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ABSTRACT

Background: Niemann-Pick disease type C (NPC) is caused by the mutation of NPC genes, 
which leads to the abnormal accumulation of unesterified cholesterol and glycolipids 
in lysosomes. This autosomal recessive disease is characterized by liver dysfunction, 
hepatosplenomegaly, and progressive neurodegeneration. Recently, the application of 
induced neural stem cells (iNSCs), converted from fibroblasts using specific transcription 
factors, to repair degenerated lesions has been considered a novel therapy.
Objectives: The therapeutic effects on NPC by human iNSCs generated by our research group 
have not yet been studied in vivo; in this study, we investigate those effects.
Methods: We used an NPC mouse model to efficiently evaluate the therapeutic effect of 
iNSCs, because neurodegeneration progress is rapid in NPC. In addition, application of 
human iNSCs from NPC patient-derived fibroblasts in an NPC model in vivo can give insight 
into the clinical usefulness of iNSC treatment. The iNSCs, generated from NPC patient-
derived fibroblasts using the SOX2 and HMGA2 reprogramming factors, were transplanted by 
intracerebral injection into NPC mice.
Results: Transplantation of iNSCs showed positive results in survival and body weight change 
in vivo. Additionally, iNSC-treated mice showed improved learning and memory in behavior 
test results. Furthermore, through magnetic resonance imaging and histopathological 
assessments, we observed delayed neurodegeneration in NPC mouse brains.
Conclusions: iNSCs converted from patient-derived fibroblasts can become another choice of 
treatment for neurodegenerative diseases such as NPC.

Keywords: Neural stem cells; cell transplantation; Niemann-Pick disease type C; 
neurodegenerative diseases

INTRODUCTION

Niemann-Pick disease type C (NPC) is an autosomal recessive, lysosomal storage disease 
that is fatal but rare and has an incidence between 1:100,000 and 1:150,000 in humans [1]. 
However, recent reports suggest that there may be a late-onset NPC phenotype with a markedly 
higher incidence, in the order of 1:20,000 to 1:39,000 [2]. Mutation of the NPC1 gene is the 
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cause of 95% of NPC cases, whereas mutation of the NPC2 gene occurs in only 4% of cases 
[3]. Mutations of these genes are related to abnormal endosomal-lysosomal trafficking, which 
results in excessive accumulation of lipids in the lysosomes of multiple tissues [4].

The age of onset of NPC varies from infancy to early adulthood, and it is difficult to diagnose 
although the disease commonly shows neurologic symptoms; moreover, the neurological 
manifestations ultimately result in death [2]. Currently, there is no curative therapy for NPC; 
rather, therapies focus on relieving clinical symptoms [5]. However, it has been reported that 
cell therapy is becoming a promising therapeutic approach for neurodegenerative disorders [6].

The methods for obtaining optimal induced neural stem cells (iNSCs) for application in the 
treatment of Huntington's disease have been described by other research groups, and their 
results suggest that iNSCs may also be used for such treatments [7,8]. Several study groups 
have shown that NSC-mediated regulation of neurotrophic support can form a potential 
therapy for various neurodegenerative disorders [9-12]. Most recently, several research groups 
demonstrated the direct conversion of fibroblasts into NSCs and showed the possibility 
of their therapeutic effects [13-17]. Moreover, our research group reported the generation 
of iNSCs from human NPC patient-derived fibroblasts by using only two reprogramming 
factors, SOX2 and HMGA2 [18].

Although NPC is a rare disease, it proceeds severely and fatally; therefore, research to develop 
new therapies for this neurodegenerative disease must continue. There have been no reports 
on the effect of iNSCs in NPC. Therefore, we decided to investigate NPC preclinically by 
using a disease model. Furthermore, amelioration of neurodegenerative conditions such 
as Alzheimer's disease, Parkinson's disease, and Huntington's disease is a research theme 
currently receiving widespread attention [19-21]. However, these neurodegenerative disorders 
are generally late-onset diseases, and their symptoms begin to manifest with increasing age; 
thus, modeling such diseases via animal models requires large amounts of time and high 
expenditures [22]. Conversely, an NPC model, which can be induced by a genetic disorder 
and is characterized by rapid deterioration, is very beneficial because the evaluation of 
newly developed therapies against neurodegeneration can be performed efficiently [23]. In 
addition, applying human iNSCs converted from NPC patient-derived fibroblasts in an in vivo 
NPC model can provide an opportunity to predict their clinical efficacy and safety in patients.

MATERIALS AND METHODS

Animals
NPC mice were purchased from Jackson Laboratories, USA. The BALB/cNctr-Npc1m1N/J 
mice (stock number 003092) were housed and experimented upon in the Animal Research 
and Imaging Center of Samsung Medical Center in accordance with the guidelines of 
Samsung Medical Center, which has been accredited by the Association for Assessment and 
Accreditation of Laboratory Animal Care International. The experimental protocols were 
approved by the Institutional Animal Care and Use Committee (approval No. 20170221001). 
Mice were bred and genotyped from genomic DNA isolated from tail snips using the 
polymerase chain reaction (PCR)-based protocols suggested by Jackson Laboratories, USA 
(https://www.jax.org/strain/003092). Mice were housed in individually ventilated cages 
(Thoren Caging Systems, USA), with autoclaved wood chips for bedding and ad libitum access 
to irradiated diets (PicoLab Rodent Diet 20; Labdiet, USA) and sterile water. The vivarium 
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was maintained on a 12-h light/dark cycle at a constant temperature (23 ± 2°C) and humidity 
(50 ± 10%). The study included four experimental groups: iNSC-transplanted NPC1−/− mice (n 
= 9); phosphate-buffered saline (PBS)-injected NPC1−/− mice (n = 9); fibroblast-transplanted 
NPC1−/− mice (n = 7); PBS-injected NPC1+/+ mice (n = 7). We used only female mice in this study 
to avoid the effect of behavioral responses to opposite-sex odors.

Culture of human fibroblast-derived neural stem cells
The iNSCs were established from human NPC patient-derived skin fibroblasts (GM03123, 
GM18453; Coriell Institute for Medical Research, USA) and were characterized in a previous 
study [18]. The pMX-SOX2 and pMX-HMGA2 retroviral constructs were transfected into 293 
FT cells (Invitrogen, USA) to produce high viral titers using FuGENE 6 Transfection Reagents 
(Roche Diagnostics, USA) and the viral supernatants were collected and used to infect NPC 
patient-derived fibroblasts. The transduced fibroblasts were cultured in NSC maintenance 
medium (ReNcell NSC Maintenance Media; Millipore, USA) with basic fibroblast growth 
factor (bFGF; Sigma, USA) and epidermal growth factor (EGF; Sigma) added to induce neural 
stem cells. NSC-like colonies were picked and cultured under neurosphere conditions as 
attached cells on poly-L-ornithine- and fibronectin-coated dishes repeatedly to generate 
homogenous iNSCs. As reported previously, the iNSCs showed an NSC-like morphology 
and expressed NSC-specific markers such as PAX6 and NESTIN. Furthermore, the iNSCs 
demonstrated differentiation into neurons, astrocytes, and oligodendrocytes, indicating that 
the generated iNSCs could function as NSCs.

Surgical transplantation of the iNSCs into NPC1−/− mice brains
Anesthesia was induced with 5% isoflurane and maintained with 2% isoflurane via a facial 
mask in NPC1−/− and NPC1+/+ mice at 8 weeks of age. NPC1−/− mice were placed in a stereotaxic 
apparatus (Digital Stereotaxic Instrument with Fine Drive; MyNeurolab, USA), and 105 
iNSCs in 2 µL of cell suspension with PBS or only PBS were injected into the right brain 
unilaterally (iNSCs in NPC1−/−, n = 9; PBS in NPC1−/−, n = 9). The injection coordinates were 
2.0 mm posterior and 1.4 mm lateral to the bregma, and at a depth of 2.0 mm. Additionally, 
105 fibroblasts in 2 µL of cell suspension were also injected into the same site of the NPC1−/− 
brains to compare their effects with those of iNSCs (fibroblasts in NPC1−/−, n = 7). Injection of 
an equal volume of PBS was used in normal wild-type NPC1+/+ mice as a sham control (PBS in 
NPC1+/+, n = 7). After transplantation, the skin incised was closed by suture, and the mice were 
recovered from the anesthesia.

Behavior tests
The Y-maze test and the fear conditioning test were performed at 10 weeks of age, two 
weeks after the transplantation of iNSCs, PBS, or fibroblasts. The spontaneous alteration 
Y-maze test was conducted to provide results indicative of spatial cognitive ability because 
mice typically prefer to investigate a new arm of a maze rather than returning to one that 
was previously visited. This is based on the natural tendency of rodents to explore a novel 
environment. In addition, for efficient alternation, mice need to use memory to recall which 
arm was previously visited. Therefore, a higher spontaneous alternation rate indicates a 
better working memory. A Y-shaped maze apparatus with three opaque plastic arms at angles 
of 120° from each other was used. The mice were placed in one arm of the maze and allowed 
to explore the three arms for 8 min. Spontaneous alternation performance was assessed by 
scoring the pattern of entries into each arm. The movements and number of entries to each 
arm were recorded using a video tracking system (Etho Vision XT 10; Noldus, Netherlands).
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Mice behaviors were first recorded in the Y-maze with the fear conditioning test applied the 
next day to prevent the Y-maze test results from being affected by the fear test's aversive 
stimulus. The fear conditioning test was used to assess learning and memory ability as mice 
learn to associate neutral (tone) and aversive (mild electrical foot shock) stimuli, memorize 
those stimuli, and then respond, such as by freezing in the test chamber (Fear Conditioning 
System; Coulbourn Instruments, USA). On the first day, mice were placed in the fear 
conditioning system chamber and acclimated for 2 min to measure their “baseline” activity 
level. They then received a tone (80 dB, 3,600 Hz, 30 sec) followed by an aversive stimulus 
(0.2 mA, 2 sec), which ended with the tone. On the second day, the mice were placed in the 
same chamber, and their movements monitored without stimulation for 5 min (“contextual” 
fear conditioning). This approach allowed measurement of their ability to remember and 
association of the environment with the aversive stimulus. On the last day, mice were placed 
in a chamber with a new environment and acclimated to their surroundings for 2 min, 
followed by an identical tone as that on the first day (80 dB, 3,600 Hz, 180 sec) to allow 
“cued” fear conditioning to assess their memory associated with the acoustic tone and the 
aversive stimulus. A freezing response to the tone was defined as the complete lack of motion 
for a minimum of 0.75 sec. The freezing response percentages in each assessment period 
(i.e., during 2 min on the first day, during 5 min on the second day, and during the tones [180 
sec] on the last day) were measured.

Magnetic resonance imaging acquisition
Magnetic resonance imaging (MRI) of mouse brains was acquired at 10 weeks of age for each 
iNSC-treated NPC1−/− mouse and nontreated NPC1−/− mouse using a 7T/20 MRI System (Bruker-
Biospin, Germany) equipped with a 20 cm gradient set capable of supplying up to 400 mT/m 
in a 100 µs rise time.

A quadrature birdcage coil (inner diameter of 72 mm; Bruker-Biospin, Germany) was used for 
excitation, and an actively decoupled phased array brain coil was used for signal reception. 
All mice were anesthetized under 2% isoflurane during MRI and their body temperatures 
were maintained at 36°C by using a heating pad. A T2-weighted spin-echo sequence was 
used during MRI scanning. The MRI parameters were: repetition time (TR)/echo time (TE) = 
2,800/60 msec, number of averages = 16, echo train length = 8; in-plane resolution = 100 µm 
× 100 µm; slice thickness = 0.7 mm.

Histologic analysis of brain tissue and tracking of transplanted iNSCs
The iNSC-treated NPC1−/− mice and nontreated NPC1−/− mice were sacrificed at 10 weeks of 
age to determine differences in brain tissues between the two groups. Each mouse was 
anesthetized by intraperitoneal injection of avertin (250 mg/kg) and then perfused with PBS, 
followed by a 4% paraformaldehyde fixative. Brains were removed and left in the fixative for 
24 h, embedded in paraffin, and 4 µm coronal sections obtained. Sections were stained with 
hematoxylin and eosin for histologic examination under light microscopy.

To track the injected human iNSCs in the brain of NPC1−/− mice, immunohistochemical 
analysis was performed. Deparaffinized tissue sections were blocked with mouse IgG (MOM, 
Vector, USA) and incubated with anti-human mitochondria mouse IgG (1:400, MAB1273; 
Millipore, USA) for 60 min at room temperature in a humidified dark chamber. Then, the 
sections were incubated with Alexa Fluor 594 goat anti-mouse secondary antibody. Nuclei 
were counterstained with DAPI. Stained images were observed under light and fluorescence 
microscopy (BX53; Olympus, Japan).
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Statistical analysis
The data were compared by applying one-way analysis of variance followed by Student's 
t-test. A value of p < 0.05 was considered statistically significant. All values are expressed as a 
mean ± standard deviation.

RESULTS

iNSC treatment delayed body weight loss and extended the life span of 
NPC1−/− mice
The body weights and clinical signs of NPC1−/− mice were observed from 4 weeks of age. The 
NPC1−/− mice experienced growth stagnation and abnormal clinical signs, such as tremors, 
from 7 weeks of age compared to those of NPC1+/+ mice. The NPC-iNSCs were transplanted 
into the brains of NPC1−/− mice at 8 weeks of age. To compare effects, PBS or NPC-fibroblasts 
were transplanted into the same positions in the brains of NPC1−/− mice. The iNSC-treated 
NPC1−/− mice showed delayed weight loss and a longer survival period than those in nontreated 
NPC1−/− mice or fibroblast-treated NPC1−/− mice. In particular, at 10 weeks of age, nontreated 
NPC1−/− mice and fibroblast-treated NPC1−/− mice showed significant weight loss. In contrast, 
iNSC-treated NPC1−/− mice showed less weight reduction at 10 weeks of age but exhibited 
significant weight loss at 11 weeks of age (iNSC-injected NPC1−/− 14.00 ± 0.82 g; PBS-injected 
NPC1−/− 11.57 ± 1.13 g; fibroblast-injected NPC1−/− 11.86 ± 1.35 g at 10 weeks) (p < 0.01) (Fig. 1).

iNSC treatment enhanced learning and memory in NPC1−/− mice
The iNSC-treated NPC1−/− mice showed a longer fear response (freezing period), compared 
to that in the PBS and fibroblast-treated NPC1−/− mice in the fear conditioning test (iNSC-
injected NPC1−/− 52.28 ± 3.92 sec; PBS-injected NPC1−/− 10.83 ± 4.15 sec; fibroblast-injected 
NPC1−/− 25.09 ± 7.50 sec) (p < 0.001 between iNSC- and PBS-injected groups, p < 0.05 between 
iNSC- and fibroblast-injected groups) (Fig. 2B). The results indicate that iNSC-treated NPC1−/− 
mice exhibited enhanced learning and memory related to the tone and mild electrical shock 
stimuli. In the Y-maze test, iNSC-treated NPC1−/− mice showed a greater preference for the 
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Fig. 1. Body weight loss of NPC1−/− mice laterally injected with iNSCs in the brain (2.0 mm posterior and 1.4 mm lateral to bregma and at a depth of 2.0 mm) with 
human iNSCs (n = 9), PBS (n = 9), or human fibroblasts (n = 7). iNSC-injected NPC1−/− mice displayed significantly less weight loss than the PBS- or fibroblast-
injected groups (p < 0.01) at 10 weeks (A). Life spans were observed to determine the survival rate of NPC1−/− mice and assess the effectiveness of human iNSCs 
(n = 9), PBS (n = 9), and fibroblast (n = 7) injections. iNSC-injected mice survived longer than PBS- or fibroblast-injected mice (iNSCs 83 ± 2 days, PBS 74 ± 3 days, 
fibroblasts 73 ± 1 days) (p < 0.001). 
NPC, Niemann-Pick disease type C; iNSC, induced neural stem cell; PBS, phosphate-buffered saline.



new arm of the maze compared to that of the PBS- and fibroblast-treated NPC1−/− mice. The 
iNSC-injected NPC1−/− mice displayed a spontaneous alternation rate of 68 ± 5%, significantly 
higher than the 57.2 ± 6.9% spontaneous alternation rate for the PBS-injected NPC1−/− mouse 
group (p < 0.001 between the iNSC- and PBS-injected groups) (Fig. 2A).

iNSC treatment delayed degeneration of the brains of NPC1−/− mice
We compared the brains of a single NPC1−/− mouse, one iNSC-treated mouse, and one 
nontreated mouse to assess differences in the cross-sectional areas in T2-weighted images 
and determine if there were treatment related side effects. The overall brain size of the 
iNSC-treated NPC1−/− mouse was larger than that of the nontreated NPC1−/− mouse based 
on the T2-weighted images from MRI scanning obtained at 10 weeks of age. The specified 
cross-sectional area of the single nontreated NPC1−/− mouse brain was compared to that of 
the iNSC-treated mouse (Supplementary Fig. 1). The areas were measured with the help of 
ImageJ image analysis software. Additionally, there were no signs of side effects (e.g., tumor 
or inflammation) related to the injection of iNSCs.

Histological analysis revealed that the total size of the brains of nontreated NPC1−/− mice was 
substantially smaller than that of iNSC-treated NPC1−/− mice at 10 weeks of age (2 weeks after 
transplantation). In particular, neuron loss in the thalamus of the nontreated NPC1−/− mice 
was much greater than that in the iNSC-treated NPC1−/− mice. The neuronal cells of the iNSC-
treated NPC1−/− mice, especially in certain damaged parts of the brain, seem to have been 
protected from disease progression by the treatment (Fig. 3).

iNSCs were detected in transplanted NPC1−/− mice
The iNSCs injected 2.0 mm posterior and 1.4 mm lateral to the bregma and at a 2.0 mm 
depth were detected in the ventricle adjacent to the hippocampus of NPC1−/− mice at 2 days 
after transplantation. Fluorescently labeled iNSCs were observed, and immunohistochemical 
staining for human mitochondria revealed the location of the transplanted iNSCs (Fig. 4). 
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NPC, Niemann-Pick disease type C; iNSC, induced neural stem cell; PBS, phosphate-buffered saline.



The injected cells remained in the brains of the treated mice for several days and appear to 
have contributed to a delay in the neurodegeneration in the treated NPC1−/− mice.

DISCUSSION

The inherited lysosomal storage disease NPC presents with signs of progressive 
neurodegeneration such as cognitive decline and mental retardation. To reveal the effects of 
an iNSCs treatment on this neurodegenerative disease, we transplanted iNSCs into the brains 
of NPC1−/− mice, evaluated neurodegenerative symptoms and behavioral signs, and compared 
the results to those from nontreated NPC1−/− mice.
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visible vacuolation (arrows) and neuronal degeneration (200× magnification, scale bar = 50 µm). 
iNSC, induced neural stem cell; NPC, Niemann-Pick disease type C; PBS, phosphate-buffered saline.



Recently, several groups have reported on converting somatic cells directly into iNSCs by 
using specific transcription factors. Among them, reprogramming of fibroblasts is relatively 
newly reported [24-27]. Other research groups have tried to verify the efficacy of therapeutic 
transplantation in various disease models [13-17]. The generation of iNSCs from fibroblasts 
has several advantages because fibroblasts are easier to obtain than other somatic cell types. 
Once obtained, iNSCs are expected to self-renew and differentiate to multiple neuronal 
subtypes and glial cells. In addition, iNSCs are associated with a lower risk of teratoma 
formation, and they can be suitable for clinical application via autologous transplantation 
[7]. Such treatments can be quickly developed to allow their use before the effects of the 
disease become irreparable due to their rapid and direct induction [28].

In a previous study, our research group described the direct reprogramming of NPC patient-
derived fibroblasts into iNSCs by using 2 reprogramming factors, SOX2 and HMGA2 [18]. 
These iNSCs exhibited an NSC-like morphology, clearly different from that of human 
fibroblasts. They also expressed NSC markers such as PAX6 and NESTIN. Although there 
have been many studies into the development of variable iNSCs, this present study was the 
first to generate human iNSCs from a patient with NPC. Based on this study, it is possible to 
test the potential for patient therapy by an approach that incorporates the patient's converted 
iNSCs into a model of the same disease. In vivo testing that uses patient-derived converted 
iNSCs could provide insight into the potential of iNSCs for therapeutic use. Although NPC 
patient-derived fibroblasts may have genetic problems, we decided to utilize these cells to 
obtain insight in the clinical usefulness of iNSC treatment using a patient-specific tissue. The 
ideal way to determine that usefulness is through the transplantation of genetically corrected 
iNSCs into NPC human patients, but such a clinical trial is impossible in reality. Moreover, 
inducing genetic correction of patient-derived cells into neural stem cells is a significant 
challenge. Therefore, in this study, we chose to investigate this use of iNSCs in an NPC mice 
model. Even though it is doubtful these iNSCs contained “corrected” genetic mutations of 
the NPC1 gene, we hypothesized that the generated and transplanted iNSCs could induce 
the positive effect of attenuating neurodegeneration via neurotrophic effects. We are also 
interested in the challenge of accomplishing the correction of mutated NPC1 genes and the 
generation of corrected neural stem cells.
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Fig. 4. Immunohistochemical staining of the brain of a 10-week-old NPC1−/− mouse that received a stereotactic 
injection of human iNSCs into a region 2.0 mm posterior and 1.4 mm lateral to the bregma, and at a depth 
of 2.0 mm. Anti-human mitochondrial mouse IgG (1:400 dilution) detected injected human iNSC clusters 
(A). Immunofluorescent images identifying human iNSCs (red) and cell nuclei with DAPI (blue) (B) (100× 
magnification, scale bar = 100 µm). 
NPC, Niemann-Pick disease type C; iNSC, induced neural stem cell; IgG, immunoglobulin G; DAPI, 4',6-diamidino-
2-phenylindole.



The NPC1−/− NPC disease model mice began to lose weight and show neurodegenerative signs 
such as tremors from 7 weeks of age. In a real clinical situation, neurodegenerative disorders 
have heterogeneous presentation timing, and diagnostic accuracy is difficult; therefore, 
attempts at treatment can occur after clinical signs are presented [29]. Therefore, we attempted 
to determine the effects of transplanted iNSCs on symptom expression in the model. Even 
though the study included xenotransplantation we did not use an immune-suppressant. Other 
researchers indicated there is a possibility of significant dysregulation of innate immunity in NPC 
[30]. Furthermore, the brain and central nervous system are separate from the body's immune 
system, forming the “neuroimmune system,” with the brain exhibiting a less hostile immune 
response than other parts of the body and may be considered as ‘immunologically privileged’ 
[31]. Based on these research opinions, we assumed that the injection of an immunosuppressant 
to the body via intravenous or subcutaneous routes would not affect the neuroimmune system, 
and we decided to undertake this study without using an immunosuppressant. We transplanted 
the iNSCs into the brains of NPC1−/− mice at the age of 8 weeks and monitored their responses. 
The mice were given two weeks to recover from the stereotaxic surgery and at 10 weeks of age, 
we performed behavioral, MRI, and histological assessments to compare treated and nontreated 
groups. The results indicated that iNSC-transplanted NPC1−/− mice had less body weight loss 
and survived longer than nontreated NPC1−/− mice. In particular, at 10 weeks of age (2 weeks 
after transplantation), there was a marked difference in body weights of the 2 groups (2.43 g). 
Considering the average body weight of NPC1−/− mice at 10 weeks of age was 11.57 g, the difference 
was significant. Although such a conclusion is tenuous, we assume that iNSC transplantation is 
effective in vivo for at least 2 weeks. In the clinical treatment of other neurodegenerative diseases, 
sustained improvements can be expected when repetitive cell transplantations are provided 
[32,33]. NPC1−/− mice are characterized by rapid deterioration and early death. Therefore, we 
were unable to undertake long-term research with the NPC disease model mice. Moreover, 
our research scheme involved treatment after identifying clinically abnormal symptoms. Thus, 
we could only obtain 2 weeks of post-transplant data. To assess iNSC treatment efficacy over a 
longer term, we think other models of neurodegenerative disorders should be investigated.

We also decided to assess the behaviors of iNSC-treated NPC1−/− mice, particularly to 
investigate their recognition, learning, and memory abilities. We observed remarkable 
differences between groups in performance in the fear conditioning test compared to those 
in the Y-maze test. The iNSC-treated NPC1−/− mice learned and memorized the stimuli offered 
in the fear conditioning test by expressing the freezing fear response more than that by 
nontreated NPC1−/− mice. Additionally, our MRI and histopathological observations provided 
insights into degenerative differences between iNSC-treated and nontreated mice.

We undertook to verify the presence of injected cells at 48 h after transplantation because we 
predicted that the transplanted human iNSCs would leave the injection site within a short 
time and migrate into other sites. However, detection of iNSCs at sequential time-points after 
implantation, such as undertaken by other research teams [34,35], was not performed.

According to the MRI and histopathological results, the overall brain size of iNSC-treated 
NPC1−/− mice was larger than that of nontreated NPC1−/− mice. Overall, atrophy of the NPC1−/− 
brain is apparent, with significantly reduced volumes detected in the striatum, thalamus, and 
cortex, as reported by another research group [36,37]. Furthermore, it has been revealed that 
neurological phenotypes displayed by NPC1−/− mice include widespread activation of astrocytes 
and microglia, particularly in the thalamus [38-42]. We observed significant neuronal loss, 
especially in the thalamus, in nontreated NPC1−/− mice, as has been previously reported. 
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Conversely, the iNSC-transplanted NPC1−/− mouse thalamus showed comparatively less neuronal 
cell loss and less size loss. Our results and those of previous investigators suggest that the brain, 
especially the thalamus, of NPC1−/− mice may be protected by the transplantation of iNSCs, 
which has the effect of delaying neurodegeneration. Studies have shown that iNSCs can protect 
against cell death caused by inflammation through COX-2 regulation or inhibition of neuronal 
apoptosis [43,44]. Another recent study showed that transplanted iNSCs exert neurotrophic 
effects, such as upregulation of brain-derived neurotrophic factor (BDNF) and glial-derived 
neurotrophic factor, in addition to decreased immune cell recruitment and pro-inflammatory 
cytokine expression in the damaged brain [16]. Previous studies have demonstrated the 
neuroprotective features of iNSCs. In the past, studies of NSC transplantation have focused on 
assessing the replacement of dying cells, but many study groups now suggest that transplanted 
stem cells are active in neurogenesis and improve cognitive function due to an elevation in the 
expression of neurotrophins such as BDNF and nerve growth factor [9,11,45].

Previously, the thalamus was viewed as a passive structure; however, in recent years, it 
has been revealed that the thalamus has a central role in cognition, ranging from learning 
and memory to flexible adaptation [46,47]. In our experiment, we observed the greatest 
histopathological difference between iNSC-treated NPC1−/− mice and nontreated NPC1−/− mice 
in the thalamus. Among the various brain regions, the thalamus is the part of NPC1−/− mice 
brain that presents the most severe progression of the disease, including vacuolation. Based 
on previous reports and our results, we assumes that differences between degenerated and 
protected thalamic regions can affect cognition, learning, and memory in NPC1−/− mice.

Reprogramming of fibroblasts into iNSCs can be a potentially unlimited source of neurons 
and the use of iNSCs can avoid the risk of teratoma formation and ethical issues. The 
application of iNSCs to the brain, by its capacity to induce the expressions of neurotrophin 
and anti-inflammatory factors, may be an effective method to reduce neuronal loss in various 
brain diseases. Further studies into NSC modeling and related mechanisms could provide 
additional indications of the therapeutic potential of iNSCs in future clinical use.
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SUPPLEMENTARY MATERIAL

Supplementary Fig. 1
T2-weighted MRI in vivo image and hematoxylin & eosin staining of brains from iNSC-treated 
NPC1−/− and nontreated NPC1−/− mouse at 10 weeks of age. The brain of the nontreated NPC1−/− 
mouse (B) appears reduced in size relative to the iNSC-treated NPC1−/− mouse (A). Upon 
specifically comparing the images in the blue squares, the cross-sectional brain area of the 
nontreated NPC1−/− mouse (n = 1) was 87.2% of iNSC-treated mouse (n = 1) brain region (A, 
B). Histological comparison reveals that atrophy of the nontreated NPC1−/− mouse brain was 
apparent compared to the iNSC-treated mouse brain (C, D).

Click here to view
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