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Abstract

For decades, researchers have been fascinated by the strategy of using cell
therapy for bone defects; some progress in the field has been made. Owing to
its ample supply and easy access, skin, the largest organ in the body, has
gained attention as a potential source of stem cells. Despite extensive
applications in skin and nerve regeneration, an increasing number of reports
indicate its potential use in bone tissue engineering and regeneration.
Unfortunately, few review articles are available to outline current research
efforts in skin-based osteogenesis. This review first summarizes the latest
findings on stem cells or progenitors in skin and their niches and then
discusses the strategies of skin cell-based osteogenesis. We hope this article
elucidates this topic and generates new ideas for future studies.

Open Peer Review

Referee Status: " +*

Invited Referees

1 2
version 1 v v
published
17 Mar 2017

F1000 Faculty Reviews are commissioned
from members of the prestigious F1000
Faculty. In order to make these reviews as
comprehensive and accessible as possible,
peer review takes place before publication; the
referees are listed below, but their reports are

not formally published.

1 Zulma Gazit, Cedars-Sinai Medical Center
USA

o Gordana Vunjak-Novakovic, Columbia
University USA

Discuss this article

Comments (0)

Page 1 of 8


http://f1000research.com/channels/f1000-faculty-reviews/about-this-channel
http://f1000.com/prime/thefaculty
http://f1000.com/prime/thefaculty
https://f1000research.com/articles/6-291/v1
http://orcid.org/0000-0001-5710-3578
https://f1000research.com/articles/6-291/v1
http://dx.doi.org/10.12688/f1000research.10280.1
http://dx.doi.org/10.12688/f1000research.10280.1
http://crossmark.crossref.org/dialog/?doi=10.12688/f1000research.10280.1&domain=pdf&date_stamp=2017-03-17

FIOOOResearch F1000Research 2017, 6(F1000 Faculty Rev):291 Last updated: 17 MAR 2017

Corresponding author: Ming Pei (mpei@hsc.wvu.edu)

How to cite this article: Wang T, Zhu L and Pei M. Insight into skin cell-based osteogenesis: a review [version 1; referees: 2 approved]
F1000Research 2017, 6(F1000 Faculty Rev):291 (doi: 10.12688/f1000research.10280.1)

Copyright: © 2017 Wang T et al. This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Data associated with the article
are available under the terms of the Creative Commons Zero "No rights reserved" data waiver (CCO 1.0 Public domain dedication).

Grant information: This work was supported by research grants from the Musculoskeletal Transplant Foundation and the National Institutes of
Health (1RO3AR062763-01A1 and 1RO1AR067747-01A1).

Competing interests: The authors declare that they have no competing interests.

First published: 17 Mar 2017, 6(F1000 Faculty Rev):291 (doi: 10.12688/f1000research.10280.1)

Page 2 of 8


http://dx.doi.org/10.12688/f1000research.10280.1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://dx.doi.org/10.12688/f1000research.10280.1

Introduction

Finding appropriate therapeutic cells for bone regeneration has
been a challenge for decades. Recently, stem cells from the skin, a
potentially large cell source with easy access, have caught the atten-
tion of clinicians and scientists. More and more evidence indicates
that skin stem cells are a potential cell source for bone regenera-
tion. For example, heterozygous inactivating mutations of GNAS
(encoding guanine nucleotide-binding G protein alpha subu-
nit) cause diseases, including progressive osseous heteroplasia,
Albright hereditary osteodystrophy, pseudohypoparathyroidism,
and osteoma cutis'~". These disorders have the common features
of superficial ossification, starting with cutaneous ossification,
with some involving subcutaneous and deeper tissues and some
restricted to the skin. Multipotent progenitor cells and bone mor-
phogenetic proteins (BMPs) were reported to be responsible for
ectopic ossification™.

Despite a decade of investigations using skin stem cells for
regenerative medicine, most literature concerns their application
in skin tissue engineering’ and nerve regeneration®, which was
well covered by a recent review article’. However, few review
articles are available on skin cell-based osteogenesis. This review
first summarizes the latest findings on stem cells or progenitors
in skin and their niches and then discusses the strategies of skin
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cell-based osteogenesis (Figure 1). We hope this article elucidates
this topic and generates new ideas for future studies.

Characteristics of skin stem cells and niches

Besides the primary structure of the epidermis, dermis, and
subcutaneous tissue, there are hair follicles, vessels, capillaries,
neurons, sweat glands, sebaceous glands, lymphatic capillaries, and
erector pili muscles in skin, implying that there could be numer-
ous niches for stem cells and progenitors in this tissue (Table 1).
Evidence also indicates that stem cells in skin, so-called pericytes,
might be of perivascular origin'’.

Epidermis

Epidermal stem cells are found in both hair follicle bulge'"'"”
and interfollicular epidermis'*'*. They are also viewed as kerati-
nocyte stem cells because they generate cells that produce
keratin'''*. Recent reports indicate that human epidermal stem
cells are able to create all major neural crest derivatives con-
taining neurons, Schwann cells, myofibroblasts, melanocytes,
and bone/cartilage cells'>'®. Despite the investigation of many
stem cell markers, such as o6 integrin 5-bromo-2-deoxyuridine,
B1 integrins, CD133, CD200, CD90, keratin 15, delta 1, and
p63"7, the molecular signature of epidermal stem cells remains
undetermined.

Osteogenesis

Figure 1. Skin cells for osteogenesis. (A-G) Stem cells and niches found in skin. (A) Hair follicle bulge-derived stem cells' =", (B) Hair
follicle papilla-derived stem cells'®?*=**. (C) Hair sheath-derived stem cells'®*. (D) Pericytes'*°'. (E) Sweat gland-derived stem cells**. (F)
Interfollicle epidermis-derived stem cells™®'. (G) Stem cells from dermal niches that are not fully characterized” %> (H-K) Strategies
for using skin cells. (H) Total skin fibroblasts®<. (I) Genetic modification®*=*. (J) Cell sorting®*°>=°. (K) Cell reprogramming®-°%%. (L-0)
Skin cells’ osteogenesis. (L) Limb bone defect regeneration®“"#*. (M) Cranial bone defect regeneration®“*445(N) Mandibular bone defect

regeneration’¢. (O) Rib bone defect regeneration*.
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Table 1. Characterization of skin stem cells and niches.

Location Niche Culture Name Markers Differentiation potential References
Epidermis Interfollicle Adherence  Epidermal o6 integrin, B1 integrins, Keratinocytes 13,14
epidermis stem cells CD133, CD90, and keratin 15
Hair Hair follicle  Adherence Keratinocyte Keratin 15, keratin 19, Keratinocytes, all major 11,12,14,15
follicle and bulge stem cells/ B1 integrins, CD200, neural crest lineages,
appendages epidermal PHLDA1, follistatin, frizzled including neurons, Schwann
neural crest  homolog 1, CD24", CD34", cells, myofibroblasts,
stem cells CD71"°, and CD146"° melanocytes, and bone/
cartilage cells
Hair follicle  Floating Dermal Nestin, fibronectin, CD34, Adipogenic and osteogenic = 16,22
sheath spheres sheath cells  and keratin 15(-) lineages
Hair follicle  Floating Skin-derived  Blll-tubulin, p75NTR, NF-M; Adipogenic, osteogenic, 18-23
papillae spheres precursor CNPase, GFAP, and S1008 chondrogenic, and myogenic
cells lineages, neurons, glia, and
Schwann cells
Sweat gland Adherence Sweat gland a6 integrin and nestin Adipogenic, chondrogenic, 25,26
stroma- and osteogenic lineages
derived
stem cells
Dermis Perivascular Adherence Pericytes CD146, NG2, CD31(-), Adipogenic, chondrogenic, 10,51
CD34(-), CD144(-), and myogenic, and osteogenic
VWEF(-) lineages
Undefined Adherence Dermal stem CD13, CD29, CD44, CD49d, Adipogenic, chondrogenic, 27-34,50,52,53
niches of cells/dermis- CD71, CD73, CD90, CD105,  myogenic, and osteogenic
dermis derived CD166, SSEA4, vimentin, lineages

stromal cells

CD14(-), CD31(-), CD34(-),

CD45(-), CD106(=),
CD133(-), SSEA3(-), and

nestin(-)

CNPase, 2',3"-cyclic nucleotide 3’-phosphodiesterase; GFAP, glial fibrillary acidic protein; NG2, neural/glial antigen 2; PHLDA1, pleckstrin homology-
like domain family A member 1; SSEA4, stage-specific embryonic antigen-4; VWF, von Willebrand factor.

Hair follicle and appendages

Hair follicles have long been considered an important niche for
stem cells because of the versatility in regeneration of hair and
epidermis and wound repair. For example, skin-derived precur-
sors (SKPs) from both murine and human origins residing in the
papillae of hair follicles'® can differentiate into neuron, glia, smooth
muscle, and adipose cells'””’. As non-adherent cells, the SKPs are
cultured as floating spheres with a neural crest origin®'. Although
lineage differentiation crosses both ectoderm and mesoderm'®*,
their potential for osteogenesis has seldom been tested, although
a cell subpopulation characterized from hair follicle dermal papilla
and dermal sheath of both rats and humans has the capacity for
adipogenesis, myogenesis, chondrogenesis, and osteogenesis*~*.
In addition, since keratinocytes can be generated from the hair
follicle bulge, the hair follicle is an important niche for epidermal
stem cells'""'">. These findings indicate that the hair follicle is one
of the most important niches in skin with stem cells and progeni-
tors generating mesenchymal lineages. Recent studies indicate
that sweat glands, a skin appendage, are also characterized as a
niche for stem cells which can be isolated and induced into three
mesodermal lineages”*°.

Dermis

Dermis constitutes the majority of skin in both thickness and cell
number. Dermal fibroblasts, the principal cells in dermis, have long
been considered terminally differentiated cells and served as a neg-
ative control of mesenchymal stem cells (MSCs). When preserved
in saline at 4°C for 6 days before digesting, non-hair follicle human
dermis has been successfully proven to be an MSC source, indica-
tive of a potential niche for stem cells”’. This finding is supported by
another report, in which clonal analysis of a single dermal fibrob-
last isolated from human foreskin exhibited tripotent, bipotent, and
unipotent ability”, indicating multiple differentiation potential in
dermal fibroblasts. Increasing evidence also demonstrates that these
cells are positive for surface markers CD29, CD44, CD73, CD90,
CD105, and CD166, indicating their MSC nature, and negative for
CD14, CD31, CD34, CD45, and CD133, indicating non-hemat-
opoietic lineage”*.

Strategies for using skin cells for osteogenesis

Fibroblasts from rabbit skin were osteoinduced followed by
seeding on porous titanium pylon; this construct exhibited enhanced
osseointegrative properties compared with unseeded pylon in
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both in vitro and in vivo studies®™. This study and others™ suggest
the possibility of using skin fibroblasts for osteogenesis, although
an early report showed the inhibition of rat skin fibroblasts on min-
eralization of bone marrow MSCs”. Unfortunately, owing to the
low osteogenic potential of total skin fibroblasts with mixed cell
populations, this kind of trial is far from successful. Therefore, it
is critical to isolate skin cells with a preference for differentiation
toward osteogenesis.

Genetic modification

Using modification of genes to increase the expression of specific
osteogenesis-related genes, skin fibroblasts, acting as “protein
secretors” without differentiating by themselves or having the para-
crine/exosomal effects that are found in MSCs, were promoted for
bone tissue engineering and regeneration**~'. These genes of inter-
est include BMP-2*—, BMP-4*>, BMP-7°**’, Runx2 (runt-related
transcription factor 2)*¥ and LMP-3 (lim mineralization
protein-3)*"*_In in vivo studies using skin fibroblasts, both ectopic
osteogenesis and orthotopic bone regeneration are achieved through
gene therapy*** from small animals like mice*, rats*****, and rab-
bits*' to large animals like equines®. A study comparing different
genes of interest for modification efficiency of skin fibroblasts
determined that BMP-2 is more powerful than Runx2* and that
the mineralization ability of Runx2-modified skin fibroblasts is
scaffold-dependent™. Gene therapy is a promising method with a
prominent effect; however, the safety of viral genetic modification
needs further characterization®.

Cell sorting

Mixed populations isolated from total skin make cell therapy
strategies for osteogenesis unsuccessful. Consequently, there are
increasing efforts in sorting cells from skin to get target subpop-
ulations. For example, type IV collagen-coated dishes have been
used to attract CD29(+) human dermal stem cells via adherence,
which exhibited higher osteogenic, adipogenic, and chondro-
genic capacity compared with unsorted cells*. CD271(+) and
CD146(+) cells isolated from human skin and CD73(-=)CD105(+)
cells isolated from mouse skin by immunosorting also showed
elevated multi-differentiation potential’*~”. Interestingly, subpopu-
lations sorted by other markers from human skin, such as CD73,
stage-specific embryonic antigen-4 (SSEA-4), and BmprlB,
show relatively restricted differentiation potential. For instance,
BmprIB(+) cells can generate only an osteogenic lineage™”,
indicating that these subpopulations can be applied as therapeutic
cells for osteogenesis because of their established lineage prefer-
ence. However, concern due to low harvest rate resulting from cell
sorting still exists™*!>%,

Cell reprogramming

Characterized by unlimited proliferation and differentiation
potential like embryonic stem cells™, induced pluripotent
stem cells (iPSCs) can be used in numerous stem cell therapies.
As skin fibroblasts are the most abundant and easily accessed
cells, they are commonly chosen as the parent cells of iPSCs.
It has been well characterized that iPSC-derived osteoblasts can
form osteoid both in vitro and in vivo’**. A recent study revealed
that bone defect repair is also achieved by human iPSCs in a
radial defect model of immune-deficient mice™. Furthermore,
the involvement and mechanism of microRNAs in the regulation
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of mouse iPSCs during osteogenic differentiation have been
preliminarily investigated®.

Conclusions and perspectives

In past decades, investigations using skin cells for osteogenesis
have achieved significant progress. Many niches for stem cells
in skin have been revealed and preliminarily characterized. Also,
skin cells, enriched or not enriched, modified or not modified, are
used for osteogenesis in vitro and in vivo and have achieved suc-
cess in limb, cranial, mandibular, and rib bone defect regeneration
(Figure 1). However, some key problems remain unsolved. For
example, since the niche for stem cells in dermis is not completely
characterized, the efficiency of enriching stem cells or progenitors
from skin is still restricted. For cell modification strategies, like
gene therapy and cell reprogramming, the efficacy might be readily
apparent, but the safety needs more in-depth research.

Recent developments in epigenetic conversion may shed some
light on cell reprogramming. Unlike in iPSCs, epigenetic conver-
sion does not completely reverse cells to the pluripotent stem cell
stage®~*". This approach may avoid undesired side effects such
as teratoma, which often occurs in the application of iPSCs and
embryonic stem cells. Epigenetic conversion has achieved progress
in directing fibroblasts from human skin and mouse embryos into
cardiomyocytes, neuronal cells, and insulin-secreting cells with
a mature phenotype’ “***. Although not much is known about
converting skin fibroblasts into osteoblasts, there is a report of
converting non-osteogenic cells into osteoblasts by epigenetic stim-
ulation of BMP-2 expression”. By transient use of platelet-derived
growth factor-AB and 5-azacytidine, mature bone and fat cells can
also be converted into multipotent stem cells®”. Thus, although
there are no studies characterizing the cells converted for bone
regeneration, the most common candidate for epigenetic conver-
sion, skin cells, may play a significant role in this strategy.

Taken together, two of these strategies are promising. One
strategy is the enrichment of stem cells and progenitors from dif-
ferent skin niches. By improving the current low-efficiency cell
isolation, a mass of therapeutic cells can be gathered from skin for
better bone tissue engineering and regeneration. The other strategy
is based on the easy access and abundant amount of skin fibrob-
lasts. Via modification of the cell, either through iPSCs or the recent
concept of epigenetic conversion, a differentiation-specific cell
population can be manipulated and gathered. In that case, therapeu-
tic cells for osteogenesis can be harvested on a large scale, making
both the autologous and allogeneic approaches possible.
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