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TECHNICAL NOTES
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Abstract 

Background:  Microorganisms can be metabolically engineered to produce a wide range of commercially impor-
tant chemicals. Advancements in computational strategies for strain design and synthetic biological techniques to 
construct the designed strains have facilitated the generation of large libraries of potential candidates for chemical 
production. Consequently, there is a need for high-throughput laboratory scale techniques to characterize and screen 
these candidates to select strains for further investigation in large scale fermentation processes. Several small-scale 
fermentation techniques, in conjunction with laboratory automation have enhanced the throughput of enzyme and 
strain phenotyping experiments. However, such high throughput experimentation typically entails large operational 
costs and generate massive amounts of laboratory plastic waste.

Results:  In this work, we develop an eco-friendly automation workflow that effectively calibrates and decontami-
nates fixed-tip liquid handling systems to reduce tip waste. We also investigate inexpensive methods to establish 
anaerobic conditions in microplates for high-throughput anaerobic phenotyping. To validate our phenotyping plat-
form, we perform two case studies—an anaerobic enzyme screen, and a microbial phenotypic screen. We used our 
automation platform to investigate conditions under which several strains of E. coli exhibit the same phenotypes in 
0.5 L bioreactors and in our scaled-down fermentation platform. We also propose the use of dimensionality reduction 
through t-distributed stochastic neighbours embedding (t-SNE) in conjunction with our phenotyping platform to 
effectively cluster similarly performing strains at the bioreactor scale.

Conclusions:  Fixed-tip liquid handling systems can significantly reduce the amount of plastic waste generated in 
biological laboratories and our decontamination and calibration protocols could facilitate the widespread adoption of 
such systems. Further, the use of t-SNE in conjunction with our automation platform could serve as an effective scale-
down model for bioreactor fermentations. Finally, by integrating an in-house data-analysis pipeline, we were able to 
accelerate the ‘test’ phase of the design-build-test-learn cycle of metabolic engineering.

Keywords:  Lab automation, Liquid handlers, High-throughput screening, Anaerobic fermentations, Scale-down 
models, Metabolic engineering
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Background
Microbial production of chemicals has gained promi-
nence in the past few decades due to rising populations 
and increasing concerns over the sustainability of con-
ventional means of chemical production. Advances in 
metabolic engineering and synthetic biology have ena-
bled the generation of mutant strains that are adept 
at producing a wide range of natural and non-natural 
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chemicals [1]. However, a myriad of scale-up issues can 
arise at increasingly larger scales, that could render many 
microbial production platforms economically infeasible 
[2, 3]. Hence, several iterations of the design-build-test-
learn (DBTL) cycle (Fig.  1a) may be required at smaller 
scales before moving on to production in large scale 
bioreactors.

The development of genome-scale metabolic models 
and computational tools that use these models to pre-
dict genetic interventions for strain design has assisted 
the ‘design’ phase of the DBTL cycle [4–7]. Similarly, 
advances in DNA synthesis, computational tools to 
streamline DNA assembly, and the establishment of DNA 
foundries around the world have also allowed for the 
rapid construction of mutant strain and enzyme libraries 
that incorporate these intervention strategies, accelerat-
ing the ‘build’ phase [8–12]. The ‘test’ phase i.e. charac-
terization/phenotyping of the strain and enzyme libraries 
generated in the ‘design’ and ‘build’ phases of the DBTL 
cycle remains a key bottleneck. The prohibitive cost of 
analyzing the phenotypes of all microbial strains in the 
generated mutant libraries using laboratory scale bio-
reactors necessitates the development of standardized 
high-throughput, small-scale protocols to characterize 
them. Recently, several machine learning techniques have 
been adapted for metabolic engineering applications, 
with several tools being developed that promise to assist 
the ‘learn’ phase [13, 14]. These tools also necessitate the 

generation of large and reliable experimental phenotypic 
datasets that are only economically feasible at extremely 
small scales, further bolstering the need for protocols for 
high-throughput phenotyping platforms [15].

In the recent past, there have been several attempts to 
develop small scale fermentation platforms using min-
iature bioreactors and specialized microplates to culti-
vate and characterize strains, increasing experimental 
throughput [16–18]. However, the operational costs of 
using such systems is quite high due to the requirement 
of specialized microplates and intricate pH control mech-
anisms. Further, the automation of strain cultivation and 
other routine workflows to enhance throughput using 
such systems may be very expensive to implement. The 
earliest attempts at high-throughput fermentation were 
through the use of standard 96-well microtiter plates for 
parallel cultivation of microbes [19]. The low cost and 
enhanced throughput of these systems made them very 
valuable to perform preliminary screens on a large num-
ber of strains. However, these systems suffer from several 
disadvantages including increased rates of sample evapo-
ration and reduced oxygen transfer. Therefore, microbial 
phenotypes observed in these scales may not be rep-
licable at the scale of bench-top reactors under aerobic 
conditions. Yet, these systems may still be suitable to 
phenotype microbes under anaerobic conditions where 
oxygen transfer is not crucial. E. coli can be engineered to 
produce an array of commercially important compounds 
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large number of strains/enzymes. b Deck layout of liquid handling platform used in this study. Relatively few equipment can be assembled and 
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such as lactic acid under anaerobic conditions [20, 21]. 
Moreover, the production phase of many industrial fer-
mentation processes involve high density cultures where 
oxygen transfer is limited. Microtiter plates are particu-
larly suited for anaerobic fermentations due to the inher-
ent difficulty in achieving high oxygen transfer rates and 
have the potential to be able to replicate the phenotypes 
of microbes observed in bench-top bioreactors.

The advent of liquid handling systems has assisted 
in the use of such small-scale fermentation platforms, 
enhancing throughput by reducing human effort and 
time required to set up phenotyping experiments [22–
25]. Use of such automation systems also enhances the 
reproducibility of experiments through the use of stand-
ardized protocols. While automated liquid handling 
platforms can rapidly accelerate the throughput of exper-
iments, maintaining sterile conditions during long high 
throughput workflows is challenging. Contamination 
arising from the environment can be effectively curbed 
through the use of HEPA filters [26]. However, cross-
contamination resulting from tip carryover could still be 
a problem, since any residual contaminant in the compo-
nents of the platform could potentially confound results 
from a large set of experiments. Liquid handling systems 
with disposable tips have been successfully adapted to 
cultivate cells and perform other routine microbiological 
workflows with minimal contamination [26–28]. These 
systems simply discard used and contaminated tips after 
each pipetting step, thereby eliminating contamination. 
This would inevitably result in massive amounts of plastic 
waste when such systems are used for high-throughput 
workflows. The rapidly increasing adoption of automated 
workflows in research laboratories would only exacer-
bate this problem due to their increased throughput [29]. 
Moreover, the need for a massive number of sterilized 
tips would increase the operational costs required to 
implement such workflows [27, 30]. The use of fixed-tip 
liquid handlers with effective decontamination protocols 
could address concerns about sustainability and opera-
tional costs.

In this work, we describe several efforts towards 
enhancing the utility of fixed-tip liquid handling systems 
for automated high-throughput phenotyping using a 
platform consisting of a fixed-tip liquid handler, micro-
plate centrifuge, plate-reader, vacuum filtration module, 
plate handling robot, and a shaker incubator (Fig.  1b). 
To this end, we develop decontamination protocols to 
eliminate microbial carry-over and cross-contamination 
in fixed-tip liquid handlers, describe an automated cali-
bration workflow to calibrate liquid handling pipettes, 
and establish relatively easy methods to ensure anaero-
bicity of media for anaerobic phenotyping. Then, we vali-
date our platform by performing an anaerobic enzyme 

screen and investigate conditions that allow reasonable 
replication of bioreactor microbial phenotypes in 96-well 
microplates.

Results & discussion
A decontamination protocol for fixed‑tip liquid handlers
Fixed-tip liquid handling systems require decontamina-
tion after every pipetting step to curb biological cross-
contamination. A disinfection step where tips are washed 
and incubated with ethanol has been proposed in the 
past to address contamination issues [25]. However, this 
protocol required the incubation of pipette tips in etha-
nol for 5 min between each pipetting step, reducing the 
throughput of this system. More recently, one study used 
a layer of ethanol, aspirated immediately before aspirat-
ing biological samples to maintain sterility [31]. While 
this protocol is faster, it may result in reduced cell viabil-
ity due to direct contact between the disinfectant and 
cells.

To address these issues, we examined the effectiveness 
of a simple decontamination protocol that uses a solu-
tion of sodium hypochlorite (bleach) to disinfect pipette 
tips (Fig. 2a). In order to simulate typical contamination 
events during cell culture workflows, we programmed 
the pipette to aspirate 200 μL of viable E. coli cells in 
their exponential phase of growth, hold for 30 s with the 
pipette tips dipped inside the culture, and dispense the 
cells back into the solution. Then, the tips aspirate 400 
μL of bleach, hold for a specified interval—‘t’ seconds 
with the tips dipped inside, and dispense the disinfect-
ant. We repeat this bleach wash for a specified number of 
times—‘n’ and when complete, wash the tips with system 
liquid—sterilized ultrapure water, to remove any traces 
of the disinfectant. Finally, to examine the effectiveness 
of our decontamination procedure, we aspirate 200 μL 
of sterile LB media from a microplate, hold for 30 s and 
dispense back into the same wells. Any persisting E. coli 
cells in the tips would lead to contamination of the media 
and show cell growth after incubation of the plate. We 
used a wash with water as a negative decontamination 
control to ensure that contamination events are captured 
effectively using this procedure.

First, we examined the efficacy of this procedure using 
varying concentrations of bleach, with ‘n’ = 4 washes and 
zero hold time (‘t’ = 0 s). The sterilization effectiveness 
was calculated as the percentage of contaminated wells 
resulting from the corresponding decontamination pro-
cedure. As seen in Fig.  2b, the negative control—water 
resulted in zero effectiveness. Increasing the concen-
tration of bleach seemed to positively impact the effec-
tiveness of our protocol. However, even at the highest 
concentration of bleach, we only observed a 50% effec-
tiveness of decontamination. We considered that varying 
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the number of washes—‘n’ and the hold time for the 
disinfectant—‘t’ could improve our system due to longer 
contact with bleach. Increasing the number of washes 
and the hold time indeed had a positive impact on the 
sterilization effectiveness, with the best values being 
achieved at the highest levels of ‘n’ and ‘t’ (Fig. 2d—top-
left panel). However, this was still unacceptable as the 
target was to completely eliminate contamination events. 
Moreover, operating at the highest levels of ‘n’ and ‘t’ 
increased the run-time of the decontamination protocol 
to about 1 min and would therefore reduce the through-
put of our system.

Upon further investigation of the pipetting protocol, 
we observed that like most fixed-tip liquid handling sys-
tems, our pipettes aspirate a very small amount of air 
(10 μL) before each pipetting step to separate the sys-
tem liquid from the liquid being pipetted—the process 
liquid (Fig.  3a). By increasing this air-gap, we were able 
to remarkably improve our decontamination protocol, 
achieving complete sterilization using an air-gap of 250 
μL (Fig. 3b and Additional file 1: Figure S1). Interestingly, 
at the highest level of air-gap, we observed zero contami-
nation events even at our lowest levels of ‘n’ and ‘t’. It 
appears that when the volume of the air-gap is less than 
the maximum operating volume of the process liquid, 
there is a possibility for the sterile system liquid to come 
in direct contact with parts of the pipette that have not 
yet been disinfected. The system liquid is therefore com-
promised and could harbour viable cells, which increases 
the possibility of contamination during further pipetting 
steps (Fig.  3c). An air-gap greater than the highest pro-
cess volume ensures complete separation of the system 

and process liquids, leading to proper decontamination 
(Fig. 3c). We found that our protocol remained effective 
over a range of bleach concentrations even at the lowest 
levels of ‘n’ and ‘t’ (Fig. 3d).

While bleach serves as an effective disinfectant, there 
have been recent concerns surrounding the release of 
chloramines and cyanogen chloride upon its reaction 
with nitrogenous compounds present in growth media 
[32]. These compounds are toxic and have been reported 
to cause chronic health problems in humans. Hence, we 
tested the efficacy of 70% ethanol as an alternate disin-
fectant and found that it is as effective as bleach in pre-
venting contamination events (Fig. 3d). However, in our 
study, we autoclaved all spent media and used the disin-
fectant only to remove residual trace microbial contami-
nation in the pipette tips, ensuring that the disinfectant 
never came in direct contact with growth media. Hence, 
for all further experiments, we chose to use two washes 
with 6% bleach as the disinfection technique. The dura-
tion of the entire decontamination procedure is about 
10 s and is therefore at par with the throughput achieved 
using disposable plastic tips, with no plastic waste gener-
ated and minimal amounts of disinfectant used.

Automated photometric calibration of liquid handling 
pipettes
Following the implementation of our decontamination 
protocol, we observed that the accuracy of the pipettes 
had diminished quite significantly, with aberrant vol-
umes being pipetted consistently. In order to examine 
the pipetting accuracy of the liquid handler before and 
after changing the air-gap, we used a photometric assay 
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to compare the volumes pipetted by the automated plat-
form to manually pipetted standards, similar to an assay 
described previously [33]. In our assay, we used an aque-
ous solution of potassium dichromate (K2Cr2O7 ) within 
concentration ranges that showed a linear relationship 
with absorbance at 350 nm, as a photometric standard. 
We pipetted different levels of the standard within vol-
ume ranges required during routine operation (3–200 

μL) into a microplate. Then, an on-deck plate reader was 
used to measure the absorbance and determine the con-
centration of samples in each well, thereby providing an 
accurate estimate of the pipetted volumes. We observed 
that after increasing the air-gap, the pipetting error 
increased significantly for all pipette tips (Fig.  4a), with 
values of up to 40% for some tips, implying that pipetting 
accuracy would depend on the volume of air-gap used for 
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each pipetting step. The deviations in pipetted volumes 
were well above the maximum acceptable limits specified 
by the International Organization for Standardization 
[34] and would certainly hinder normal operation of the 
platform.

Anticipating that there would be a need to vary the 
pipetting air-gap in the future to accomodate different 
operating volumes, we wished to develop a procedure 
that would enable quick and reliable determination of 
calibration parameters for the pipette tips. While auto-
mated gravimetric methods have been explored in the 
past for calibrating liquid handling pipettes, these would 
require the presence of a specialized, on-deck high-accu-
racy balance with minimal air-flow to prevent evapo-
ration [35], which may not be available on most liquid 
handling decks. We expected that the volume estimates 
calculated using the photometric standard could be 
used to calibrate the pipettes. Upon analysis, we found a 
strong linear correlation between the pipetted volumes 
and the expected volumes within three different volume 
ranges—high (50–200 μL), mid (10–50 μL), and low 
(3–10 μL). Hence, we programmed the liquid handler to 
pipette eight different levels of the photometric standard 

within the three volume ranges in triplicate (Fig. 4b). To 
enable automated processing of the data, we developed a 
python based script that accepts the absorbance data of 
the photometric standard along with the layout of the 
microplate used for calibration to determine the pipet-
ting error for each volume pipetted. The script is then 
made to generate calibration parameters by performing a 
linear fit between the programmed/expected volume and 
the actual pipetted volume. Using these parameters it is 
possible to determine the volume that needs to be pro-
grammed into the liquid handler for a required volume 
to be pipetted. Using these new calibration parameters, 
we analyzed the pipetting accuracy for each of the cus-
tom volume ranges with the increased air-gap. We found 
that our photometric calibration procedure reduced the 
deviation for all pipette tips significantly and brought 
them well below the maximum acceptable limits and 
within the ranges guaranteed by pipette manufacturers 
for multi-channel pipettes (Fig.  4c). However, it should 
be noted that any other changes in the physical charac-
teristics of the fluid being pipetted or other pipetting fac-
tors such as air-gap would necessitate re-calibration. For 
example, we observed that simply increasing the speed of 
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pipetting by a significant amount could lead to increased 
pipetting errors (Additional file 1: Figure S2). Neverthe-
less, by using only on-deck instruments for calibration 
and a python script to automatically calculate calibration 
parameters, we were able to reduce the time required for 
calibrating each volume range to about 10 min. Hence, 
this protocol and the python script can be easily adapted 
to calibrate a wide variety of liquid handlers to restore 
accuracy when changing the pipetting parameters or the 
fluids being pipetted.

Maintaining sustained anaerobic environments 
in microplates
Having established protocols to eliminate contamination 
and calibrate pipettes, we aimed to investigate our plat-
form’s ability to accelerate the ‘test’ phase of the DBTL 
cycle in metabolic engineering. As mentioned before, we 
were particularly interested in developing protocols for 
anaerobic phenotyping of enzymes and microbial strains 
in microplates due to the oxygen limiting nature of most 
high density fermentation processes. Short enzyme 
assays under anaerobic conditions can be achieved with 
relative ease through the addition of the oxygen scav-
enging enzymes such as glucose oxidase or Oxyrase 
along with suitable substrates [36] in each well of the 
microplate. However, accurate phenotyping of microbial 
strains under anaerobic conditions using such enzymatic 
de-oxygenation would be challenging due to the need 
for glucose or other substrates for the enzymes to func-
tion. This would hinder accurate quantification of these 
metabolites after fermentation, resulting in incomplete 

carbon balances. Therefore, we decided to to use an 
anaerobic chamber to remove oxygen from the micro-
plate by subjecting it through cycles of vacuum and flush-
ing with nitrogen gas.

While anaerobic chambers are excellent for expelling 
oxygen from microplates, they require additional sophis-
ticated equipment to control humidity. Without humidity 
control, the evaporation rates within anaerobic chambers 
are quite high, resulting in loss of media volume. Upon 
culturing different E. coli strains within the anaerobic 
chamber, we found that the rates of evaporation were so 
high that accurate measurements of cell density could 
not be made even though the duration of our fermenta-
tions were quite short (Additional file  1: Figure S4). As 
a possible solution, we examined the sealing efficacy of 
various adhesive films to sustain the anoxic conditions 
generated within the anaerobic chamber for fermenta-
tions outside. To measure of oxygen penetration into 
the microplate, we calculated biomass yields (ratio of 
final to initial biomass, measured as absorbance at 600 
nm) of wild type E. coli (MG1655) grown to saturation 
in a rich defined medium within each well. Since E. coli 
grows faster under aerobic conditions, we should expect 
a consequent higher yield in wells that have increased 
oxygen penetration and low yields where anoxic condi-
tions were sustained. As expected, in our control with 
a gas permeable film, we found a relatively high median 
biomass yield, characteristic of high oxygen penetra-
tion (Fig. 5a). The use of a microplate lid with anaerobic 
adhesive tape did not offer much improvement in the 
seal, with only a modest decrease in the median biomass 

16 18 20 22 24 26 28

Mineral Oil

PolyesterPCR Film

Aluminium PCR Film

Anaerobic Tape

Gas Permeable Film

Seal Type

Biomass Yield
(Ratio - Final to Initial Biomass)

≥1.5
1

I II

0.5
0
-0.5
-1
≤-1.5

D
eviation in Biom

ass Yield
from

 Plate M
edian

a b

III

0 1 2 3 4 5 6
0

0.25

0.5

0.75

1

0

0.5

1

1.5

2

Time (h)

In
st

an
ta

ne
ou

s 
G

ro
w

th
 R

at
e

 (1
/h

)

Ce
ll 

D
en

si
ty

 - 
O

D
60

0
(a

.u
.)

- Oil, + O

+ Oil, + O

+ Oil, - O Cell Density
(Secondary ‘y’)

Growth Rate
(Primary ‘y’)

Fig. 5  Establishing anaerobicity in 96-well microplates. a Effectiveness of various seals in preventing oxygen penetration into microplates 
containing E. coli MG1655 in RDM, sealed within an anaerobic chamber. The biomass within each microplate are represented as violin plots. To the 
right of each violin plot, the distribution of biomass yields are represented as heatmaps showing deviation of the biomass yields from the median 
biomass yield within that plate. b Time-course showing cell density and instantaneous growth rate of E. coli MG1655 in RDM with and without a 
layer of oil in the presence of oxygen and with a layer of mineral oil inside an anaerobic chamber



Page 8 of 16Raj et al. Microb Cell Fact          (2021) 20:184 

yield. The aluminium and polyester seals (typically used 
in PCRs) offered a significant improvement in the seal, 
with the polyster film being able to reduce the variability 
amongst wells as well. However, upon analysis of the bio-
mass yield distribution within the microplates, we found 
clear patterns of enhanced growth in certain areas, likely 
resulting from improper sealing and heterogeneous oxy-
gen concentrations(Fig.  5a and Additional file  1: Figure 
S3). Hence, the use of a film would inevitably lead to het-
erogenity in cellular phenotypes in addition to increased 
throughput times due to the need for manual sealing of 
each microplate.

Alternatively, a layer of mineral oil (50 μL), pipetted on 
top of the microbial culture in each well offered a homo-
geneous gas exchange profile, evidenced by the tight dis-
tribution of biomass yield (Fig. 5a and Additional file 1: 
Figure S3). The mineral oil was also successful at com-
pletely eliminating loss of media during the fermenta-
tion within the anaerobic chamber, restoring the ability 
to monitor growth accurately (Additional file  1: Figure 
S4). In order to ensure that the growth profiles of E. coli 
are only affected by the resulting oxygen transfer and not 
directly by the mineral oil, we examined the growth of 
four different strains of E. coli with and without the layer 
of mineral oil, inside and outside the anaerobic chamber 
(Fig.  5b and Additional file  1: Figure S4). We were able 
to clearly distinguish three different regimes in all the 
growth profiles—(I) an initial regime where dissolved 
oxygen in the media is used, indicated by the relatively 
higher growth rates of cells grown outside the anaero-
bic chamber, (II) an intermediate regime where the cells 
without the layer of mineral oil outside the anaerobic 
chamber are able to grow at accelerated rates due to 
increased oxygen transfer, and (III) a final growth phase 
where all the cells grow at similar rates due to no oxygen 
transfer due either to high cell densities or to the layer of 
mineral oil. It can be inferred from growth regimes (I) 
and (III) that the mineral oil does not directly impair or 
assist the growth of the strains but only controls the rate 
of gas exchange. Hence, it is suitable to maintain anoxic 
growth within an anaerobic chamber for extended dura-
tions with minimal loss of media due to evaporation.

Case study 1: applying the liquid handling platform 
for an anaerobic enzymatic screen
As a preliminary validation of our high throughput phe-
notyping platform, we sought to perform an anaerobic 
activity screen of the enoate reductase enzyme YqjM 
from Bacillus subtilis (Bs-YqjM). This enzyme belongs to 
the family of old yellow enzymes (EC 1.6.99.1) which are 
broadly known as enoate reductases. They use non-cova-
lently bound flavin mononucleotide (FMN) to catalyze 
the reduction of double bonds found in α,β-unsaturated 

aldehydes and ketones using NADPH or NADH as elec-
tron donors [37]. The ability of Bs-YqjM and other enoate 
reductases to reduce -ene groups is important for the 
catalysis of chemical commodities such as muconic 
acid to adipic acid (a pre-cursor to nylon). However, the 
activity of Bs-YqjM enzymatic activity is known to be 
supressed in the presence of oxygen under aerobic con-
ditions due to a prominent background reaction where 
electrons from NADPH are transferred to dissolved 
molecular oxygen in the buffer. In contrast, its activity is 
markedly increased under anaerobic conditions where 
electrons are instead donated to its target -ene substrates 
[38]. For the 2-cyclohexen-1-one substrate, Bs-YqjM was 
reported to have a K M value of 0.3–0.6 mM under anaer-
obic conditions created using a glucose-glucose oxidase 
system, which consumes the dissolved molecular oxygen 
in the buffering solution to simulate completely anaero-
bic conditions.

To demonstrate the use of an automated LiHa platform 
for performing anaerobic assays, we purified BsYqjM and 
assayed its activity for 2-cyclohexen-1-one by monitor-
ing changes in the absorbance at 340 nm due to NADPH 
oxidation. After calibration of the tips for smaller vol-
umes in the 3–10 μL range, we observed a K M value of 
0.35 ± 0.06 mM using the automated platform (Fig. 6a). 
In comparison, we performed the same assay manually 
and observed a K M value of 0.33 ± 0.4 mM. The simi-
larity of these K M values to each other and to published 
literature values suggested that the LiHa platform could 
be used to automate the preparation of screens, such as 
those to determine the optimal pH for maximum activ-
ity. Towards this end, we determined Bs-YqjM’s activity 
across pH 2.2–8 using the liquid handler (Fig.  6b). We 
found that BsYqjM operates optimally at pH 5–6, which 
aligns with previously reported results that Bs-YqjM pre-
fers slightly acidic conditions [38].

Case study 2: scaling down anaerobic microbial 
phenotypes from pH controlled bioreactors to microplates
Having assessed the efficacy of our system in determin-
ing enzyme kinetic parameters under anaerobic con-
ditions, we wished to investigate the applicability of a 
fixed-tip liquid handling system for a high-throughput 
characterization of microbial phenotypes under anaero-
bic conditions. While it is possible to rapidly cultivate 
microbial strains using our platform, the possible devia-
tion of phenotypes at increasingly larger scales is a cause 
for concern, resulting in ambiguity of the strains to be 
chosen for further screening. Previous studies examin-
ing scaling considerations have primarily investigated 
the difficulty of improving oxygen transfer rates within 
the wells of microplates [18, 39]. However, since we 
are interested only in anaerobic environments, oxygen 
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transfer rates may not play a key role in determining phe-
notypes. Rather, the concentration of substrate, pH, and 
other media conditions could be the determining factors. 
Hence, as a second test case to validate our platform, we 
investigated the ability to scale-down microbial pheno-
types observed in pH controlled 500 mL bioreactors to 
96 well microplates under anaerobic conditions. To this 
end, we examined the growth and metabolite profiles of 
four strains of E. coli—MG1655 and its lactate overpro-
ducing deletion mutant, MG1655 �(adhE, pta) at three 
different stages of adaptive laboratory evolution (denoted 
�(adhE, pta)-D1, D28 and D59 to represent the dura-
tion of adaptive laboratory evolution in days) [40]. These 
strains were chosen because of the expected difference in 
their anaerobic phenotypes. During anaerobic growth, E. 
coli undergoes mixed acid fermentation due to the non-
availability of oxygen as a terminal electron acceptor to 
produce ATP and regenerate the redox cofactors NAD 
and NADP. Instead, E. coli produces a mixture of formate, 
acetate, ethanol, lactate, and small quantities of other 
organic acids as terminal fermentation products (Fig. 7a), 
with acetate, ethanol, and formate being preferred prod-
ucts due to higher energy yields. Due to deletions around 
key fermentation reactions involved in acetate and etha-
nol production (pta and adhE respectively), the deletion 
mutants used in our study are expected to show high 
lactate yields. Further, because these strains are products 
of adaptive laboratory evolution, those strains at a later 
stage of evolution are expected to show increased growth 
rates.

To compare the metabolic state of the different strains 
grown in a bioreactor and microplates, we calculated the 
growth rates and yields of five different products of fer-
mentation on glucose towards the end of the exponential 
phase of growth(Additional file  1: Figure S8). The dele-
tion mutants grown in microplates showed good agree-
ment with the bioreactor phenotype as is, possibly due 
to the elimination of the most prominent fermentation 
modes—acetate and ethanol production. However, the 
wild type strain showed pronounced phenotypic differ-
ences in the microplate, producing significantly lower 
levels of formate. It appeared that more carbon flux was 
directed towards lactate production than formate pro-
duction in the microplates, resulting in less energy effi-
cient fermentation and therefore, reduced growth rates. 
In order to eliminate the possibility of residual dissolved 
oxygen in the media causing aberrant phenotypes and 
lower formate yields, we examined the effect of add-
ing the reducing agents—1 mM cysteine, 1 mM dithi-
othreitol (DTT), and 8 mM sodium sulfide to scavenge 
any residual oxygen and maintain reducing conditions 
within the media (Fig.  7b and Additional file  1: Figure 
S8). Higher concentrations of sodium sulfide were cho-
sen because previous experiments at the 1mM level 
showed no visible differences in the phenotype. To better 
visualize and compare the overall phenotypic differences 
resulting from the different strains and media condi-
tions, we performed a dimensionality reduction of the 
seven analytes (growth rate and yields of acetate, formate, 
lactate, pyruvate, succinate and biomass on glucose) 
through principal component analysis (PCA) (Additional 
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file 1: Figures S6 and S7). Upon analysis of the scores of 
each experimental trial on the first two principal com-
ponents, the bioreactor trial for the wild-type strain 
resulted in phenotypes which could not be replicated in 
microplates since the bioreactor trials seemed to be iso-
lated from the clusters formed by the microplate trials. 
Further, PCA indicated that residual oxygen may not an 
issue since the addition of reducing agents did little to 
alter the phenotypes. Examining the individual analytes 
(Additional file  1: Figure S8), we found that the addi-
tion of cysteine at 1 mM did not alter the metabolite and 
growth profiles significantly for any of the strains. The 
addition of DTT showed a decrease in the yield of nearly 
all products including biomass for all strains, indicating 
that it could be inhibitory to the cells. Interestingly, the 
addition of sodium sulfide seemed to push the metabolic 
state slightly towards that observed in the bioreactor, 

with increased growth rates and acetate yields but lower 
lactate yields. However, since we did not observe similar 
phenotypes using the other reducing agents, we hypothe-
sized that this difference could be due to the basic nature 
of sodium sulfide, which would result in longer fermen-
tation times and therefore a different metabolic profile. 
We confirmed this by growing E. coli at a higher starting 
pH, resulting in longer fermentation duration, and simi-
lar trends in the metabolite yields and growth rates as 
observed in the addition of sodium sulfide.

Hence, we concluded that our platform resulted in 
complete anaerobicity of the media and it was not dis-
solved oxygen that was affecting the metabolic state 
of the cells. It appeared that the pH and consequently, 
the fermentation duration played a more important 
role in determining the phenotype of the wild-type 
strain, as expected. The implementation of pH control 

Glucose

Pyruvate

Succinate

TCA Cycle

Upper 
Glycolysis

ldh

ppc

pox m
dh

pta
ack

adh EthanolAcetate

Formate

Lactate fu
m

frd

a
Pr

od
uc

t Y
ie

ld
(m

m
ol

 P
ro

du
ct

/m
m

ol
 G

lu
co

se
)

G
ro

w
th

 R
at

e 
(1

/h
)

Acetate Formate Lactate Growth Rate

Bioreactor
trial

1.5 g/L 3 g/L 6 g/L
9 g/L 12 g/L 18 g/L

Microplate trials
(varying substrate concentrations)

c

b Bioreactor
trial

Strain
Wild Type (MG1655)
Δ(adh,pta) - D1
Δ(adh,pta) - D28
Δ(adh,pta) - D59−10 0 10 20

−8

−6

−4

−2

0

2

t-SNE Component 1

t-
SN

E 
Co

m
po

ne
nt

 2

0

0.5

1

1.5

2

2.5

3

0

0.5

1

1.5

O-

O

O-

O

OH
O-

O

1.5 g/L

3 g/L

6 g/L

9 g/L

12 g/L

18 g/L

Microplate trials
(varying substrate concentrations)

Fig. 7  Comparison of E. coli’s anaerobic phenotype in bioreactors and microplates. a Schematic showing typical fermentation pathways in E. 
coli. Typical products of mixed acid fermentation on glucose are shown in the pathway along with key fermentation reactions shown in italics. 
The metabolites measured in this study are shown in blue. b Microbial phenotypes reduced to two components through t-distributed stochastic 
neighbors embedding (t-SNE) performed on the metabolite (acetate, formate, lactate, pyruvate, and succinate) yields and growth rates of E. coli 
strains grown in rich defined media in a bioreactor and microplates with different initial concentrations of substrate (glucose). Cluster boundaries 
were drawn manually for illustrative purposes. c A comparison of WildType E. coli’s growth rate and metabolite yields on glucose obtained from a 
bench-top 0.5 L bioreactor and 96-well microplates with different initial concentrations of substrate (glucose)



Page 11 of 16Raj et al. Microb Cell Fact          (2021) 20:184 	

in microplates requires specialized microplates with 
base delivery systems or mini-bioreactors, which would 
greatly increase operational costs [41, 42]. We proposed 
that varying initial glucose concentrations would offer 
a crude yet inexpensive means to alter the duration of 
fermentation, thereby limiting pH change, and conse-
quently, impact the phenotypes of all strains. Therefore, 
we grew the E. coli strains with different starting concen-
trations of glucose to examine this effect and determine 
glucose concentrations that allowed the phenotype of the 
wild-type strain observed in the bioreactor trial to be rep-
licated in microplates (Fig. 7c and Additional file 1: Fig-
ure S10). At high initial glucose concentrations, all strains 
showed increased lactate yields and reduced biomass, 
formate and acetate yields on glucose. Specifically, for the 
wild type strain, this indicates that a significant portion 
of the carbon flux is directed towards lactate production 
with reduced flux through pfl, pta, and adh, resulting 
in less efficient fermentation and reduced growth rates. 
However, at lower substrate concentrations, the overall 
fermentation duration and consequently, the pH change 
during the fermentation decreased. This resulted in less 
overflow of carbon flux towards lactate and increased 
yields of biomass, acetate and formate, with almost no 
lactate and maximal formate, acetate and growth rates at 
the lowest concentrations analyzed. Performing the same 
dimensionality reduction through PCA as described pre-
viously, we found that varying initial glucose concentra-
tions significantly alters the overall phenotypes exhibited 
by the cells, as shown by the spread of the scores of each 
experimental trial in the principal component space 
(Additional file 1: Figure S9). Interestingly, several micro-
plate trials with overall phenotypes very close to their 
bioreactor counterparts for each strain were observed. 
Particularly, the wild-type strain seemed to be closest to 
the microplate trial starting with 6 g/L of glucose. The 
other strains seemed less impacted by high initial glucose 
concentrations and showed good agreement with the bio-
reactor phenotype even at high glucose concentrations.

While these results indicate that phenotypes observed 
in bioreactors can be reasonably replicated in micro-
plates by varying initial substrate concentrations, the 
exact value for each strain may not be the same, as seen 
here. Further, the optimal glucose concentration for each 
strain cannot be determined a priori, which may lead to 
ambiguity in determining better performing strains to 
be chosen for scale up. Hence, we wished to investigate 
dimensionality reduction techniques, using which strains 
showing similarities at the bioreactor scale could be 
clustered together while segregating those that showed 
significant differences. Our dataset from the experi-
ments varying initial glucose concentrations was ideal 
for this purpose since we observed an array of different 

phenotypes at the microplate scale for the same strain. 
Further, the mutant strains—�(adh, pta)-D1 and �(adh, 
pta)-D28 showed very similar phenotypes at the bioreac-
tor scale. As seen previously (Additional file 1: Figure S9), 
principal component analysis was only partially success-
ful in this effort—while most trials with the D1 and D28 
strain exp appeared in the same cluster, trials with the 
D59 strain also occurred very close to them. Moreover, 
the wild-type strains could not form a single cluster, pos-
sibly due to the large variability in the metabolite yields 
and non-linear correlations between the different metab-
olites used. Hence, PCA alone cannot be used to deter-
mine strains that would show similar performance at 
larger scales. A relatively new dimensionality reduction 
algorithm—t-distributed stochastic neighbors embed-
ding, which recreates the probability distribution of the 
similarity of entities from a higher dimensional space 
and projects it onto two dimensions, has been found to 
be successful at clustering similar entities when a large 
number of dimensions are involved [43]. Particularly, 
it has found use in analyzing single cell transcriptomic 
data [44]. Even though our dataset is comprised of only 
6 dimensions i.e. the yields of five metabolites and the 
growth rates, we proposed that tSNE could potentially 
be successful at clustering similarly performing strains 
in a two-dimensional space, particularly due to its use of 
non-linear dimensionality reduction. Remarkably, t-SNE 
performed on our phenotypic data showed near perfect 
clustering of strains showing similar performance at the 
bioreactor scale (Fig. 7b). Specifically, all microplate trials 
from the wild-type strains and the �(adh, pta)-D59 strain 
were resolved into their individual clusters in spite of the 
visible differences in the phenotypes of individual trials. 
The two mutants �(adh, pta)-D1 and �(adh, pta)-D28 
that showed similar performance at the bioreactor scale 
were resolved into a single cluster. These results indicate 
that tSNE could be used effectively to shortlist strains for 
analysis at larger scales, since it is able to effectively seg-
regate strains showing markedly different phenotypes. 
Therefore, while initial glucose concentrations affect 
the phenotypes of microbial strains at the microplate 
scale significantly, the use of dimensionality reduction 
techniques such as tSNE could be used to resolve these 
differences and identify overall phenotypic differences 
between strains.

Conclusions
We have seen that our automated platform is able to rap-
idly and effectively set up microplate experiments to phe-
notype enzymes and microbial strains. The automation 
of such routine metabolic engineering workflows greatly 
expands the number of different strains/enzymes and 
media conditions that can be examined, resulting in large 
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experimental datasets that can assist strain design. With 
machine learning applications in metabolic engineer-
ing becoming more prevalent, there is an urgent need to 
develop tools and protocols for accurate and reproduc-
ible phenotyping strains and enzymes at smaller scales. 
Automated systems are uniquely suited for this task since 
they eliminate human error and require standardized 
protocols to function. Furthermore, recent efforts toward 
developing robot programming languages that allow for 
the development of cross-platform protocols enable rela-
tively easy implementation of complex laboratory work-
flows [45–47].

While automation can enhance experimental through-
put, conducting experiments at accelerated rates also 
increases operational costs and the amount of laboratory 
waste generated due to the number of pipette tips and 
other labware used. Laboratory plastic waste has become 
a major concern in the current era of high-throughput 
experimentation [48–50]. It is quite ironic that the same 
research labs that work on developing microbes for sus-
tainable production of chemicals end up generating 
several million tonnes of plastic waste in the process. 
Through the development of effective and fast decon-
tamination protocols, we eliminated the need for plastic 
pipette tips while maintaining experimental throughput. 
Disregarding repeated and failed experiments, we esti-
mate that nearly 4000 pipette tips would be required to 
complete the two case studies examined in this work if 
they were done manually or using a disposable tip liquid 
handling platform. Further, the automated pipette cali-
bration protocol developed here enables the quick setup 
of a broad range of liquid handling systems for differ-
ent pipetting programs and would also assist in routine 
maintenance without the need for additional expensive 
equipment.

One concern with phenotyping microbial strains 
in microplates is the inability to replicate the mixing 
regimes, oxygen transfer and other physical character-
istics of fermentation observed in larger pH controlled 
bioreactors. These considerations are better addressed 
in miniature bioreactors that have been designed to be 
small scale replicas of bench-top bioreactors. Neverthe-
less, by leveraging the enhanced throughput of micro-
plate experiments, we were able to analyze the effect 
of a large number of media conditions on the cellular 
phenotypes in a relatively short period of time. Conse-
quently, we were able to identify glucose concentrations 
that restricted fermentation durations and thereby, rea-
sonably reproduce bioreactor phenotypes in microtiter 
plates under anaerobic conditions. Furthermore, modern 
dimensionality reduction and data visulalization tech-
niques such as tSNE could be used in conjunction with 
microplate experiments to assist in choosing strains for 

scale-up. We believe that since microplates offer higher 
experimental throughput at very low costs, our platform 
will serve as an effective and representative screen before 
moving on to larger scales. Furthermore, integration of 
our data analysis pipeline—IMPACT [56] with the strain 
testing pipeline has enabled the visualization and analy-
sis of large datasets that emerge as a consequence of our 
platform, and will accelerate future strain design endeav-
ours. While successful at anaerobic phenotyping, we 
believe that the experimental protocols described in this 
study are broadly applicable to various liquid handling 
platforms for a wide range of applications and this work 
will assist the development of sustainable automated high 
throughput experimental platforms.

Materials & methods
Enzymes, strains and experimental medium
Wild type Escherichia coli strain K-12 MG1655 was used 
to detect contamination during the development of our 
decontamination protocol. The wild type Escherichia 
coli strain K-12 MG1655 and its mutants harboring dele-
tions of the genes adhE and pta at three different stages 
of adaptive laboratory evolution [40] (denoted �(adhE, 
pta)-D1, �(adhE, pta)-D28, and �(adhE, pta)-D59 to 
reflect duration of adaptive laboratory evolution in days) 
were used to examine the efficacy of our phenotyping 
platform. The enoate reductase enzyme yqjM (UniProt: 
P54550) from Bacillus subtilis strain 168 was used for the 
anaerobic screen.

Lysogeny Broth (LB) media was used to prepare bac-
terial starter cultures in all cases. Strain phenotyping 
experiments were conducted in a rich defined medium 
(RDM) composed of a carbon source (D-glucose at vari-
ous concentrations), salts (3.5 g/L KH2PO4 , 5 g/L K 2
HPO4 , 3.5 g/L (NH4)2HPO4 , 1 mM MgSO4 , 0.1mM 
CaCl2 ), 1 mM 3-morpholinopropane-1-sulfonic acid 
(MOPS), amino acid supplements (0.8 mM alanine, 5.2 
mM arginine, 0.4 mM aspargine, 0.4 mM aspartate, 0.1 
mM cysteine, 0.6 mM glutamate, 0.6 mM glutamine, 0.8 
mM glycine, 0.2 mM histidine, 0.4 mM isoleucine, 0.8 
mM leucine, 0.4 mM lysine, 0.2 mM methionine, 0.4 mM 
phenylalanine, 0.4 mM proline, 10 mM serine, 0.4 mM 
threonine, 0.1 mM tryptophan, 0.2 mM tyrosine, and 0.6 
mM valine), nucleotide supplements (0.1 mM each of 
adenine, cytosine, guanine, and uracil), and vitamin sup-
plements (0.01 mM each of thiamine, calcium pantoth-
enate, p-aminobenzoic acid, p-hydroxybenzoic acid, and 
2,3-dihydroxybenzoic acid)—adapted from the defined 
media composition described previously [51]. All media 
components were sterilized either by autoclaving or fil-
ter sterilization. Stocks of cysteine, dithiothreitol (DTT), 
and sodium sulfide for use as reducing agents to maintain 
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anaerobicity in the media were prepared at a concentra-
tion of 0.2 M. The stocks were sparged gaseous nitrogen 
through the solutions for 15 min to eliminate dissolved 
oxygen, followed by sterilization.

12% sodium hypochlorite (Bioshop SYP001.1) and 
95% ethanol were diluted to required concentrations to 
prepare disinfectants for the decontamination protocol. 
Aqueous solutions of potassium dichromate (0.4 mM, 
1mM, and 2mM) were prepared to detect pipetting accu-
racy and calibrate the liquid handling system. The polyu-
rethane gas permeable film (Diversified Biotech BEM-1), 
polyester PCR film (Bio-Rad MSB1001), and aluminized 
foil (Bio-Rad MSF1001) were used to seal 96 well micro-
plates (Corning 353072) containing E. coli cultures to 
investigate anaerobicity. Mineral oil (BioShop MIN444) 
was used to prevent evaporation in anaerobic chambers 
where required.

High throughput phenotyping platform
The phenotyping platform described in this study was 
comprised of a Tecan Freedom Evo 100 base fitted with 
a Tecan fixed-tip liquid LiHa (liquid handling) arm, a 
Tecan RoMa (robotic manipulator) arm, a QInstruments 
Bioshake 3000-T microplate heater-shaker, an Agilent 
microplate centrifuge, a Tecan Infinite M200 plate reader, 
and a Tecan Te-VacS vacuum filtration module. Com-
munication with the various modules and all automation 
scripts were set up on Tecan’s EvoWare 2.7 platform.

Enzyme purification for anaerobic screen
The gene encoding yqjM was cloned under the T7 pro-
moter in-frame with an N-terminal 6x HisTag of the 
p15TvL expression vector (AddGene: 26093) using the 
In-Fusion®HD EcoDry kit, and then transformed into 
LOBSTR BL21(DE3) Escherichia coli. Starter cultures for 
yqjM were grown from glycerol stock in lysogeny broth 
(LB) media with ampicillin (100 μg/mL) for 16 h at 37 
°C with shaking. Then, expression cultures were started 
in 1 L Terrific Broth media with ampicillin (100 μg/mL) 
and a 1% v/v inoculant of the starter culture, followed by 
growth for 4 h at 37 °C and induction with 0.4 mM IPTG. 
The expression culture was then transferred to 16 °C and 
grown for 16 h with shaking, pelleted with centrifuga-
tion, and transferred to vials for one freeze-thaw cycle at 
− 20 °C. Frozen cell pellets were thawed and resuspended 
in binding buffer (10 mM HEPES, 500 mM NaCl, 5 mM 
imidazole, pH 7.2) to a final volume of 50 mL, followed 
by addition of 0.25 g lysozyme. Cell pellet mixtures were 
sonicated for 25 min and clarified by centrifugation. The 
supernatant was applied to a cobalt-charged NTA resin 
pre-equilibrated with binding buffer in a gravity-col-
umn set-up. Bound proteins were cleansed with 120 mL 
of wash buffer (10 mM HEPES, 500 mM NaCl, 25 mM 

imidazole, pH 7.2) and collected with 4 mL elution buffer 
(10 mM HEPES, 500 mM NaCl, 250 mM imidazole, pH 
7.2). Protein concentrations were determined by Brad-
ford assay to be 4.3 mg/mL (120 μM), and protein purity 
was determined by SDS-PAGE analysis and densitometry 
to be > 99%. A molar equivalent of flavin mononucelotide 
(FMN) was loaded into YqjM prior to transfer into a 10 
kDa MWCO dialysis bag for dialysis in 1 L dialysis buffer 
(40 mM HEPES, pH 7.5) at 4 °C with gentle stirring for 24 
h. YqjM was then flash frozen drop-wise in liquid nitro-
gen before storage at − 80 °C.

NADPH assay for determination of anaerobic YqjM activity
The glucose oxidase type VII-S from Aspergillus niger 
was used to remove oxygen from enzyme screen reac-
tions using D-glucose as the substrate. Working concen-
trations of 2-cyclohexen-1-one (substrate), β—NADPH 
tetrasodium salt (indicator), glucose oxidase type VII-S 
from Aspergillus niger, and glucose were prepared in 40 
mM HEPES at a pH of 7.5 to assay yqjM activity. Assays 
were set up in a 96 well microplate using the liquid han-
dler and consisted of 0.15 mM NADPH, 10 u/mL glucose 
oxidase, 20 mM glucose, and 15 nM YqjM. The substrate, 
2-cyclohexen-1-one was then added at required con-
centrations along with the activity buffer to make each 
assay up to a volume of 200 μL. The pH gradients were 
prepared using McIlvaine buffers with appropriate ratios 
of 0.2 M Na2HPO4 and 0.1 M citric acid which replaced 
the activity buffer. Salt gradients were prepared by adding 
appropriate concentrations of NaCl and KCl to the activ-
ity buffer.

YqjM activity was determined by measuring NADPH 
concentrations in triplicate using kinetic reads performed 
using a Molecular Devices SpectraMax M2 spectropho-
tometer at 35 °C at an absorbance wavelength of 340 nm 
with shaking before and in between kinetic reads. The 
volumetric activities (μmol min−1 mg−1) were calculated 
using NADPH’s extinction coefficient of 6.3 mM−1 cm−1 
and a height of 0.56 cm. The obtained activity data was 
fit to a Michaelis-Menten curve to obtain KM and VMax 
through non-linear regression using optimization tools in 
the python package—scipy [52].

Determination of microbial phenotypes in microplates
E. coli strains streaked on LB-agar plates were used to 
prepare starter cultures for the scaled down phenotyp-
ing experiments. The strains were inoculated in LB media 
supplemented with 1% glucose in 96 well microplates and 
grown overnight at 37o C with constant shaking at 250 
rpm. Glucose was added to the starter cultures to elimi-
nate the need for an intermediate adaptation culture in 
the experimental media—RDM (Additional file 1: Figure 
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S5). The microplates containing the overnight precul-
tures were then transferred to the liquid handling plat-
form for processing. All following steps were automated 
on the liquid handling platform.

First, to remove traces of fermentation products and 
spent media from the strains, the pre-cultures were har-
vested by centrifugation at 3000g for 10 min and washed 
with RDM lacking carbon source two times before being 
resuspended in the experimental RDM medium consist-
ing of the carbon source and any required supplements. 
Then, the cell density of each well was determined by 
measuring the absorbance at a wavelength at 600 nm on 
a Tecan Infinite M200 plate reader and cells were then 
diluted to a cell density of 0.05 with appropriate media 
to a final volume of 150 μL to normalize all wells to the 
same starting OD.

After this, the plate was removed from the liquid han-
dling platform, taken through cycles of vacuum and 
flushing with nitrogen gas, and transferred into an anaer-
obic chamber filled with N 2 gas. The cultures were then 
covered with a 50  μL layer of laboratory grade mineral 
oil (BioShop MIN444) to prevent evaporation. To ensure 
anaerobic conditions throughout the fermentation, the 
cells were grown within the anaerobic chamber at 37 °C 
and constant shaking in a Molecular Devices SpectraMax 
M2 platereader which also recorded the cell density 
periodically.

After the cells finished growing (about 8 h), the micro-
plate was removed from the anaerobic chamber and 
transferred to the liquid handler for HPLC sample prepa-
ration. The liquid handling platform was programmed to 
pipette the samples onto a 0.2 μm filter plate (Millipore 
MSGVN2210) for filtration. Samples were filtered at 400 
psi for 60 s into a sample collection plate. Fermentation 
products were separated by passing the samples through 
an Aminex HPX-87H cation exchange column (BioRad 
1250140) at a flow rate of 0.6 mL/min with 5mM H 2
SO4 as the mobile phase and 60 °C column temperature. 
Metabolite concentrations were determined by monitor-
ing the refractive index and UV absorbance (at 210 nm, 
254 nm) of the eluent. The chromatograms were inte-
grated using Chromeleon v7.

Determination of microbial phenotypes in pH controlled 
bioreactors
E. coli strains streaked on LB-agar plates were used to 
prepare starter cultures by inoculation into 5 mL LB + 
1% glucose. Cultures were then transferred to 50 mL 
sealed Falcon tubes for oxygen limitation. After overnight 
growth, cells were washed three times with RDM lacking 
carbon source before being transferred to 500 mL biore-
actors (Applikon Mini) with 300mL of RDM with a glu-
cose concentration of 2%. The media in the bioreactors 

was maintained anaerobic by sparging with nitrogen gas. 
pH was maintained at 7 within the bioreactor by continu-
ous control using 10 M NaOH and the temperature was 
maintained at 37 °C. Samples for cell density and metab-
olite concentration measurements were withdrawn from 
the bioreactor periodically. Cell density was determined 
by measuring absorbance at 600 nm on a spectrophotom-
eter (Thermo Scientific GENESYS20). Metabolite con-
centrations were determined through HPLC as described 
in the previous section after filtering the samples through 
0.2 μm nylon filters.

Data analysis
Data analyses for all sections were conducted using 
Python on Jupyter notebooks. The jupyter notebooks 
used to generate figures and process data in this work, 
along with a description of each file can be found on the 
Github repository associated with this article—https://​
github.​com/​LMSE/​autom​ated_​scale​down [53]. The 
python based data analysis library—pandas and plotting 
library—plotly were used extensively for all data analysis 
and visualization pipelines in this work [54, 55].

Microbial phenotypic data and growth curves were 
analyzed using the IMPACT Framework [56]. For the 
microbial phenotyping experiments, since time-course 
metabolite concentrations could not be obtained for 
the microplate trials, end-point metabolite concentra-
tions were used to calculate yields. Hence, for a fair 
comparison with the microplate trials, yields for the 
bioreactor trials were calculated from metabolite con-
centrations obtained near the end of the exponential 
phase of growth. Growth rates for both bioreactor and 
microplate trials were determined from only the expo-
nential phase of growth and were calculated as the spe-
cific biomass productivity (i.e. 1/[X] * d[X]/dt where [X] 
is the biomass concentration) and averaged over the 
required time-period. The sci-kit learn library was used 
perform principal component analysis (PCA) to reduce 
the dimensionality of scaled phenotype data (growth 
rates and yields of acetate, formate, lactate, pyruvate, and 
succinate on glucose) and enable easier phenotypic com-
parisons [57]. A number of components that explained 
at least 90% of the variance in the phenotypic data was 
chosen for PCA. Phenotypic data was scaled to unit vari-
ance and zero mean prior to PCA. Similarly, t-distributed 
stochastic neighbours embedding was also implemented 
from the sci-kit learn library. A perplexity that resulted 
in the most robust embedding was determined after iter-
ating through several values. The learning rate ( ǫ ) that 
minimized the Kullback–Leibler divergence of the input 
data distribution and the resulting distribution was used. 
Regardless, other values of perplexity and learning rate 
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resulted in similar results when an optimal solution was 
achieved.
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