances and detoxification, and those in subset III were related to extracellular organization, 
migration of immune cells, and regulation of ERK1 and ERK2 cascades (Fig. 3A–C). Furthermore, the pathways 
involved in antigen processing and presentation, chemokine signaling pathway, differentiation of helper T cells, 
and some immune-related and autoimmune diseases were identified in the three subsets by the KEGG pathway 
enrichment analysis (Fig. 3D–F).

Identification of DRG‑based molecular subtypes in ccRCC samples from TCGA‑KIRC data‑
base.  The clinical data and transcriptome of 539 ccRCC samples were harvested from TCGA-KIRC data-
base, and DRG-based consensus cluster analysis was conducted. Four molecular subtypes in ccRCC samples 
were identified at a clustering threshold of Kmax equal to 9, based on the DRG intersection of three branches 
(Fig. 4A–C). The Kaplan–Meier survival plot confirmed the significant correlation between molecular subtypes 

Figure 1.   Quality control and filtering of scRNA-seq data. (A) The number of genes detected in 7 ccRCC 
samples. (B) Sequencing depth in each sample. (C) Content of mitochondria genes in each sample. High levels 
meant low cell activity. (D) A negative correlation between sequencing depth and mitochondrial gene content 
in 5 retrieved samples (R = −0.1). (E) A positive correlation between sequencing depth and total intracellular 
sequences in 5 retrieved samples (R = 0.93). (F) Volcano plot illustrated genes fluctuating in all samples. The first 
1,500 genes marked in red had high variations, and the names of the top 10 genes are presented. Our scRNA-seq 
data is from GEO database (https://​www.​ncbi.​nlm.​nih.​gov/​geo/​query/​acc.​cgi?​acc=​GSE15​9115/).

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE159115/
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and survival data, and the curve illustrated that subtype II (C2) had the longest overall survival (OS), followed 
by subtype I (C1), subtype III (C3), and subtype IV (C4) (Fig. 4D). To determine whether molecular subtypes 
are dependent on clinicopathological features, we performed clinical correlation analyses using the Chi-square 
test. As shown in Fig. 4G–J, molecular subtypes were related to the Fuhrman’s grades, clinical stage, tumor size 
(TS), and lymph node metastasis (N). The number of patients with high Fuhrman’s grades increased from C1 
to C4, and similar to the survival curve, clinical stage and TS had the highest association with C2, followed by 
C1, C3, and C4. Nevertheless, molecular subtypes were not significantly associated with age, gender, and distant 
metastasis (M) (Fig. 4E, F, K).

Figure 2.   Identification of ccRCC subsets by the single-cell trajectory analysis. (A) PCA of scRNA-seq data for 
preliminary dimensionality reduction. (B) tSNE was used for clustering of ccRCC cells. (C) Heatmap of marker 
genes in each cluster. Yellow represents upregulated genes and purple indicates downregulated genes. (D) Cell-
type annotation of clusters. 24 clusters were divided into 9 cell types according to marker genes. (E) Single-cell 
pseudotime analysis of three subsets. Dark blue denotes an earlier time. (F, G) Trajectory analysis of clusters and 
cell types. The dots of different colors represented the corresponding clusters or cell types, which were arranged 
on the pseudotime branches.
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Analysis of TME and TIICs in four molecular subtypes.  To evaluate immune/stromal components 
and tumor purity for each molecular subtype, the ESTIMATE algorithm was employed. A higher ImmuneS-
core/StromalScore indicated a greater number of immune/stromal components in TME, and the sum of these 
two scores was indicated by the ESTIMATEScore (representing a comprehensive scale for the couple of com-
ponents in TME). The higher the ESTIMATEScore, the higher the non-tumor component, and the lower the 
corresponding tumor purity. Except for C3 that had the lowest number of immune/stromal components, the 
number of immune/stromal components increased from C1 to C4 (Fig. 5A–C). Correspondingly, contrary to 
the above-mentioned results, the tumor purity decreased from C1 to C4, except for C3 that had the highest level 
of tumor purity (Fig. 5D). Using the CIBERSORT algorithm, we performed further analyses for verification of 
the correlation of molecular subtypes with the TME. The contents of 22 tumor-infiltrating immune cells (TIICs) 
in each sample were displayed according to four molecular subtypes (Fig. 5E). Differential expression analysis of 
TIICs demonstrated that the differences in 11 immune cells were statistically significant among four molecular 

Figure 3.   GO and KEGG enrichment analyses of DRGs in three subsets. (A–C) GO functional analysis of 
DRGs in subsets I-III. (D–F) KEGG pathway enrichment analysis of DRGs in subsets I-III.
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subtypes. The M0 macrophages and CD4 memory T cells were significantly activated, and the higher infiltration 
degree of these cells was correlated with a worse OS. Among the statistically significant immune cells, CD8 + T 
cells were the most abundant, and a higher infiltration was associated with a longer OS, except for C3 subtype 
(Fig. 5F). In the study of TME, the results of C3 subtype significantly differed from other subtypes. This may 
be related to the fact that the sample size of C3 subtype was relatively smaller, reducing the power of statistical 
analysis.

Comprehensive analysis of ICGs in four molecular subtypes.  We obtained 39 confirmed immune 
checkpoint genes (ICGs) from previous studies and analyzed their differences among the four molecular 
subtypes17–26. There was a significant difference in almost all ICGs (Fig. 6A) among those subtypes. Survival 
analysis was performed to find out the correlation between the expression levels of these ICGs and the prog-
nosis. According to the median expression level of these ICGs, the samples were divided into high-expression 

Figure 4.   Identification of DRG-based molecular subtypes and clinical analyses. (A–C) Four molecular 
subtypes were identified at a clustering threshold of Kmax = 9. (D) The Kaplan–Meier survival plot for four 
molecular subtypes (P < 0.001). (E–K) Proportions of clinicopathological features (age, gender, grade, stage and 
TNM) among four molecular subtypes. P < 0.05 was considered statistically significant. The bulk RNA-seq data 
and clinicopathological data of ccRCC samples were  accessed from TCGA data base (https://​portal.​gdc.​cancer.​
gov/).

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
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group and low-expression group, and Kaplan–Meier plots showed that the expression levels of CD80, CTLA4, 
FGL1, IFNG, IL23A, LAG3, LGALS9, PDCD1, PVR, TNFRSF18, and YTHDF1 were associated with a short OS 
(Fig. 6B), while B2M, CD274, IL12B, and JAK1 predicted a longer OS (Fig. 6C). These results not only provided a 
reasonable molecular basis for different levels of prognosis in the four subtypes, but also could potentially guide 
immunotherapy.

Identification, evaluation, and validation of a prognostic risk signature (PRS).  We enrolled 149 
DRGs, and three modules were assessed by weighted gene co-expression network analysis (WGCNA), of which 
one module (MEblue) was related to both survival and the Fuhrman’s grade of ccRCC samples (Fig.  7A,B). 
We abandoned the grey module for further research, because the genes of gray module were discrete and not 
co-expressed, representing genes that did not belong to any module. Then, 51 prognostic DRGs were further 
screened by univariate and multivariate logistic regression analyses (Fig. 7C). We divided TCGA ccRCC sam-
ples into the train cohort and the test cohort with a ratio of 7:3, and the training cohort was used to build the 
signature and the test cohort was used to test the effect of it. Finally, a PRS, consisting of 16 DRGs, was identified 
by multivariate Cox analysis, and the risk score (RS) of each sample was calculated according to the relative coef-
ficient and gene expression level (Fig. 7D).

Figure 5.   Comprehensive analysis of TME and TIICs in four molecular subtypes. (A–D) ImmuneScore, 
StromalScore, ESTIMATEScore, and tumor purity in four molecular subtypes. (E) The contents of 22 TIICs in 
each sample are displayed according to four molecular subtypes. (F) Differential expression analysis of TIICs in 
four molecular subtypes. (*P < 0.05, **P < 0.01, ***P < 0.001, ns: not significant).
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RS = (0.50264 * expression level of PLPP1) + (0.47139 * expression level of PLAUR) + (−0.28510 * expression 
level of TIMP3) + (−0.46303 * expression level of EMCN) + (−0.61926 * expression level of PLVAP) + (0.39575 
* expression level of VWF) + (0.57015 * expression level of RGS5) + (−0.31388 * expression level of 
CXCL3) + (0.28063 * expression level of CXCL2) + (0.51412 * expression level of GSN) + (−0.31358 * expression 
level of BBOX1) + (0.13104 * expression level of MALAT1) + (−0.20539 * expression level of FXYD2) + (−0.62738 
* expression level of A2M) + (0.24979 * expression level of MIOX) + (−0.35427 * expression level of APP).

We divided the two cohorts into low-risk group and high-risk group according to the median RS. The OS in 
the low-risk group was significantly longer than that in the high-risk group in the two cohorts (Fig. 7E, F). In 
addition, the values of area under the receiver operating characteristic (ROC) curve for predicting 1-, 3-, and 
5-year survival in the train cohort were 0.775, 0.782, and 0.782, respectively, and 0.878, 0.721, and 0.732 in the 
test cohort, respectively (Fig. 7G,H). In the train cohort, the results of univariate analysis revealed that Fuhr-
man’s grade, TNM stage, and RS could independently affect the prognosis (Fig. 7I). The results of multivariate 
logistic regression analysis demonstrated that TNM stage, and RS were independent prognostic factors for 
ccRCC patients (Fig. 7J). Since the Hazard ratio of age was approximately equal to 1, although the p value was 
statistically significant, we did not include it into independent prognostic factors. The increased RS and these 
clinicopathological characteristics were associated with a poor prognosis.

Correlation between RS and immune characteristics.  To explore the relationship between TME 
and RS, we divided samples of the training cohort into two groups according to the median of RS. As with 
the method described earlier, we calculated the immune scores, the stromal scores, the ESTIMATE scores and 
tumor purity, and found that the group with high RS had higher ImmuneScores, while StromalScores were not 
related to the grouping according to RS (Fig.  8A,B). Correspondingly, the ESTIMATEScores were higher in 
the high-risk group and the tumor purity was higher in the low-risk group (Fig. 8C,D). Therefore, we inferred 
that ccRCC patients with high RS had a high level of immune infiltration in TME. Then we implemented the 
correlation analysis to verify the association between 11 classic ICGs and RS. Each intersection represented the 
association between the two ICGs or RS, which was expressed by the color and size of the circle (Fig. 8E). There 
was a positive correlation between high-risk patients and CD80, CTLA4 and LAG3, while HLA-G was negatively 
correlated with high-risk patients. Spearman’ s rank correlation test was used to show the relationship between 
22 TIICs mentioned in Fig. 5E and RS, and we found that high proportions of M0 macrophages, neutrophils, 
activated CD4 memory T cells and Tregs would increase the risk of an unfavorable prognosis, while high propor-
tion of resting mast cells would reduce it (Fig. 8F–J).

Establishment and evaluation of a nomogram for predicting survival of ccRCC patients.  Not 
only “age” and “gender” were not independent risk factors for ccRCC according to the results of multivariate 

Figure 6.   Comprehensive analysis of ICGs in four molecular subtypes. (A) Differential expression analysis 
of 39 ICGs. (B) Kaplan–Meier survival plots of ICGs with a poor prognosis. (C) Kaplan–Meier survival plots 
of ICGs with a promising prognosis. The blue curve represents the low-expression group, and the red curve 
represents the high-expression group.
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logistic regression analysis in both training and test cohort, but also they shared small contributions to the total 
points in the established nomogram model. Therefore, we did not include age and gender in the construction of 
ultimate nomogram. Three prognostic factors, including RS and two clinicopathological characteristics (Fuhr-
man’s grade, and TNM stage) were combined to establish a nomogram for predicting 1-, 3-, and 5-year survival 
using the data of the training cohort (Fig. 9A). The values of area under the ROC curves for predicting 1-, 3-, 
and 5-year survival were 0.793, 0.816, and 0.808, respectively (Fig. 9B). The calibration curves were in a good 
agreement with the recorded values (Fig. 9C–E).

Figure 7.   Identification, evaluation, and validation of a prognostic risk signature. (A,B) Three modules were 
accessed with power = 7 based on WGCNA, and the blue module was chosen for further analysis (P (MEblue-
futime) < 0.05, P (MEblue-grade) < 0.05). (C) A forest plot illustrating the results of univariate analysis of DRGs. 
(D) The genes used to establish the model and their corresponding coefficients. (E, F) Kaplan–Meier survival 
plot displaying the results of survival analysis in the high-risk and the low-risk groups in the train and the test 
cohorts (the left-sided plot belongs to the train cohort and the right-sided one belongs to the test cohort). (G, H) 
The values of area under the ROC curves for predicting 1-, 3-, and 5-year survival in the train and test cohorts. 
(the left-sided plot belongs to the train cohort and the right-sided one belongs to the test cohort). (I) Univariate 
analysis of RS and clinicopathological characteristics. (J) Multivariate logistic regression analysis of RS and 
clinicopathological characteristics.
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Discussion
RCC is the third most common malignancy of urinary system and has a substantial mortality rate. Although a 
substantial progress has been made in the therapy of RCC, clinical outcomes of RCC patients are still unsatisfac-
tory. Biomarkers that could accurately predict the prognosis and guide the therapy of RCC have not been fully 
identified and applied clinically.

To date, scholars have mainly employed RNA-seq to detect all RNA transcripts in samples for gene expres-
sion analysis. However, the objects of sequencing are often tissue samples with mixed cells or single cell lines. 
Therefore, scRNA-seq was proposed, and it has been extensively applied to reveal cell heterogeneity in various 
cell populations27,28. scRNA-seq data of ccRCC patients were obtained from GEO database (GSE159115) and 
combined with the RNA-seq data from TCGA database to accomplish our research.

Multi-region sequencing of ccRCC samples confirmed a substantial ITH, which indicated that sub-clones har-
boring distinct driver mutations and somatic copy number aberrations were present within primary tumors. Phy-
logenetic reconstruction revealed branched evolutionary tumor growth, demonstrating that sub-clones evolved 

Figure 8.   Correlation between RS and immune characteristics. (A) The relevance between high/low risk 
groups and the immune scores, (B) the stromal scores, (C) the ESTIMATE scores and (D) tumor purity. (E) 
The correlation between the RS and significant ICGs. Red circles represent positive correlation and blue circles 
represent negative correlation. The strength of the correlation is determined by the size of the circle. (F–G) 
The scatterplots showed the correlation among five types of TIIC and the RS with P < 0.05 by Spearman’s rank 
correlation test. R > 0 indicated that the two were positively correlated, and vice versa. (*P < 0.05, **P < 0.01, 
***P < 0.001).
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with tumor progression29–31. In solid tumors, various immune and stromal cells in TME coevolve with the tumor 
progression, and the evolution of TME may influence the prognosis and treatment of tumors11–13. Consequently, 
trajectory-based differential expression analysis can assist scholars to better understand the evolution of ITH 
and TME. In the present study, we identified trajectories with distinct differentiation states according to the 
scRNA-seq data. Pseudotime analysis is a trajectory inference method from scRNA-seq data, which sorts cells 
along the trajectory according to the similarity of cell expression patterns, and determines the lineage structure 
by identifying branching events16. Using marker genes, 9 types of cells, including tumor and non-tumor cells, 
were identified using trajectory-based differential expression analysis, which enabled us to intuitively realize 
the testimony of TME evolution in ccRCC by combining pseudotime analysis and the location of different cell 
types over time.

The conventional subtypes of RCC can be divided into ccRCC, papillaryRCC (pRCC), chromophobe RCC 
(chRCC) and other different histological subtypes according to the location and origin of cells32. Molecular 
subtyping is to subdivide each histological subtype according to its transcriptional and gene alteration profiles. 
Identification of molecular cancer subtypes can be used to optimize diagnostic and treatment strategies, and pro-
mote the development of precision medicine. For instance, Motzer et al.33 performed an integrative multi-omics 
analysis on 823 RCC samples in a randomized clinical trial, and 7 molecular subsets with distinct angiogenesis, 
immune, cell-cycle, metabolism, and stromal programs were identified by unsupervised analysis of transcrip-
tomic data. The molecular subsets were associated with differential clinical outcomes to angiogenesis blockade 
alone or with a checkpoint inhibitor. Other molecular subtypes of RCC have also been reported34,35, however 
they all have certain limitations. In the present study, we divided ccRCC samples from TCGA database into four 
DRG-based molecular subtypes, and OS, clinicopathological features, and the expression levels of ICGs were 
significantly correlated with different molecular subtypes. ccRCC is a historically immunogenic cancer, and it has 
been found that TIICs in TME act as a potential indicator of prognosis36,37, and compositions of TIICs may influ-
ence immunotherapeutic interventions38. Moreover, we identified 39 ICGs that could be targeted with different 
immunotherapeutic methods according to molecular subtypes, such as PD-L1 inhibitors and CTLA-4 inhibitors.

Because the OS of patients with different molecular subtypes can be well distinguished, we used DRGs to 
construct a 16-gene PRS to predict prognosis of ccRCC patients. To the best of our knowledge, this is the first 
DRG-based signature constructed by multivariate Cox regression analysis. Furthermore, a nomogram combin-
ing DRG-based RS and prognostic clinicopathological variables was constructed to provide a visual method for 

Figure 9.   Establishment and evaluation of a prognostic nomogram. (A) A nomogram for predicting prognosis 
of patients with ccRCC. (B) The values of area under the ROC curves for predicting 1-, 3-, and 5-year survival. 
(C–E) 1-, 3-, and 5-year survival calibration curves of the nomogram.
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predicting prognosis of ccRCC patients. Using clinical information alone could not predict the prognosis well, 
but adding it to RS signature made our model more accurate and effective. Despite a high accuracy and a robust 
predictive performance of the nomogram, it was constructed and validated based on retrospective data from 
TCGA and GEO databases, and there were additional prognosis-related clinicopathological variables that could 
not be accessed from public databases. And according to GSE159115, samples here were all partial nephrectomy 
samples, which meant these are early tumors. Due to the scarcity of the data of scRNA-seq in GEO database, 
we couldn’t get the single-cell sequencing results of advanced and metastatic RCC samples. This was also the 
limitation of our research. Therefore, further large-scale prospective clinical studies are required to supplement 
and refine the nomogram and evaluate its effectiveness and practicability.

Conclusions
This study identified three ccRCC cell trajectories with different differentiation states based on scRNA-seq data, 
and it was confirmed that DRG-based molecular typing can accurately predict OS, clinicopathological features, 
TME, immune infiltration status, and expression levels of ICGs. The nomogram combined with RS based on 
DRGs and clinicopathological variables provided an intuitive and accurate method for predicting the prognosis 
of ccRCC patients. In conclusion, this study emphasized the significance of trajectory differentiation of ccRCC 
cells and TME evolution in predicting clinical outcomes and potential immunotherapeutic responses of ccRCC 
patients.

Methods
Data acquisition and processing.  A total of 17,665 scRNA-seq data from 7 ccRCC samples were obtained 
from the GSE159115 dataset in the GEO database (https://​www.​ncbi.​nlm.​nih.​gov/​geo/). Then, the “Percent-
ageFeatureSet” function was used to calculate the percentage of mitochondrial genes, and two samples were 
excluded because of an elevated number of mitochondrial genes, which indicated an insufficient cell viability. 
After data filtering, scRNA-seq data were normalized by the LogNormalize method, and the top 1,500 genes with 
highly variable features were identified for further analysis.

Clinical data and bulk RNA-seq data of 539 patients with ccRCC were obtained from TCGA database (https://​
portal.​gdc.​cancer.​gov/), and samples with unclear clinicopathological characteristics were removed.

The R 4.0.3 programming language (https://​www.r-​proje​ct.​org/) was employed to perform all the analyses 
in our study.

The types of patients and number in each database had been presented with the standard clinicopathological 
distribution (Supplementary Tables 1 and 2).

Dimensionality reduction and cell annotation.  Dimensions with significant separation were screened 
out through PCA, and the dimensions of the top 15 PCs were reduced by the tSNE algorithm to obtain principal 
clusters. Marker genes in each cluster were acquired and illustrated in the heatmap under the condition of log2 
[fold-change (FC)] > 2 and false discovery rate (FDR) < 0.05 by the “pheatmap” package. Clusters were annotated 
into 9 types of cells based on marker genes by the “SingleR” package.

Single‑cell trajectory analysis.  The single-cell trajectory analysis was undertaken by the “Monocle” pack-
age, and differentially expressed genes of each trajectory with a distinct differentiation were designated as DRGs.

GO and KEGG enrichment analyses.  GO and KEGG pathway enrichment analyses of DRGs in the three 
subsets were conducted by the “clusterProfiler”, “enrichplot”, “org.Hs.eg.db”, and “ggplot2” packages. P < 0.05 was 
considered statistically significant.

DRG‑based molecular subtypes.  The ‘ConsensusClusterPlus’ package was used for consensus clustering 
to quantify the number of unsupervised subtypes. The K-means algorithm and cumulative distribution function 
(CDF) were utilized to determine the optimal number of subtypes, and 50 iterations with Kmax equal to 9 were 
considered for stable subtypes.

Survival and differential expression analyses of subtypes using clinicopathological fea‑
tures.  The Kaplan–Meier plotter was used to plot the survival curve, and the proportion of clinicopathologi-
cal features in each molecular subtype was drawn by the “ggplot2” package. P < 0.05 was considered statistically 
significant.

Analysis of TME, TIICs, and ICGs.  The ESTIMATE algorithm was employed to calculate the ratio of 
immune/stromal component and tumor purity in TME for each molecular subtype. The CIBERSORT algo-
rithm was used to estimate contents of 22 TIICs in each sample. Besides, 39 validated ICGs were summarized 
and examined by differential expression analysis, and then, the survival analysis was carried out to investigate 
prognosis.

Construction of WGCNA and correlation analysis.  The WGCNA was constructed using the gene 
expression data. Clinically meaningful modules were identified using Pearson correlation analysis to identify 
correlations between modules and clinical features, and key modules related to differentiation of ccRCC cells 
were selected for subsequent analysis.

https://www.ncbi.nlm.nih.gov/geo/
https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://www.r-project.org/
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Generation and validation of the PRS.  Herein, 70% of TCGA ccRCC samples were taken as the train-
ing set, and the 30% were considered as the validation set for generation and validation of the PRS. The DRGs in 
key modules of Weighted Gene Correlation Network Analysis (WCGNA) were analyzed by univariate analysis 
(P < 0.001), and the remaining DRGs were analyzed by multivariate logistic regression analysis to generate a 
DRG-based PRS. The RS was calculated as follows:

Furthermore, we conducted the Kaplan–Meier analysis, ROC curve analysis, and univariate and multivariate 
logistic regression analyses to verify the accuracy of the classifier.

Construction and validation of the prognostic nomogram.  Prognostic variables were combined 
into the nomogram to predict 1-, 3-, and 5-year survival. ROC and calibration curves were plotted to evaluate 
the predictive performance and accuracy of the nomogram.

Data availability
The scRNA-seq data of ccRCC samples were accessed from GEO database (GSE159115, https://​www.​ncbi.​nlm.​
nih.​gov/​geo/). The bulk RNA-seq data of ccRCC samples were accessed from TCGA data base (https://​portal.​gdc.​
cancer.​gov/). Data will be available from the corresponding author upon reasonable request. All the procedures 
were performed in accordance with the relevant guidelines and regulations.
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