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Abstract. Lung cancer is the leading cause of cancer‑associ-
ated mortality worldwide. The aim of the present study was 
to identify the differentially expressed genes (DEGs) and 
enriched pathways in lung cancer by bioinformatics analysis, 
and to provide potential targets for diagnosis and treatment. 
Valid microarray data of 31 pairs of lung cancer tissues and 
matched normal samples (GSE19804) were obtained from the 
Gene Expression Omnibus database. Significance analysis of 
the gene expression profile was used to identify DEGs between 
cancer tissues and normal tissues, and a total of 1,970 DEGs, 
which were significantly enriched in biological processes, 
were screened. Through the Gene Ontology function and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway 
enrichment analysis, 77 KEGG pathways associated with lung 
cancer were identified, among which the Toll‑like receptor 
pathway was observed to be important. Protein‑protein 
interaction network analysis extracted 1,770  nodes and 
10,667 edges, and identified 10 genes with key roles in lung 
cancer with highest degrees, hub centrality and betweenness. 
Additionally, the module analysis of protein‑protein interac-
tions revealed that ‘chemokine signaling pathway’, ‘cell cycle’ 
and ‘pathways in cancer’ had a close association with lung 
cancer. In conclusion, the identified DEGs, particularly the 
hub genes, strengthen the understanding of the development 

and progression of lung cancer, and certain genes (including 
advanced glycosylation end‑product specific receptor and 
epidermal growth factor receptor) may be used as candidate 
target molecules to diagnose, monitor and treat lung cancer.

Introduction

Lung cancer is one of the most frequent malignancies world-
wide and is the most common cause of global cancer‑associated 
mortality, with over a million succumbing each year  (1). 
Global mortality from lung cancer increased from 3.5 million 
in 1990 to 4.2 million in 2015 (2) and it is estimated that there 
will be 2.1 million new lung cancer cases and 1.8 million 
deaths in 2018, representing close to 1 in 5 (18.4%) cases of 
cancer‑associated mortality (3). The five‑year survival rate for 
lung cancer patients is very low. This may be attributed to the 
lack of effective therapeutic methods and the difficulty in early 
diagnosis for lung cancer (4). Lung cancer is considered to be 
a heterogeneous disease and a number of factors including 
genetic mutations, environmental factors and individual 
habits can contribute to cancer occurrence, progression and 
metastasis (5). A number of genes and cellular pathways have 
been reported to participate in these processes (6,7). Thus, 
understanding the precise molecular mechanisms underlying 
lung cancer progression is important for the development of 
diagnostic and therapeutic strategies.

Microarray has increasingly become a promising tool 
in studying medical oncology (8). A previous study on gene 
expression profiling in cancer used microarray technology (9), 
but only a few of these studies have been conducted on lung 
cancer (10). In addition, comparative analysis of the differen-
tially expressed genes (DEGs) remains relatively limited (10), 
and a reliable biomarker profile discriminating cancer from 
normal tissues remains to be identified. The expression changes 
of genes in the development and progression of lung cancer 
require further analysis. In addition, the interactions among 
the identified DEGs, particularly the important signaling path-
ways and the interaction networks, should be elucidated.

In the present study, original data (GSE19804) were 
downloaded from Gene Expression Omnibus (GEO; www.
ncbi.nlm.nih.gov/geo), which is a hub for the archiving of 
microarray data and their retrieval. Following the elimina-
tion of mismatched chips, the DEGs between lung cancer 
tissues and normal tissues were identified by comparing gene 
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expression profiles. Subsequently, the DEGs were screened 
using Gene‑Spring software for Gene Ontology (GO) and 
pathway enrichment analysis. By investigating their hub 
nodes and modules using a protein‑protein interaction (PPI) 
network, the present study aimed to further understand the 
molecular mechanisms for lung cancer development and to 
identify potential candidate biomarkers for diagnosis, thera-
peutic targets and prognosis. At the same time, the present 
study focused on Toll‑like receptor (TLR) pathways, which 
exert important immune regulatory functions and have been 
implicated in tumor progression (11,12).

Materials and methods

Microarray data. The gene expression profile GSE19804, 
a comprehensive analysis of the molecular signature of 
non‑smoking patients with non‑small cell lung cancer 
(NSCLC), were obtained from the GEO database. The 
majority of the tumors were adenocarcinomas (93%), and 
78% of the samples were in stage I or II. Gene expression 
profile analysis was performed based on the GPL570 platform 
(HG‑U133‑Plus‑2; Affymetrix Human Genome U133 Plus 2.0 
Array) by Lu et al (13) and then subjected to bioinformatics 
analysis. There were 120 chips in this dataset. Following 
quality control by signal strength distribution normalization, 
correlation analysis and principal component analysis in 
Agilent Gene‑Spring GX v.11.5 (14), the mismatched ones 
were eliminated and the remaining 31 pairs of cancerous and 
normal tissues were used for subsequent analysis.

Identification of DEGs. The raw data used for the analysis 
were pre‑processed using the Affy package (version 1.48.0; 
bioconductor.org/packages/release/bioc/html/affy.html) in R 
language (15). Hierarchical clustering analysis was applied 
to categorize the data into two groups of different expres-
sion patterns. Significance analysis by Student's t‑test and 
fold‑change (FC) in the expression of genes between each pair 
of cancerous and normal tissues were jointly used to identify 
DEGs. Then, the Benjamini and Hochberg method (16) was 
used to calculate the adjusted P‑values [the false discovery rate 
(FDR)]. The criterion of statistical significance was FDR<0.05 
and |Log2 (FC)|>1.

GO and pathway enrichment analysis of DEGs. The Database 
for Annotation, Visualization and Integrated Discovery data-
base (DAVID; version 6.8; david.ncifcrf.gov/), an essential 
tool for systematically extracting biological information from 
numerous genes (17), was used to perform GO (www.geneon-
tology.org) enrichment and Kyoto Encyclopedia of Genes and 
Genomes (KEGG; www.genome.jp/) pathway analysis; P<0.05 
was considered to indicate a statistically significant difference.

Integration of PPI network and screening of modules. The 
Search Tool for the Retrieval of Interacting Genes (STRING, 
version 10.0; string‑db.org/) (18), covering 9,643,763 proteins 
from 2,031  organisms and 932,553,897  interactions, was 
used to retrieve predicted PPIs. All associations obtained in 
STRING were provided with a confidence score. Only experi-
mentally validated interactions with a combined score >0.4 
were selected to construct the PPI network using Cytoscape 

software (version 3.4.0; www.cytoscape.org/)  (19). The 
Molecular Complex Detection (MCODE) plugin in Cytoscape 
was utilized to screen the modules of the PPI network, 
Furthermore, functional and pathway enrichment analyses 
were performed on the DEGs in the modules. P<0.05 was 
considered to indicate a statistically significant difference.

Results

Identification of DEGs. A total of 120 chips were acquired 
from the GEO datasets. Subsequent to quality control (signal 
strength distribution normalization, correlation analysis and 
principal component analysis in Gene‑Spring), 62 chips were 
selected, including data from 31 lung cancer tissues and their 
matched normal lung tissues. The Pearson's correlation (signal) 
map (Fig. 1A) and Relative Signal Box Plot map (Fig. 1B) of 
the pre‑treated data presented the performance of normaliza-
tion. The series from each chip were analyzed separately and 
the DEGs lists were identified. Information on the expres-
sion levels of 54,675 genes was obtained using the GPL570 
platform. A total of 1,970 DEGs (cancer tissues vs. normal 
tissues), including 534 up‑regulated and 1,436 down‑regulated 
genes (data not shown), were selected based on the criteria of 
FDR<0.05 and |Log2 (FC)|>1 (Fig. 1C). The statistical metrics 
for key DEGs was shown in Table I.

Hierarchical clustering analysis of DEGs. Hierarchical 
clustering analysis was performed for DEGs following the 
extraction of the expression values. As shown in Fig. 2, the 
62 specimens were divided into the lung cancer group and the 
normal group. The volcano plot demonstrated that compared 
with normal tissues, there were more downregulated genes 
than upregulated genes in lung cancer tissues. These results 
indicated that the DEGs possessed distinct expression patterns 
in tumors and normal tissues.

GO term enrichment analysis. To investigate the function 
of the DEGs, GO term enrichment analysis was conducted 
with the online software DAVID. In general, the DEGs were 
significantly enriched in biological processes (BP), molecular 
function (MF) and cellular component (CC) (Table  II). In 
particular, upregulated DEGs were significantly enriched in 
BP, including ‘mitotic cell cycle process’, ‘mitotic cell cycle’, 
‘cell division’, ‘chromosome segregation’ and ‘multicellular 
organism catabolic process’ (Table III). The down‑regulated 
DEGs were also significantly enriched in BP, including 
‘circulatory system development’, ‘cardiovascular system 
development’, ‘vasculature development’, ‘blood vessel devel-
opment’ and ‘locomotion’ (Table III), respectively.

KEGG pathway analysis. KEGG pathway analysis was 
used to identify pathways for these DEGs. A total of 19 and 
58 significantly enriched pathways for up‑regulated and 
down‑regulated genes, respectively, were identified. The 
most significantly enriched pathways associated with lung 
cancer were ‘extracellular matrix (ECM)‑receptor interac-
tion’, ‘malaria’, ‘complement and coagulation cascades’, ‘focal 
adhesion’, ‘protein digestion and absorption’, ‘cell adhesion 
molecules’, ‘PI3K‑Akt signaling pathway’, ‘Rap1 signaling 
pathway’, ‘tight junction’ and ‘p53 signaling pathway’ (Fig. 3 
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and Table IV). In addition, the enriched KEGG pathways also 
included the ‘TLR signaling pathway’.

Construction of the PPI network and screening of modules. 
Based on the predicted interactions of identified DEGs, the 
PPI network was constructed to identify the most important 
proteins and biological modules that may serve crucial roles 
in the development of lung cancer. A total of 1,770 nodes and 
10,667 edges were screened from the PPI network (Fig. 4). 
Each gene was assigned a degree representing the number of 
neighboring nodes in the network and changes in the proteins/
genes. The top 10 hub nodes with the highest degrees in lung 
cancer were epidermal growth factor receptor (EGFR), Jun 

proto‑oncogene activator protein (AP)‑1 transcription factor 
subunit (JUN), Fos proto‑oncogene AP‑1 transcription factor 
subunit (FOS), interleukin 6 (IL6), MYC proto‑oncogene 
basic helix‑loop‑helix protein 39 (MYC), matrix metal-
loproteinase 9 (MMP9), Cyclin dependent kinase 1 (CDK1), 
Cadherin 1 (CDH1), FYN proto‑oncogene Src family tyrosine 
kinase (FYN) and fibroblast growth factor 2 (FGF2) (Table V). 
EGFR exhibited the highest node degree of 198 and the 
betweenness was 0.088. The high degree of these hub genes 
indicated that these proteins may serve crucial roles in main-
taining the whole protein interaction network. In addition, to 
explore the significance of these DEGs, the top 3 significant 
modules were selected, and the functional annotation of the 

Figure 1. Identification of DEGs. (A) Pearson's correlation (signal) map. The correlation coefficient was close to 1.0, indicating higher repeatability or similar to 
distribution. (B) Relative Signal Box Plot map. The red line is the base line; more similar distribution implies higher repeatability of the data. (C) Volcano plot 
comparing all of the DEGs. The red dots indicate DEGs that were significant at |Log2 (FC)|>1. DEGs, differentially expressed genes; T, lung cancer tissues; 
N, normal lung tissues.
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genes associated with the modules was analyzed (Fig. 5 and 
Table VI). The results demonstrated that these modules were 
associated with the chemokine signaling pathway (Fig. 5A), 
cell cycle (Fig. 5B) and pathways in cancer (Fig. 5C).

DEGs and pathway analysis of the TLR pathway. Among 
all of the significantly enriched pathways for DEGs, the TLR 
signaling pathway was the focus of the present study due to its 

close association with cancer. There were 12 DEGs primarily 
involved in this pathway, including secreted phosphoprotein 1, 
IL6, mitogen‑activated protein kinase kinase kinase 8, TLR8, 
FOS, chemokine ligand 4 (CCL4), TLR4, CCL5, JUN, phos-
phoinositide‑3‑ kinase regulatory subunit 1, protein kinase 3 
and mitogen‑activated protein kinase 13 (Fig. 6 and Table VII). 
Using the available gene data of this signaling pathway, a 
network diagram was constructed including a series of receptors, 

Table I. Statistical metrics for key differentially expressed genes.

Probe Set ID	 Gene	 P‑value	 Fold change (tumor vs. normal)

210081_at	 AGER	 1.08x10‑19	‑ 42.35560
232578_at	 CLDN18	 9.04x10‑14	‑ 41.43548
204712_at	 WIF1	 1.82x10‑12	‑ 34.45463
209875_s_at	 SPP1	 2.01x10‑14	 34.41545
203980_at	 FABP4	 4.45x10‑17	‑ 27.01589
219230_at	 TMEM100	 4.84x10‑14	‑ 24.15423
37892_at	 COL11A1	 1.10x10‑10	 22.98382
209469_at	 GPM6A	 5.90x10‑25	‑ 22.56606
205725_at	 SCGB1A1	 1.21x10‑10	‑ 22.50023
213317_at	 CLIC5	 1.04x10‑16	‑ 22.22463

AGER, advanced glycosylation end‑product specific receptor; CLDN18, claudin 18; WIF1, WNT inhibitory factor 1; SPP1, secreted phos-
phoprotein 1; FABP4, fatty acid binding protein 4; TMEM100, transmembrane protein 100; COL11A1, collagen type XI α1 chain; GPM6A, 
glycoprotein M6A; SCGB1A1, secretoglobin family 1A member 1; CLIC5, chloride intracellular channel 5.

Figure 2. Hierarchical clustering analysis of the 1,970 differentially expressed genes. Red and green indicate higher and lower gene expression, respectively. 
T, lung cancer tissues; N, normal lung tissues.
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signaling kinases, transcription factors and cytokines. These 
genes form a complete signaling pathway to serve an important 
regulatory role. These results suggested that the TLR pathway 
could be one of the significant pathways involved in cancer 
treatment, providing a target for drug development.

Discussion

Cancer is essentially a genetic disease, and many genetic 
alterations accumulate during the multistep process of carci-
nogenesis, which eventually leads to abnormal unrestrained 
cell growth and malignant phenotype (20). Lung cancer is 
the most common primary pulmonary malignant tumor in 
terms of incidence and mortality (21). The total number of 
lung cancer cases has become a major public health concern 
in China (rates are 40 per 100,000), and the situation in other 
parts of world, including Micronesia/Polynesia (rates are >76.5 
per 100,000) and Eastern Europe (rates are >61.2 per 100,000) 
is even worse (3), which is mainly attributable to cigarette 
smoking  (22). Therefore, the early diagnosis and effective 
treatment of lung cancer is urgently required, which may be 
achieved via the identification of the DEGs between lung 
cancer and normal tissues, and by understanding the under-
lying molecular mechanism. Microarray and high throughput 
sequencing analysis can screen a large number of genes in 
the human genome for further functional analysis, and can 
be widely used to screen biomarkers for early diagnosis and 
specific therapeutic targets. Therefore, they may aid the diag-
nosis of lung cancer in the early stages and the development of 
targeted treatment, thus improving prognosis.

Microarray studies possess great potential to provide novel 
insights into the pathogenesis of complex diseases (23). The 
present study systematically applied integrated bioinformatics 
methods to identify new candidates that serve roles in the 
progression of lung cancer. The data extracted from the GEO 

dataset contained 31 pairs of lung cancer and normal samples. 
A total of 534 up‑regulated and 1,436 down‑regulated DEGs 
in cancerous tissues, when compared with normal samples, 
were identified using bioinformatics analysis, indicating that 
the occurrence and development of cancer is closely associ-
ated with genetic mutations  (24). Then, GO and KEGG 
pathway analyses were used to investigate the interactions 
of these DEGs. Finally a PPI network identified specific key 
genes. The results of the present study may provide potential 
biomarkers for the diagnosis of lung cancer. For example, it 
was identified that advanced glycosylation end‑product specific 
receptor (AGER), with a 42‑fold decrease in patients with lung 
cancer, was the most differentially expressed gene in DEG 
analysis. AGER belongs to the immunoglobulin superfamily 
and is an oncogenic transmembrane receptor up‑regulated in 

Table II. Gene Ontology analysis of differentially expressed genes.

Gene set name	 Gene counts	 %	 P‑value

GOTERM	 GO:0016477‑cell migration	 257	 14.1	 3.64x10‑40

‑BP‑FAT	 GO:0072358‑cardiovascular system development	 222	 12.2	 5.09x10‑40

	 GO:0072359‑circulatory system development	 222	 12.2	 5.09x10‑40

	 GO:0048870‑cell motility	 277	 15.2	 5.51x10‑40

	 GO:0051674‑localization of cell	 277	 15.2	 5.51x10‑40

GOTERM	 GO:0005102‑receptor binding	 222	 12.2	 3.09x10‑14

‑MF‑FAT	 GO:0005539‑glycosaminoglycan binding	 56	 3.1	 4.52x10‑13

	 GO:0019838‑growth factor binding	 39	 2.1	 4.62x10‑11

	 GO:0098772‑molecular function regulator	 199	 10.9	 3.11x10‑10

	 GO:0008201‑heparin binding	 42	 2.3	 1.20x10‑9

GOTERM	 GO:0005576‑extracellular region	 635	 34.9	 4.41x10‑23

‑CC‑FAT	 GO:0044421‑extracellular region part	 551	 30.3	 1.42x10‑22

	 GO:0005615‑extracellular space	 253	 13.9	 2.95x10‑20

	 GO:0005578‑proteinaceous extracellular matrix	 97	 5.3	 8.71x10‑20

	 GO:0031012‑extracellular matrix	 123	 6.8	 3.43x10‑19

BP, biological processes; FAT, functional annotation tool; MF, molecular function; CC, cellular component.

Figure 3. Top 10 most significantly enriched pathways of differentially 
expressed genes associated with lung cancer as analyzed by Kyoto 
Encyclopedia of Genes and Genomes pathway analysis. ECM, extracel-
lular matrix; PI3K, phosphoinositide‑3‑kinase; Akt, protein kinase B; Rap1, 
Ras‑proximate‑1.
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various types of human cancers, including squamous cervical 
cancer  (25) and pancreatic tumor  (26). However, it has an 
inhibitory effect on lung cancer development (27). In patients 
with lung adenocarcinoma, AGER polymorphisms are associ-
ated with disease susceptibility and prognosis, and can predict 

survival  (28,29). Therefore, AGER may be effective as a 
potential marker for lung cancer, however, further studies are 
required.

GO analysis is helpful for annotating genes and gene 
products. GO analysis in the present study demonstrated that 

Table III. Gene Ontology functional enrichment analyses of differentially expressed genes associated with lung cancer.

A, Up‑regulated

Category	 Term/gene function	 Gene count	 %	 P‑value

GOTERM_BP_FAT	 GO:1903047‑mitotic cell cycle process	 62	 12.5	 2.47x10‑12

GOTERM_BP_FAT	 GO:0000278‑mitotic cell cycle	 64	 12.9	 9.70x10‑12

GOTERM_BP_FAT	 GO:0051301‑cell division	 45	 9.1	 1.16x10‑10

GOTERM_BP_FAT	 GO:0007059‑chromosome segregation	 33	 6.7	 1.83x10‑10

GOTERM_BP_FAT	 GO:0044243‑multicellular organism	 16	 3.2	 3.58x10‑10

	 catabolic process			 
GOTERM_MF_FAT	 GO:0005201‑extracellular matrix	 12	 2.4	 7.34x10‑6

	 structural constituent			 
GOTERM_MF_FAT	 GO:0042802‑identical protein binding	 60	 12.1	 3.73x10‑5

GOTERM_MF_FAT	 GO:0008574‑ATP‑dependent microtubule	 6	 1.2	 5.13x10‑5

	 motor activity, plus‑end‑directed			 
GOTERM_MF_FAT	 GO:1990939‑ATP‑dependent microtubule	 6	 1.2	 6.96x10‑5

	 motor activity			 
GOTERM_MF_FAT	 GO:0016758‑transferase activity, 	 16	 3.2	 2.89x10‑4

	 transferring hexosyl groups			 
GOTERM_CC_FAT	 GO:0005578‑proteinaceous extracellular matrix	 31	 6.3	 1.75x10‑7

GOTERM_CC_FAT	 GO:0005576‑extracellular region	 176	 35.5	 5.35x10‑6

GOTERM_CC_FAT	 GO:0098643‑banded collagen fibril	 6	 1.2	 1.26x10‑5

GOTERM_CC_FAT	 GO:0005583‑fibrillar collagen trimer	 6	 1.2	 1.26x10‑5

GOTERM_CC_FAT	 GO:0000779‑condensed chromosome, 	 14	 1.9	 1.87x10‑5

	 centromeric region			 

B, Down‑regulated				  

Category	 Term/gene function	 Gene count	 %	 P‑value

GOTERM_BP_FAT	 GO:0072359‑circulatory system development	 190	 14.3	 3.52x10‑44

GOTERM_BP_FAT	 GO:0072358‑cardiovascular system development	 190	 14.3	 3.52x10‑44

GOTERM_BP_FAT	 GO:0001944‑vasculature development	 146	 11.0	 9.36x10‑43

GOTERM_BP_FAT	 GO:0001568‑blood vessel development	 137	 10.3	 9.96x10‑40

GOTERM_BP_FAT	 GO:0040011‑locomotion	 242	 18.3	 3.86x10‑38

GOTERM_MF_FAT	 GO:0005102‑receptor binding	 179	 13.5	 7.17x10‑16

GOTERM_MF_FAT	 GO:0005539‑glycosaminoglycan binding	 45	 3.4	 6.57x10‑12

GOTERM_MF_FAT	 GO:0098772‑molecular function regulator	 155	 11.7	 2.41x10‑10

GOTERM_MF_FAT	 GO:0008201‑heparin binding	 36	 2.7	 3.61x10‑10

GOTERM_MF_FAT	 GO:0003779‑actin binding	 62	 4.7	 9.32x10‑10

GOTERM_CC_FAT	 GO:0044421‑extracellular region part	 401	 30.3	 6.04x10‑18

GOTERM_CC_FAT	 GO:0005576‑extracellular region	 459	 34.6	 8.97x10‑18

GOTERM_CC_FAT	 GO:0005615‑extracellular space	 187	 14.1	 4.24x10‑16

GOTERM_CC_FAT	 GO:0009986‑cell surface	 118	 8.9	 1.97x10‑15

GOTERM_CC_FAT	 GO:0031012‑extracellular matrix	 89	 6.7	 7.14x10‑14

BP, biological processes; FAT, functional annotation tool; MF, molecular function; CC, cellular component.
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Table IV. Top 10 most overrepresented Kyoto Encyclopedia of Genes and Genomes pathways of differentially expressed genes.

Gene set name	 Count	 %	 P‑value

hsa04512: ECM‑receptor interaction	 28	 1.5	 1.52x10‑7

hsa05144: Malaria	 20	 1.1	 2.20x10‑7

hsa04610: Complement and coagulation cascades	 24	 1.3	 3.03x10‑7

hsa04510: Focal adhesion	 47	 2.6	 5.97x10‑7

hsa04974: Protein digestion and absorption	 25	 1.4	 9.42x10‑6

hsa04514: Cell adhesion molecules (CAMs)	 33	 1.8	 2.59x10‑5

hsa04151: PI3K‑Akt signaling pathway	 61	 3.3	 6.57x10‑5

hsa04015: Rap1 signaling pathway	 40	 2.2	 3.29x10‑4

hsa04530: Tight junction	 29	 1.6	 4.68x10‑4

hsa04115: p53 signaling pathway	 18	 1.0	 4.77x10‑4

ECM, extracellular matrix; PI3K, phosphoinositide‑3‑kinase; Akt, protein kinase B.

Figure 4. Protein‑protein interaction network of differentially expressed genes identified by Search Tool for the Retrieval of Interacting Genes.
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up‑regulated DEGs were mainly involved in the cell cycle 
and material metabolism, including ‘mitotic cell cycle’, ‘cell 
division’ and ‘multicellular organism catabolic’ processes, 
which mainly refer to cellular processes. However, the 
down‑regulated DEGs were mainly involved in organ systems, 
including the circulatory system, cardiovascular system and 
vasculature development, all of which are associated with 
systemic processes. This is consistent with the knowledge 
that the defective functioning of cell biological processes (30) 
and the state of the body system status are important causes 
of tumor development and progression. Also it indicated that 
cellular activity was enhanced and system function was weak-
ened. Therefore, monitoring the expression of these DEGs may 
aid the discovery of mechanisms for tumorigenesis and tumor 
progression. It is known that signal transduction in cancer 
cells differs substantially from normal cells (31). The KEGG 
pathway database contains information on systematic analysis 
of gene functions, linking genomics with functional informa-
tion. Enrichment analysis identified important KEGG pathways 
associated with lung cancer, including ‘ECM‑receptor interac-
tion’, ‘malaria’, ‘complement and coagulation cascades’, ‘focal 
adhesion’, and ‘protein digestion and absorption’. Pathway 
disturbance in ‘ECM‑receptor interaction’, ‘complement and 
coagulation cascades’ and ‘adhesive attraction’ (32‑34) have 
been highly noted in lung cancer. The present study identified 

that the ECM‑tumor cell interactions may activate intracel-
lular signaling pathways, which is responsible for tumor cell 
invasion and metastasis (35,36).

The present study focused on the TLR pathway among 
the enriched pathways that are expressed in a wide variety of 
cancer cells and immune cells (37). This pathway is centrally 
involved in the initiation of innate immunity and induc-
tion of adaptive immune responses (38), which is useful for 
maintaining organism integrity and is markedly involved in 
cancer progression, development and defense (39). However, 
the activation of TLRs in tumor cells induces the synthesis of 
pro‑inflammatory factors and immunosuppressive molecules, 
which can enhance the resistance of tumor cells to cytotoxic 
lymphocyte attack and lead to immune evasion (40). Cancer 
cells can avoid immune surveillance as TLRs trigger cells to 
release a number of biological factors, including IL6, vascular 
endothelial growth factor and MMP  (41). Notably, these 
factors were included in the DEGs between lung cancer tissues 
and normal tissues. Therefore, it was suggested that targeting 
tumor TLR signaling pathways may provide promising thera-
peutic methods (40).

A PPI network was constructed with DEGs, which revealed 
that the top 10 hub genes with highest degrees were EGFR, 
JUN, FOS, IL6, MYC, MMP9, CDK1, CDH1, FYN and 
FGF2. EGFR was at the core of the PPI network and exhibited 

Table V. Top 10 hub nodes with highest degrees of interaction in lung cancer.

		  Betweenness	 Closeness		  Clustering
Name	 Node degree	 centrality	 centrality	 Stress centrality	 coefficient

EGFR	 198	 0.088	 0.464	 2,403,514	 0.085
JUN	 185	 0.055	 0.457	 1,936,238	 0.116
FOS	 164	 0.038	 0.447	 1,365,032	 0.120
IL6	 139	 0.031	 0.427	 1,039,056	 0.138
MYC	 136	 0.030	 0.441	 1,089,702	 0.147
MMP9	 135	 0.028	 0.433	 1,011,434	 0.148
CDK1	 121	 0.032	 0.427	 936,828	 0.105
CDH1	 119	 0.035	 0.426	 1,062,348	 0.111
FYN	 118	 0.035	 0.410	 1,089,798	 0.127
FGF2	 114	 0.013	 0.420	 577,568	 0.184

Figure 5. Top 3 modules from the protein‑protein interaction network. Nodes and links represent human proteins and protein interactions. (A) The enriched 
pathways of module 1; (B) The enriched pathways of module 2; (C) The enriched pathways of module 3.
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the highest degree with a connectivity of 198, suggesting a 
role for EGFR as a potential marker for lung cancer. EGFR 

is a transmembrane receptor tyrosine kinase and is frequently 
observed in lung cancer patients with poor differentiation 

Table VI. Top 3 modules from the protein‑protein interaction network.

			   False	
Modules	 Term	 P‑value	 discovery rate	 Genes

1	 Chemokine signaling	 6.11x10‑12	 6.23x10‑9	 ADCY4, CXCL5, PPBP, CCL21, CXCL3, 
	 pathway			   CXCL2, CXCR2, GNG2, CCL5, CXCL12, 
				    CCL28
	 Neuroactive ligand‑	 5.62x10‑5	 0.057248	 P2RY13, S1PR1, C5AR1, SSTR1, P2RY14,
	 receptor interaction			   FPR1, FPR2
	 Cytokine‑cytokine	 2.51x10‑4	 0.255655	 PPBP, CCL21, CXCR2, CCL5, CXCL12, 
	 receptor interaction			   CCL28
2	 Cell cycle	 2.53x10‑9	 1.80x10‑6	 CCNB1, CDK1, CCNB2, MAD2L1, BUB1B, 
				    CDC20, CCNA2
	 Progesterone‑mediated	 2.90x10‑6	 0.002056	 CCNB1, CDK1, CCNB2, MAD2L1, CCNA2
	 oocyte maturation
	 Oocyte meiosis	 2.99x10‑4	 0.212472	 CDK1, MAD2L1, CDC20, AURKA
3	 Pathways in cancer	 7.30x10‑7	 8.72x10‑4	 AGTR1, EDNRB, VEGFC, IL6, CDKN2A, 
				    PLCB4, GNAQ, PPARG, CDH1, FGF2, 
				    PIK3R1, TGFB2
	 Chagas disease	 9.65x10‑6	 0.011527	 ACE, IL6, PLCB4, GNAQ, PIK3R1, TGFB2
	 (American
	 trypanosomiasis)
	 African trypanosomiasis	 2.00x10‑5	 0.023928	 ICAM1, IL6, PLCB4, GNAQ, F2RL1

Figure 6. Gene network associated with Toll‑like receptor pathways. Red and green dots represent up‑ and downregulated differentially expressed genes, 
respectively. Grey diamonds marked with yellow stars represent the associated genes, which were added by the system. The dot size represents the difference 
of one gene between lung cancer tissues and normal tissues.
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and poor prognosis  (42). It can lead to signal transduction 
including cell differentiation, proliferation and apoptosis 
through phosphorylating other proteins, and has been reported 
to be overexpressed in patients with NSCLC (43). Activating 
mutations in the EGFR gene are considered to be favorable 
prognostic markers (44) and have become a novel personal-
ized treatment target for patients with NSCLC (45). However, 
the role of EGFR as a marker of lung cancer diagnosis and 
treatment is unclear and requires further investigation. JUN 
and FOS are the predominant components of AP‑1, which 
serves a critical role in the transcriptional regulation of genes 
involved in cell survival, proliferation, migration and trans-
formation (46). These two proteins are overexpressed in the 
development of various carcinomas, including pulmonary 
malignancies  (47). The IL6 gene is co‑expressed with a 
number of oncogenic genes, and IL6 is produced and secreted 
by immune and tumor cells (48). It is involved in different 
physiologic and pathophysiologic processes such as promoting 
tumorigenesis and modifying various tumor behaviors, 
including apoptosis, migration, proliferation, angiogenesis and 
metabolism (49,50). Elevated levels of serum IL6 are associ-
ated with poor prognosis in the majority of malignancies (51). 
The MYC gene is an oncogene with a high frequency of 
amplification in lung cancer (52) and its protein has important 
roles in cell proliferation and differentiation. It is closely asso-
ciated with tumor occurrence, progression and prognosis in 
different types of tumors (53). The other 5 hub genes also serve 
important roles in cell migration, proliferation, differentiation, 
apoptosis and cell cycle process (54‑56), affecting the devel-
opment of cancer. MMP9 degrades and restores the ECM, 
and its overexpression not only promotes NSCLC metastasis 
directly but can also facilitate metastatic spread (57). CDK1 
is expressed in high levels in tumor tissues, and is associated 
with poor prognosis and shorter survival time in patients with 
NSCLC (58). The CDH1 gene encodes a tumor suppressor 
protein and its mutation or deletion results in the promotion 
of cancer invasion and metastasis  (55) in addition to poor 
prognosis (59). FYN contributes to the progression of cancer 
by regulating cell cycle, differentiation, adhesion, motility and 
survival of cells (56). FGF2 has been shown to be activated in 

lung cancer (60) and is involved in angiogenesis by initiating 
a signal transduction cascade that promotes cell proliferation, 
motility and angiogenesis (61). Therefore, all the hub genes 
may possess key roles in lung cancer and could interact with 
each other. They may be used as potential effective candidates 
for early diagnosis or prognosis.

The PPI module contained 1,770 nodes and 10,667 edges, 
and the top 3 modules extracted were ‘chemokine signaling 
pathway’, ‘cell cycle’ and ‘pathways in cancer’, all of which 
are associated with lung cancer. The chemokine signaling 
pathway contains a number of chemokine proteins, including 
chemokine (C‑X‑C motif) ligand (CXCL)‑2, CXCL3 and 
CCL18, which are differentially expressed in lung cancer. As 
chemokine gradients direct cell migration towards the site of 
inflammation (62), they are key in immune system functioning, 
and are important for the removal of pathogens, inflammation, 
cell and organ development, wound repair, occurrence of 
tumors and metastasis, and transplantation immune rejec-
tion  (63‑65). Cell cycle disorders and overgrowth of cells 
are common biological characteristics of tumors, leading to 
increased cell proliferation and decreased apoptosis (66). It 
should be noted that the cell cycle is a tightly regulated process 
and is frequently aberrant in lung cancer (67). The relevant 
inhibitors of the cell cycle have emerged as novel drugs for 
the treatment of lung cancer by suppressing the unrestricted 
cell division and growth of lung cancer cells (67). Finally, 
pathways in cancer are of similar significance in cancer cell 
proliferation, apoptosis, metastasis, angiogenesis and survival.

However, there were still certain limitations in the present 
study. First, although a set number of genes were revealed 
to be potential markers for lung cancer, further experiments 
are still required to evaluate the roles of these genes as 
novel biomarkers. Secondly, the gene expression profile was 
composed of 93% adenocarcinomas and 7% squamous cancer, 
since there is great genetic heterogeneity between adenocarci-
noma and squamous cancer. Furthermore, the variation trend 
of JUN, FOS, IL6, MYC and FGF2 in this study is inconsistent 
with that reported in previous studies (46,47); this may be due 
to the limited numbers of chips. Therefore, further data for 
lung cancer are required to validate the results of the present 

Table VII. Main genes associated with Toll‑like receptors pathways.

Gene ID	 Gene 	 P‑value	 Fold change

6696	 SPP1	 2.01x10‑14	 34.41545
3569	 IL6	 1.05x10‑12	‑ 8.05396
1326	 MAP3K8	 5.29x10‑15	‑ 4.17527
51311	 TLR8	 5.01x10‑10	‑ 3.84351
2353	 FOS	 5.20x10‑12	‑ 3.81020
6351	 CCL4	 5.31x10‑9	‑ 2.77206
7099	 TLR4	 3.40x10‑7	‑ 2.50968
6352	 CCL5	 1.51x10‑6	‑ 2.42054
3725	 JUN	 1.05x10‑8	‑ 2.36435
5295	 PIK3R1	 8.86x10‑10	‑ 2.26284
10000	 AKT3	 9.98x10‑11	‑ 2.22438
5603	 MAPK13	 7.48x10‑11	 2.14546
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study. Thirdly, due to the limitation of the dataset used, it was 
not possible to construct a miRNA‑target gene regulatory 
network or transcription factor‑target gene regulatory network. 
Finally, survival analysis could not be performed based on the 
data presented in the present study.

In conclusion, the present study provided a comprehensive 
bioinformatics analysis of DEGs in lung cancer. Analysis of 
these altered genes provided information regarding the molec-
ular mechanisms of lung cancer and significant biomarkers or 
targets for the diagnosis and treatment of lung cancer. However, 
further molecular biological experiments are required to 
confirm the function of the DEGs and pathways in different 
types of lung cancer.
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