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An overview of radiotherapy (RT) induced normal tissue complication probability (NTCP) models is presented. NTCP models
based on empirical and mechanistic approaches that describe a specific radiation induced late effect proposed over time for
conventional RT are reviewed with particular emphasis on their basic assumptions and related mathematical translation and their
weak and strong points.

1. Introduction

Modern radiotherapy techniques allow unprecedented levels
of accuracy, precision, and conformity in target localization,
patient setup, and dose delivery thanks to the aid of many
different imaging modalities.

Contemporary treatment strategies almost always involve
delivering higher doses to the targeted tissue with the aim
of improving tumor control, but before such approaches can
be safely implemented an accurate and reliable knowledge on
toxic effects on surrounding tissues has to be secured.

With the aim of normal tissue preservation many models
have been proposed to describe radiation induced compli-
cations mostly focusing on late complications which, being
irreversible, are considered to have the highest impact on the
patient quality of life.

In this, as in most overviews [1–5], normal tissue com-
plication probability (NTCP) models have been divided into
mechanistic and (semi)empirical, according to the level of
detail in tissue structure that is introduced. Ideally models
should be able to accommodate the body of knowledge com-
ing from cellular radiobiology andmore specifically the linear
quadratic (LQ) model of cell kill and its more sophisticated
evolutions that incorporate cell proliferation, cycle effects,
and repair as well as local environmental effects and vascu-
larization. The mechanistic models which almost invariably
rely on the paradigm on viewing the tissue as a cooperative

collection of functional subunits that allow preservation of
the tissue functionalities are able to integrate the LQ model
in a more straightforward way.

This overview focuses on the description of tissue organi-
zationwithout any initial assumption on the subunit response
to radiation. Our approach stresses themathematical transla-
tion of the features of the presented models to better expose
their versatility and the opportunities for further devel-
opments. Indeed, radiobiological modeling needs a quite
complex mathematical toolbox, mirroring the complexity of
the biological systems. Each organ is not just an agglomerate
of cells but it has an underlying architecture/organization that
is the very basis of its functional role, enablingmany different
strategies (renewal/replacement of damaged cells, intricate
microscopic repair pathways, etc.) to successfully deal with
radiation damage [6].

Many of these radiobiological models have been inte-
grated into Treatment Planning Systems [7–10] sometimes in
a simplified form to allow a biological optimization of the
dose delivery or a ranking of competing treatment strategies.
This can be seen as a mandatory first step towards a patient
specific design of a radiotherapy care path.

2. The Lyman-Kutcher-Burman Model

2.1. The Pure Lyman Model. The most widely used NTCP
model in clinical radiobiology is the Lyman model [11].
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The core of the model is a fit of frequency data collected
for chosen clinical toxicity endpoints and for a particular class
of dose irradiation patterns, namely, those patterns where a
given portion of an organ or tissue volume absorbs a spatially
uniform dose and the rest of its volume absorbs (ideally) no
dose at all [12]. If we label as 𝑆𝐷 the point set within the
irradiated organ where the dose takes the constant dose value𝐷, the chosen fitting function is assumed to be given by the
following expression [13]:

F = 12 (1 + erf ( 𝑡√2)) ;
𝑡 = 𝐷 − 𝐷50

𝑒
𝑜 ⋅ (𝜇 (𝑆𝐷))−𝑛𝑒𝑜𝑚𝑒

𝑜 ⋅ 𝐷50
𝑒
𝑜 ⋅ (𝜇 (𝑆𝐷))−𝑛𝑒𝑜 = 𝐷 ⋅ (𝜇 (𝑆𝐷))

𝑛𝑒
𝑜 − 𝐷50

𝑒
𝑜𝑚𝑒

𝑜 ⋅ 𝐷50
𝑒
𝑜

, (1)

where 𝜇(𝑆𝐷) is the measure of the support set 𝑆𝐷 (assuming
the set 𝑂, representing the whole organ, to have measure 1);𝐷50

𝑒
𝑜, 𝑛𝑒𝑜, and 𝑚𝑒

𝑜 are fitting parameters, specific for organ 𝑜
and endpoint 𝑒, and erf(𝑥) is the error function, defined as

erf (𝑥) def= 2√𝜋 ∫𝑥0 𝑒−𝜉2d𝜉. (2)

As the only features of the dose map that are included in the
model are its constant value and the measure of its support, it
is clear that the actual position and shape of the set 𝑆𝐷 within
the organ are considered irrelevant.

In more technical terms, if we define a random indicator𝑌𝑜,𝑒𝐷(𝑟) such that 𝑌𝑜,𝑒𝐷(𝑟) = 1 flags the event that endpoint 𝑒 is
observed in organ 𝑜when the latter absorbs the dose𝐷(𝑟), we
can say that at this stage we assume to know the probability𝑃(𝑌𝑜,𝑒𝐷⋅I𝑆𝐷 (𝑟)

= 1 | 𝑛𝑒𝑜, 𝑚𝑒
𝑜, 𝐷50

𝑒
𝑜) only for dose maps 𝐷(𝑟) of the

form𝐷⋅I𝑆𝐷(𝑟) for any 𝑆𝐷, where 𝑟 is a point in the organ under
investigation and I𝑆𝐷(𝑟) is the indicator function of the set 𝑆𝐷;
that is,

I𝑆𝐷 (𝑟) = {{{
1 ∀𝑟 ∈ 𝑀 : 𝑟 ∈ 𝑆𝐷0 ∀𝑟 ∈ 𝑀 : 𝑟 ∉ 𝑆𝐷. (3)

This knowledge is summarized by a database of triples(𝑛𝑒𝑜, 𝑚𝑒
𝑜, 𝐷50

𝑒
𝑜).

2.2. The Kutcher-Burman Interpolation. Having described
the radiobiological consequences of the partial uniform dose
distributions, the model needs to be extended to arbitrary
distributions; that is, we want to know the probability𝑃(𝑌𝑜,𝑒𝐷(𝑟) = 1 | 𝑛𝑒𝑜, 𝑚𝑒

𝑜, 𝐷50
𝑒
𝑜) for arbitrary 𝐷(𝑟). We are thus

facing an interpolation/extrapolation problem in the domain
of dose maps and the missing information must be fed in,
through some further assumption. Many solutions have been
proposed to this problem [14, 15] the most widely accepted
being the so-called “Kutcher-Burman histogram reduction
scheme” [16–20]. This interpolation algorithm relies on the
concept of Dose Volume Histogram (DVH) [21, 22], which
we now briefly introduce. First of all, to be more adherent to
the clinical practice and to avoid dimensional issues, we note
that a dose map 𝐷(𝑟) is usually given in the form 𝐷 ⋅ ℎ(𝑟)

where 𝐷 is the prescription dose and ℎ(𝑟) is a dimensionless
function (the “normalized dose distribution”).

The range of ℎ(𝑟) can be divided into, say, 𝑁 intervals
(bins) of width Δ, each interval defining its inverse image.
To a chosen binning we can associate the set of couples{(ℎ𝑖, 𝜇(𝑆ℎ𝑖))}where one representative value, ℎ𝑖 (e.g., the lower
boundary or the middle point), in each dose interval is
matched to the size 𝜇 of the inverse image, 𝑆ℎ𝑖 , of that interval.
This set of couples is called differential (normalized) DVH
(dDVH).

The key idea of the Kutcher-Burman interpolation is to
consider each couple (ℎ𝑖, 𝜇(𝑆ℎ𝑖)) of the dDVH under investi-
gation as describing an independent partial uniformdistribu-
tion𝐷⋅ℎ𝑖 ⋅I𝑆ℎ𝑖 (𝑟) to which a new, equivalent (here “equivalent”
means being mapped to the same real number byF), partial
uniform distribution, 𝐷 ⋅ I𝑇ℎ𝑖 (𝑟), is associated. This new
equivalent partial uniform distributions is taken to have
a support 𝑇ℎ𝑖 whose size is fixed by the requirement of
preserving the complication probability, that is to say, the
value of 𝑡 in (1). In formulas we have

𝐷 ⋅ ℎ𝑖 − 𝐷50
𝑒
𝑜 ⋅ (𝜇 (𝑆ℎ𝑖))−𝑛𝑒𝑜𝑚𝑒

𝑜 ⋅ 𝐷50
𝑒
𝑜 ⋅ (𝜇 (𝑆ℎ𝑖))−𝑛𝑒𝑜 = 𝐷 − 𝐷50

𝑒
𝑜⋅ (𝜇 (𝑇ℎ𝑖))−𝑛𝑒𝑜𝑚𝑒

𝑜 ⋅ 𝐷50
𝑒
𝑜 ⋅ (𝜇 (𝑇ℎ𝑖))−𝑛𝑒𝑜 (4)

from which we derive

𝜇 (𝑇ℎ𝑖) = ℎ𝑖1/𝑛𝑒𝑜𝜇 (𝑆ℎ𝑖) . (5)

Thefinal assumptions are as follows: (a) consider the supports𝑇ℎ𝑖 as disjoint (which we can do in accordance with the
assumption that the actual position of the dose absorbing
regions is irrelevant) so that the partial uniform distribution𝐷⋅I⋃𝑖 𝑇ℎ𝑖 (𝑟) can be defined and (b) take the initial distribution
as being equivalent to the latter partial uniform distribution
forwhichwe are allowed to use formula (1) to calculate a value
of 𝑡 and a complication probability. Indeed,

𝜇(⋃
𝑖

𝑇ℎ𝑖) = ∑
𝑖

𝜇 (𝑇ℎ𝑖) = ∑
𝑖

ℎ𝑖1/𝑛𝑒𝑜𝜇 (𝑆ℎ𝑖) . (6)

We have that

𝑡 = 𝐷 − 𝐷50
𝑒
𝑜 ⋅ (𝜇 (⋃𝑖 𝑇ℎ𝑖))−𝑛𝑒𝑜𝑚𝑒

𝑜 ⋅ 𝐷50
𝑒
𝑜 ⋅ (𝜇 (⋃𝑖 𝑇ℎ𝑖))−𝑛𝑒𝑜

= 𝐷 − 𝐷50
𝑒
𝑜 ⋅ (∑𝑖 ℎ𝑖1/𝑛𝑒𝑜𝜇 (𝑆ℎ𝑖))−𝑛𝑒𝑜𝑚𝑒

𝑜 ⋅ 𝐷50
𝑒
𝑜 ⋅ (∑𝑖 ℎ𝑖1/𝑛𝑒𝑜𝜇 (𝑆ℎ𝑖))−𝑛𝑒𝑜 .

(7)

A further trivial manipulation of the last formula yields

𝑡 = 𝐷 ⋅ (∑𝑖 ℎ𝑖1/𝑛𝑒𝑜𝜇 (𝑆ℎ𝑖))𝑛𝑒𝑜 − 𝐷50
𝑒
𝑜𝑚𝑒

𝑜 ⋅ 𝐷50
𝑒
𝑜

. (8)

And it is clear that the product in the numerator can be
interpreted as a uniform dose delivered to the whole organ
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volume which has the same complication probability of the
original distribution; hence it is named Equivalent Uniform
Dose (EUD):

EUD def= 𝐷 ⋅ (∑
𝑖

ℎ𝑖1/𝑛𝑒𝑜𝜇 (𝑆ℎ𝑖))𝑛𝑒
𝑜 . (9)

It is easily checked that a change in the normalization forℎ(𝑟) does not change the value of 𝑡, provided that the
prescription dose is scaled accordingly (indeed formula (8)
is most often written as 𝑡 = (𝐷ref ⋅ [∑𝑖(𝐷𝑖/𝐷ref )1/𝑛𝑒𝑜𝜇(𝑆𝐷𝑖)]𝑛𝑒𝑜 −𝐷50

𝑒
𝑜)/(𝑚𝑒

𝑜 ⋅ 𝐷50
𝑒
𝑜) for arbitrary𝐷ref ; however note that (𝐷ref ⋅[∑𝑖(𝐷𝑖/𝐷ref )1/𝑛𝑒𝑜𝜇(𝑆𝐷𝑖)]𝑛𝑒𝑜 − 𝐷50

𝑒
𝑜)/(𝑚𝑒

𝑜 ⋅ 𝐷50
𝑒
𝑜) = ((𝐷/𝐷) ⋅𝐷ref ⋅ [∑𝑖(𝐷𝑖/𝐷ref )1/𝑛𝑒𝑜𝜇(𝑆𝐷𝑖)]𝑛𝑒𝑜 − 𝐷50

𝑒
𝑜)/(𝑚𝑒

𝑜 ⋅ 𝐷50
𝑒
𝑜) = (𝐷 ⋅[∑𝑖(𝐷𝑖/((𝐷/𝐷ref ) ⋅ 𝐷ref ))1/𝑛𝑒𝑜𝜇(𝑆𝐷𝑖)]𝑛𝑒𝑜 − 𝐷50

𝑒
𝑜)/(𝑚𝑒

𝑜 ⋅ 𝐷50
𝑒
𝑜) =(𝐷 ⋅ (∑𝑖 ℎ𝑖1/𝑛𝑒𝑜𝜇(𝑆ℎ𝑖))𝑛𝑒𝑜 − 𝐷50

𝑒
𝑜)/(𝑚𝑒

𝑜 ⋅ 𝐷50
𝑒
𝑜)).

Note also that in the above reasoning the values𝑛𝑒𝑜, 𝑚𝑒
𝑜, 𝐷50

𝑒
𝑜 are not dependent on the dose map; therefore

they are expected to be those listed in the “elementary”
database. Continually updated versions of this body of
knowledge can be found in the literature [23], most notably
the QUANTEC collaboration [24] which is the reference for
daily clinical practice in radiotherapy.

2.3. Issues on Fractionation Effects. When the Lyman model
was proposed, patient irradiation had a simple ballistician
that delivered dose distributions with sharp penumbras. As
a consequence the basic assumption that dose delivery was
performed on a dichotomic basis, with irradiated tissue
absorbing all the dose at the intended fractionation and the
rest of the tissues absorbing no dose at all, was fairly accurate.
In a few years, however, technological advances allowed irra-
diations strategies that, in spite of a much better performance
in concentrating the high dose region around the tumour
tissue, could induce highly nonuniform low dose deposit
in surrounding healthy tissues. This motivated, at least
partially, the introduction of the Kutcher-Burman reduction
scheme, which then needed to accommodate also the fact
that different portions of the irradiated volume receive the
accumulated dose in different fraction sizes according to their
position in the inhomogeneous dose map. The most used
approach to solve this issue is a nonlinear rescaling of the dose
axis according to the BED formula of the LQ model [25, 26].
This solution is obtained by forcing microscopic radiobiol-
ogy into a model that has no built-in slot to account for
“microscopic resolution.”However, once this step is accepted,
additional microscopic details coming from dedicated in
vitro experiments can be included such as incomplete repair,
track structure effects [27, 28], and high dose linearization of
survival (i.e., the LQL model) [29, 30].

3. The Models Based on Functional Subunits

3.1. The Threshold Poisson-Binomial (TPB) Models: Critical
Volume Model and Critical Element Model. The Critical Vol-
umeModel [31–33] relies on the identification of an “atomic”
biological entity, usually denoted as Functional Subunit

(FSU), whose response to ionizing radiation can be described
as a Bernoulli trial, with an associated dichotomic random
variable (random indicator) 𝑋, taking the value 1 with
probability 𝑝 if the FSU has been “inactivated,” that is, it is
unable to perform its biological task after the irradiation, and
the value 0 with probability 1−𝑝 if the FSU is still functioning
properly.

It is also assumed that a definite collection of 𝑁 of these
atomic entities forms a tissue, that is, a macroscopic, compos-
ite, biological entity, whose status after irradiation is evaluated
from the observation of some chosen biological endpoint.

It is only from this viewpoint that the FSUs are considered
as “atomic” in the sense that all the information about their
interaction with ionizing radiation is summarized by the
inactivation probability 𝑝. In fact, to arrive at a consistent
expression relating absorbed dose to inactivation probability
the internal structure of the FSUs must be considered.

If we define 𝑋𝑖 as the random indicator associated with
the 𝑖th FSU, then the sum 𝐾 = ∑𝑁

𝑖 𝑋𝑖 is a random variable
which counts the number of FSUs that have been inactivated
by radiation.

In the standard formulation of the model, the FSUs are
assumed independent, and the behavior of their macroscopic
aggregate, that is, the tissue, is described by the variable𝐾 just
introduced, together with a characteristic threshold 𝑡𝑒𝑜. These
two can be combined in a new, global, random indicator𝑌𝑒𝑜 = 𝐻(𝐾 − 𝑡𝑒𝑜), where 𝐻 is the Heaviside step function.𝐾 and 𝑡𝑒𝑜 are related in such a way that if more than 𝑡𝑒𝑜 FSUs
are inactivated by radiation, that is, 𝐾 ≥ 𝑡𝑒𝑜, then the tissue𝑜, as a whole, becomes unable to perform one or more of its
functions and its impaired status, 𝑌𝑒𝑜 = 1, is flagged by the
biological endpoint 𝑒 under observation.

From the assumed independence of the FSUs it follows
that if 𝑝𝑖 is the probability associated with the variable 𝑋𝑖
taking the value 1, then the variable 𝐾 has a probability
distribution, frequently named “Poisson-binomial,” which
reduces to the usual binomial distribution if all the 𝑝𝑖s are
identical. In the following, an arbitrary distribution of inacti-
vation probabilities among the𝑁 FSUs, that is, the𝑁-tuple of
probabilities (𝑝1, 𝑝2, . . . , 𝑝𝑁), will be denoted as �⃗�, a uniform
probability distribution will be denoted as 𝑝1⃗𝑁, where 1⃗𝑁
is the indicator 𝑁-tuple (1, 1, . . . , 1), and a partial uniform
probability distribution will be denoted as 𝑝1⃗𝑀, where 1⃗𝑀
is the indicator𝑁-tuple (1, . . . , 1, 0, . . . , 0) having the first𝑀
components equal to 1 and the remaining𝑁 −𝑀 equal to 0.

Given �⃗�, the probability 𝑃(𝐾 = 𝑘 | �⃗�) that exactly 𝑘
out of 𝑁 FSUs are inactivated, that is, the Poisson-binomial
probability mass function, is

𝑃 (𝐾 = 𝑘 | �⃗�) def= 𝑓𝑁 (𝑘, �⃗�)
= ∑

A𝑁
𝑘

(∏
𝑖∈A𝑁
𝑘

𝑝𝑖)(∏
𝑗∉A𝑁
𝑘

(1 − 𝑝𝑗)) , (10)

where the summation ranges over all the possible subcollec-
tionsA𝑁

𝑘 of 𝑘 out of𝑁 FSUs and, therefore, has (𝑁𝑘 ) terms.
From expression (10) it is clear that a permutation of the

indices of the components of the vector �⃗� leaves the value of
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𝑃(𝐾 = 𝑘 | �⃗�) unchanged. Since the index 𝑖 locates a particular
FSU in space, this reflects the fact that independence of the
FSUs wipes out any global spatial feature of the tissue under
investigation.

A different expression is often used for (1) by first sum-
ming over the FSUs that share the same value of inactivation
probability [34, 35]. The components of the vector �⃗� are
therefore clustered in, say, 𝑟 probability bins, with 𝑟 ≤ 𝑁,
each bin ℎ being referred to 𝑛ℎ FSUs having the common
inactivation probability value 𝑝ℎ and, of course,∑𝑟

ℎ=1 𝑛ℎ = 𝑁.
Expression (10) can thus be rewritten as

𝑓𝑁 (𝑘, �⃗�) = ∑
𝑗1 ,𝑗2,...,𝑗𝑟
∑𝑟
ℎ=1

𝑗ℎ=𝑘

𝑟∏
ℎ=1

(𝑛ℎ𝑗ℎ)𝑝𝑗ℎℎ (1 − 𝑝ℎ)𝑛ℎ−𝑗ℎ , (11)

that is, as a constrained summation of products of binomial
probability mass functions, each describing the inactivation
of 𝑗ℎ out of 𝑛ℎ FSUs in the ℎth probability bin. From (11) we
see that if each bin refers to exactly one FSU, that is, 𝑟 = 𝑁
and 𝑛ℎ = 1 ∀ℎ, we obtain again expression (10); if, on the
other hand, there is just one bin, that is, we have a uniform
probability distribution, then we obtain the usual binomial
probability mass function:

𝑓𝑁 (𝑘, 𝑝1⃗𝑁) = (𝑁𝑘)𝑝𝑘 (1 − 𝑝)𝑁−𝑘 . (12)

A closed form expression for (11) can be found, for example,
in [34]. Discrete Fourier Transform techniques can be used to
obtain a closed form also for the general expression (10) [36].

From (10) or (11) it can be shown that [37]

𝐸 (𝐾 | �⃗�) = 𝑟∑
ℎ=1

𝑛ℎ𝑝ℎ = 𝑁𝑝
Var (𝐾 | �⃗�) = 𝑟∑

ℎ=1

𝑛ℎ𝑝ℎ (1 − 𝑝ℎ) = 𝐸 (𝐾 | �⃗�) − 𝑟∑
ℎ=1

𝑛ℎ𝑝2ℎ
= 𝑁(𝑝 − 𝑝2) .

(13)

With the usual notation 𝑧 = (1/𝑁)∑𝑁
𝑗=1 𝑧𝑗 for the sample

mean of an𝑁-tuple (𝑧1, 𝑧2, . . . , 𝑧𝑁). Introducing the (biased)
sample variance 𝜎2𝑝 = (1/𝑁)∑𝑁

𝑗=1(𝑝2𝑗 −𝑝) = 𝑝2 −𝑝2 it follows
from (11) that

Var (𝐾 | �⃗�) = Var (𝐾 | 𝑝1⃗𝑁) − 𝑁𝜎2𝑝 (14)

which shows how the variance of 𝑆 increases with increasing
uniformity among the inactivation probabilities and attains
its maximum value when all the 𝑝𝑖s are identical.

The probability 𝑃(𝐾 < 𝑙 | �⃗�) that at most 𝑙 − 1 FSUs are
inactivated defines the cumulative distribution function:

𝑃 (𝐾 < 𝑙 | �⃗�) def= 𝐹𝑁 (𝑙, �⃗�) = 𝑙−1∑
𝑘=0

𝑓𝑁 (𝑘, �⃗�) . (15)

The complement to 1 of this function gives the probability that
at least 𝑙 FSUs are inactivated:

𝑃 (𝐾 ≥ 𝑙 | �⃗�) = 1 − 𝐹𝑁 (𝐿, �⃗�) . (16)

When 𝑙 is equal to the tissue characteristic threshold 𝑡𝑒𝑜, we
are looking at the event 𝑌𝑒𝑜 = 1 that we identify with the
loss of some functionality in the tissue, which shows up
in the observation of the related biological endpoint, and
the corresponding probability could be called “tissue failure
probability” (TFP).

The customary interpretation of the described probability
distributions and the related nomenclature is such that when1 ≤ 𝑡𝑒𝑜 < 𝑁 we are actually looking at healthy tissue or an
organ being damaged by ionizing radiation, the probabilities𝑝𝑙 can span the whole range [0, 1], and the probability 𝑃(𝐾 ≥𝑡𝑒𝑜 | �⃗�) is usually called NTCP. The lower extreme, 𝑡𝑒𝑜 = 1,
describes a tissue where damage to a single FSU is enough
to trigger the endpoint. This scenario actually has its own
model, namely, the so-called Critical Element model, which,
although being a special case of the Critical Volume, was
introduced somewhat before the latter [38–41]. At the upper
extreme (𝑡𝑒𝑜 = 𝑁), instead, we are looking at a tumour
undergoing therapeutic irradiation, the probabilities 𝑝𝑙 are,
hopefully, all close to 1, and the probability 𝑃(𝐾 ≥ 𝑁 | �⃗�) is
called “Tumour Control Probability” (TCP).

Thenumber of FSUs is usually very large and approximate
expressions for (15) that are easier to handle can be used, the
normal and the Poisson one being themost popular.The nor-
mal approximation stems from the well-known DeMoivre-
Laplace limit theorem generalized to the Poisson-binomial
distribution. Indeed, if the vector �⃗� is such that Var(𝐾 | �⃗�) ≥100 [34] we have that
𝑃 (𝐾 ≥ 𝑡𝑒𝑜 | �⃗�)
∼ 1 − 1√2𝜋Var (𝐾 | �⃗�) ∫

𝑡𝑒
𝑜

0
𝑒−(𝑧−𝐸(𝐾|�⃗�))2/2Var(𝐾|�⃗�)d𝑧, (17)

where 𝐸(𝐾 | �⃗�) and Var(𝐾 | �⃗�) are given by formulas (13).
On the other hand, for the case of therapeutic irradiation
of a tumour since 𝑝ℎ = 1 − 𝑠ℎ, with 𝑠ℎ ≪ 1, the variable𝑆 = 𝑁 − 𝐾 which counts the number of FSUs still active
has approximately a Poisson distribution whose zero class
identifies the event of total FSU inactivation; that is,

𝑃 (𝐾 ≥ 𝑁 | �⃗�) = 𝑃 (𝑆 ≤ 0 | ⃗𝑠) = 𝑒−𝐸(𝑆| ⃗𝑠), (18)

where ⃗𝑠 = 1⃗𝑁 − �⃗� and 𝐸(𝑆 | ⃗𝑠) = ∑𝑟
ℎ=1 𝑛ℎ𝑞ℎ.

It can be shown [42–44] that 𝑓𝑁(𝑘, �⃗�) in (10) is well
approximated also by the following:

𝑓𝑁 (𝑘, 𝑝⋆1⃗𝑀)
= {{{{{{{

(𝑀𝑘 )𝑝⋆𝑘 (1 − 𝑝⋆)𝑀−𝑘 , 0 ≤ 𝑘 ≤ 𝑀
0, 𝑀 < 𝑘 ≤ 𝑁

(19)
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which is a Poisson-binomial probability mass function that,
from the viewpoint of representation (11), has only 𝑟 = 2 bins:𝑝1 = 𝑝⋆, 𝑛1 = 𝑀, 𝑝2 = 0, and 𝑛2 = 𝑁 −𝑀.𝑀 and 𝑝⋆ are defined by the system of equations

𝑀𝑝⋆ = 𝐸 (𝐾 | �⃗�)𝑀𝑝⋆ (1 − 𝑝⋆) = Var (𝐾 | �⃗�) , (20)

whose solution, taking into account (13) and the fact that𝑀
must be an integer, is

𝑝⋆ = 𝐸 (𝐾 | �⃗�) − Var (𝐾 | �⃗�)𝐸 (𝐾 | �⃗�) = ∑𝑟
ℎ=1 𝑛ℎ𝑝2ℎ∑𝑟
ℎ=1 𝑛ℎ𝑝ℎ

𝑀 = ⌊ 𝐸2 (𝐾 | �⃗�)𝐸 (𝐾 | �⃗�) − Var (𝐾 | �⃗�) + 12⌋
= ⌊(∑𝑟

ℎ=1 𝑛ℎ𝑝ℎ)2∑𝑟
ℎ=1 𝑛ℎ𝑝2ℎ + 12⌋

(21)

with ⌊ ⌋ being the floor function which outputs the integer
part of a real number. Using the sample mean 𝑝 and the
sample variance 𝜎2𝑝 equations (21) can be rewritten as

𝑝⋆ = 𝑝2𝑝 = 𝑝[1 + (𝜎𝑝𝑝 )2] (22)

𝑀𝑁 = 1𝑁 ⌊𝑁𝑝2𝑝2 + 12⌋ ∼ 11 + (𝜎𝑝/𝑝)2 . (23)

This approximation also works for the cumulative distribu-
tion (15) for any 𝑙 and therefore, in particular, for 𝑙 = 𝑡𝑒𝑜.
Since 𝑀/𝑁 is less than 1, a notion of “effective fraction,”𝜇 def= 𝑀/𝑁, of irradiated FSUs comes naturally into play and
its value is fixed by the inactivation probabilities according
to formula (22). The “equivalent uniform probability,” 𝑝⋆,
over the effective fraction of irradiated FSUs can be used to
define an Equivalent Uniform Dose via the specification of
how the inactivation probability is related to dose, provided
that appropriate uniformity assumptions are introduced, as
will be explained in the following.

If we introduce the random variable Λ def= 𝐾/𝑁
describing the relative amount of inactivated FSUs together
with the relative threshold 𝜏𝑒𝑜 def= 𝑡𝑒𝑜/𝑁 the approximation (17)
becomes

𝑃 (Λ ≥ 𝜏𝑒𝑜 | �⃗�)∼ 1
− 1√2𝜋Var (Λ | �⃗�) ∫

𝜏𝑒
𝑜

0
𝑒−(𝜆−𝐸(Λ|�⃗�))2/2Var(Λ|�⃗�)d𝜆. (24)

𝐸(𝐾 | �⃗�) = 𝑁𝐸(Λ | �⃗�) and Var(𝐾 | �⃗�) = 𝑁2Var(Λ | �⃗�).
Using (17) we have

𝑃 (Λ ≥ 𝜏𝑒𝑜 | �⃗�) ∼ 𝑃 (Λ ≥ 𝜏𝑒𝑜 | 𝑝⋆1⃗𝑀) ∼ 1
− 1√2𝜋 (𝜇𝑝⋆ (1 − 𝑝⋆) /𝑁)
⋅ ∫𝜏𝑒𝑜

0
𝑒−(𝜆−𝜇𝑝⋆)2/(2𝜇𝑝⋆(1−𝑝⋆)/𝑁)d𝜆 = 1 − 1√𝜋

⋅ ∫√𝑁/2(𝜏𝑒𝑜−𝜇𝑝⋆/√𝜇𝑝⋆(1−𝑝⋆))
−√𝑁/2(𝜇𝑝⋆/√𝜇𝑝⋆(1−𝑝⋆))

𝑒−𝜉2d𝜉.
(25)

This formula can be rewritten using the error function erf(𝑥)
defined as

erf (𝑥) def= 2√𝜋 ∫𝑥0 𝑒−𝜉2d𝜉 (26)

and the result is𝑃 (Λ ≥ 𝜏𝑒𝑜 | �⃗�) ∼ 1
− 12 [[[erf(√

𝑁2 𝜏𝑒𝑜 − 𝜇𝑝⋆√𝜇𝑝⋆ (1 − 𝑝⋆))
− erf(−√𝑁2 𝜇𝑝⋆√𝜇𝑝⋆ (1 − 𝑝⋆))]]] .

(27)

A number 𝑁 of FSUs large enough to enforce the normal
approximation (17) turn the Gaussian integrand in (25) into
a 𝛿-like distribution and we see that

𝑃 (Λ ≥ 𝜏𝑒𝑜 | �⃗�) ∼ 1 − ∫𝜏𝑒𝑜
0
𝛿 (𝜆 − 𝜇𝑝⋆) d𝜆

= 1 − ∫∞
−∞
𝐻(𝜆 − 𝜏𝑒𝑜) 𝛿 (𝜆 − 𝜇𝑝⋆) d𝜆

= 𝐻 (𝜇𝑝⋆ − 𝜏𝑒𝑜) ;
(28)

therefore tissue failure takes place (with probability one)
whenever

𝜇𝑝⋆ ≥ 𝜏𝑒𝑜 ; (29)

that is,

𝑝 ≥ 𝜏𝑒𝑜 . (30)

In other words the law of large numbers further erases the
details of the distribution of the 𝑝𝑖s and the only remaining
feature is the arithmetic mean 𝑝.

Even if no specification other than monotonic increase
is made about the functional dependence of the FSU inac-
tivation probability on radiation dose, it is clear that, upon
choice of a given tissue, that is, a value of 𝜏𝑒𝑜 , formula (28)
predicts a sharp transition in 𝑃(Λ ≥ 𝜏𝑒𝑜 | �⃗�) as a function
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of dose which is not observed in clinical data. This could be
amended by going back to formula (25)–(27), but the fact that𝑁 is sufficiently large to strongly concentrate the Gaussian
density function around its expectation value seems hardly
questionable.

To explain the gentler slope of 𝑃(Λ ≥ 𝜏𝑒𝑜 | �⃗�) it is
necessary to recognize the sampling character of the clinical
toxicity frequency data that we are investigating. Indeed,
choosing a tissue does not specify a value of 𝜏𝑒𝑜 , but only
its distribution among the population of patients. Given the
symmetrical roles of 𝜏𝑒𝑜 and 𝜇𝑝⋆ = 𝑝 in (28), the same idea
works also when a distribution of radiobiological parameters
is assumed among the patients so that a given radiation
dose pattern, �⃗�, does not yield a definite value of �⃗� and,
therefore, of 𝑝 but, again, a distribution of values. It may
be worth pointing out that heterogeneity of radiobiological
parameters among the FSUs of a single patient is already
taken into account by the assumed heterogeneity of the 𝑝𝑖s
and it cannot prevent the sharp transition when the number
of FSUs becomes very large.

In formulas, if we rewrite (28) as𝑃 (𝑌𝑒𝑜 = 1 | 𝜏𝑒𝑜 , �⃗�)
∼ ∬∞

−∞
𝛿 (𝑥 − 𝑝)𝐻 (𝑥 − 𝑦) 𝛿 (𝑦 − 𝜏𝑒𝑜) d𝑥 d𝑦, (31)

where the notation 𝑃(𝑌𝑒𝑜 = 1 | 𝜏𝑒𝑜 , �⃗�) has now been used in
replacement of 𝑃(Λ ≥ 𝜏𝑒𝑜 | �⃗�) to parallel the treatment of the
LKB model, the above reasoning amounts to substitute 𝛿(𝑦 −𝜏𝑒𝑜) with a density distribution 𝜑𝑒𝑜(⋅) for the relative threshold
and 𝛿(𝑥 − 𝑝) with a (dose pattern dependent) density
distribution 𝜓�⃗�(⋅) for 𝑝. The resulting general expression,
therefore, becomes𝑃 (𝑌𝑒𝑜 = 1 | 𝜑𝑒𝑜 (⋅) , �⃗�)

∼ ∬∞

−∞
𝜓�⃗� (𝑥)𝐻 (𝑥 − 𝑦) 𝜑𝑒𝑜 (𝑦) d𝑥 d𝑦. (32)

Going back one step by leaving𝜓�⃗�(𝑥) = 𝛿(𝑥−𝑝) and focusing
only on the distribution 𝜑𝑒𝑜(⋅) the above formula turns into

𝑃 (𝑌𝑒𝑜 = 1 | 𝜑𝑒𝑜 (⋅) , �⃗�) ∼ ∫1
0
𝜑𝑒𝑜 (𝑦)𝐻 (𝑝 − 𝑦) d𝑦. (33)

If we denote by Φ𝑒
𝑜(𝑦) the cumulative distribution of 𝜏 and

integrate (31) by parts, we obtain

𝑃 (𝑌𝑒𝑜 = 1 | 𝜑𝑒𝑜 (⋅) , �⃗�) ∼ 𝐻 (𝑝 − 𝑦)Φ𝑒
𝑜 (𝑦)10

+ ∫1
0
Φ𝑒
𝑜 (𝑦) 𝛿 (𝑦 − 𝑝) d𝑦

= Φ𝑒
𝑜 (𝑝) .

(34)

Therefore, varying the radiation dose pattern actually sam-
ples the cumulative distribution of the relative threshold 𝜏𝑒𝑜
through the mean value of the inactivation probability or, in
simpler words, the probability of undergoing a tissue failure,
given �⃗�, is just the probability of having a relative threshold
smaller than 𝑝.

3.2. FSU Inactivation Probability. Having shown the assump-
tions that regulate the organizational response of tissue in
the Critical VolumeModel and discussed their consequences
we must now specify the dose dependence of the FSU
inactivation probabilities 𝑝𝑖.

The simplest approach, which however somehow spoils
the mechanistic attitude of the CV model, is to assume a
generic sigmoid shaped dose response curve whose param-
eters may or may not depend on the position of the FSU
within the organ. In the former case we have some means
to introduce a spatial feature within the organ, so that the
position and shape of the irradiated volume become relevant.

A more mechanistically oriented assumption is the repli-
cation of the Critical Volume approach at a smaller scale: the
FSU is considered as an aggregate of 𝑁 independent stem
cells and FSU inactivation occurs when a sufficiently large
fraction, 𝑡, of these stem cells has been killed by radiation
[45, 46]. To complete the picture we can invoke the LQmodel
to describe the cell killing dependence on radiation dose and
we may assume that even a single surviving stem cell can
allow the FSU to regenerate; that is, that 𝑡 = 𝑁:

𝑝𝑖 = (1 − 𝑒−𝛼𝑖𝐷𝑖−𝛽𝑖𝐷2𝑖 )𝑁 , (35)

where the subscript 𝑖, which, as already pointed out, locates
the FSU in space, has been attached also to the radiobiological
parameters to allow for their position dependence within the
organ.

3.3. Nesting TPBs: Kallman’s Model. The idea of nesting one
Poisson-binomial probability distribution into another al-
lows modeling increasing complexity of tissue organization.

At the level of complexity immediately next to the Critical
Volume Model, an organ is viewed as a bundle of𝑁1 “meta-
FSUs” that can be damaged according to the CV model with
a 𝑡1 threshold, and each meta-FSU is itself made of𝑁2 FSUs
and again follows the CV model with a 𝑡2 threshold.

Single FSU inactivation can be described, for example, by
expression (35).

In formulas for the ℎth meta-FSU, borrowing from (10),
(15), and (16), this translates into

𝑃ℎ = 1 − 𝑡2−1∑
𝑖=0

∑
A
𝑁2

𝑖

( ∏
𝑗∈A
𝑁2

𝑖

𝑝ℎ𝑗)( ∏
𝑙∉A
𝑁2

𝑖

(1 − 𝑝ℎ𝑙)) . (36)

And for the whole organ under investigation

𝑃 (𝐾 ≥ 𝑡1 | �⃗�)
= 1 − 𝑡1−1∑

𝑘=0

∑
A
𝑁1

𝑘

( ∏
𝑚∈A
𝑁1

𝑘

𝑃𝑚)( ∏
𝑛∉A
𝑁1

𝑘

(1 − 𝑃𝑛)) , (37)

where �⃗� is the double-indexed vector 𝑝ℎ𝑙 of FSU inactivation
probabilities and A

𝑁2
𝑖 and A

𝑁1
𝑘 are the subcollections of 𝑖

FSUs out of 𝑁2 and 𝑘 meta-FSUs out of 𝑁1, respectively.
This general formula is usually restricted to a pure parallel
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behavior of the organ with respect to themeta-FSUs, [47, 48],
that is, 𝑡1 = 𝑁1, and a pure serial behavior of each meta-FSU,
that is, 𝑡2 = 1. Therefore we have

TFP = 𝑁1∏
𝑚=1

𝑃𝑚 = 𝑁1∏
𝑚=1

[[1 −
𝑁2∏
𝑗=1

(1 − 𝑝𝑚𝑗)]] . (38)

As it can be seen by direct inspection of formulas (36)-(37) or
(38) there is no invariance for arbitrary index permutation,
which means that this model has some built-in global spatial
feature. Indeed even if no spatial dependence is assumed for
the parameters that regulate FSU response to radiation dose,
different positions and shapes of the irradiated volume with
respect to the meta-FSU/FSU arrangement yield different
values of NTCP. This means that to compare the model to
clinical data one needs to take into account spatial details
which are most often not available; therefore a simplified
version of the model with forced position invariance is used.
Such amodel can be inspired by (38) after a few observations.
First of all, when the inactivation probabilities are assumed
identical among the subunits, formula (38) turns into

TFP = [1 − (1 − 𝑝)𝑁2]𝑁1 . (39)

Which can be trivially solved for 𝑝 :
𝑝 = 1 − (1 − TFP1/𝑁1)1/𝑁2 . (40)

Now we focus on a subset of 𝑎 ⋅ 𝑁1 meta-FSUs, each one
limited to only 𝑏 ⋅ 𝑁2 FSUs and, by analogy with (39), we
assume that the failure probability of this subset of FSUs is

TFP𝑎⋅𝑏 = [1 − (1 − 𝑝)𝑏⋅𝑁2]𝑎⋅𝑁1
= [1 − (1 − TFP1/𝑁1)𝑏]𝑎⋅𝑁1
= [1 − (1 − TFP1/𝑁1)𝑎⋅𝑏]𝑁1 .

(41)

Having used (40) in the second step. This “tile” of tissue
with relative volume 𝑎 ⋅ 𝑏 = V is now by definition our new
elementary FSU and we introduce a new parameter termed
the “relative seriality” 𝑠:

𝑠 = 𝑁2𝑁2 ⋅ 𝑁1
= 1𝑁1

, (42)

which is the ratio of the number of the “old” FSUs contained
in a meta-FSU over the total number of “old” FSUs. With
these new definitions formula (40) can be rewritten as𝑝 = [1 − (1 − TFP𝑠)V]1/𝑠 (43)

and allowing the 𝑝s to have spatial dependence, for an organ
comprising𝑁 “tiles,” we have

TFP = [1 − 𝑁∏
𝑖=1

(1 − 𝑝𝑖𝑠)V]1/𝑠

= [1 − 𝑁∏
𝑖=1

(1 − TFP𝑖𝑠)V]1/𝑠 ,
(44)

where, as before, 𝑖 labels a position within the organ under
investigation. In summary we got rid of the difficulties of for-
mula (38) at the expense of collapsing the tissue complexity
into an elementary “tile” which has become the new FSU.The
usual binning of the inactivation probabilities yields

TFP = [1 − 𝑟∏
ℎ=1

(1 − TFPℎ𝑠)V⋅𝑛ℎ]1/𝑠 , (45)

where V ⋅ 𝑛ℎ is the relative size of the ℎth dose bin.

4. Conclusions

The main aim of the LKB model is to accommodate the
available clinical data into a reasonably manageable function,
in order to help the clinician in assessing the odds of safe
and successful treatment. As long as the clinical needs are
involved, any understanding of the underlying biological
phenomena is pursued only as long as it is instrumental to the
above purpose. From the viewpoint of detailed radiobiologi-
calmodeling, however, thismodel can be taken as a summary
of the available clinical knowledge.

Quite general features of a normal tissue complication
probability model which are already present in the LKB
model are the following.

The observation of endpoint 𝑒 in organ 𝑜 is an event that
can be encoded in an indexed family of random indicators𝑌𝑜,𝑒𝐷(𝑟) : Ω → R, each described by a Bernoulli distribution.
The set D of dose maps (𝐷 ∈ D) ⇔ (𝐷 : 𝑀 → R) is the
index set for this family.

The only parameter of the Bernoulli distribution, that is,
the probability of occurrence of the event, is given by a
functional defined onD. In particular in the LKB model the
functional is of the form

(𝑓 ∘ ℎ ∘ 𝑔−1 ∘ ∫
𝑀
𝑑3𝑟𝑔∘) (46)

with 𝑔(𝑥) = 𝑥1/𝑛𝑒𝑜 , ℎ(𝑦) = (𝑦 − 𝐷50
𝑒
𝑜)/(𝑚𝑒

𝑜 ⋅ 𝐷50
𝑒
𝑜
) and𝑓(𝑧) = erf(𝑧). Noteworthy is the composition 𝑡(𝑦) = (𝑔−1 ∘∫

𝑀
𝑑3𝑟𝑔∘)(𝑦), that is, the “histogram reduction,” which is

responsible for the dramatic reduction of the dimensionality
of the problem.

At this stage, then, a rather featureless sample space is
enough to describe experimental data. The TPB models add
some details to the sample space Ω and related probability
structure. The cost of trying to magnify the microscopic
biological features is that the experimental noise, that is, the
conditions in which data are gathered, has to be taken into
account too, and at the same level of detail.

The mechanistic models, here exemplified by the TPB
models, have an intrinsic ability to include microscopic bio-
logical features of the radiation induced damage; however
the parameters needed to describe such details have not been
determined for most treatment sites and thus cannot be used
in daily clinical practice. Accurate determination of fine
structure parameters in a clinical setting is quite a formidable
task, even when foreseeable biasing is taken into account
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in the model framework. In addition, even the QUANTEC
parameter database for the widely used LKB model suffers
from indeterminacies due to nonuniformity of volume def-
initions (e.g., hollow organs) and heterogeneity in the quality
of data and in the radiobiological assumptions

All these models and the proposed parameters summa-
rizing the features of a specific tissue/organ have originated
in the years of two-dimensional and three-dimensional (con-
formal) radiotherapy. Nevertheless they currently are the
only available approaches to predict the expected toxicities
deriving from the modern intensity modulated delivery
techniques such as IMRT and VMAT.
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