
In recent years, a technological revolution has enabled a 
series of advances in our knowledge of complex biological 
processes from development to disease, largely fueled by 
massively parallel sequencing technology, or next-genera
tion sequencing (NGS) [1,2]. Applications of NGS include 
studies of entire genomes (whole-genome sequencing), 
investigations of smaller functional portions of the genome 
(exome sequencing), and analysis of the transcribed 
genome (RNA-seq) and protein-DNA binding sites (ChIP-
seq). We are still in the early days of this ‘revolution’, with 
new technological improvements expected to be intro
duced in the next few years: longer reads, faster processing, 
and a growing number of more ‘exotic’ experimental 
applications that can benefit from sequencing technolo
gies, such as the chromatin conformation capture family of 
experiments to reveal a structural view of the genome, and 
methods such as GRO-seq and CLIP-seq, and several 
others, to study protein-RNA binding [3-5].

Advances in sequencing technologies paved the way for 
launching the $1,000 genome challenge in 2005 [6-8], an 
almost impossible goal to imagine at the time. In fact, the 
cost of sequencing the first human genome was about 
$3 billion [9], and it took several international institutes, 
hundreds of researchers and 13 years to complete. 
However, in the past few years the cost of sequencing has 
declined exponentially: James Watson’s genome was 
completed for less than $1 million [10]; by 2009 the cost 

for a whole-genome sequence dropped to $100,000 [11]. 
Hence, today, a mere 10 years after the completion of the 
first draft of the human genome, the goal of the $1,000 
genome seems surprisingly close, and it is now con
ceivable that this will be a step towards even cheaper 
genomes. Nevertheless, it has become clear that the act 
of sequencing DNA (or cDNA) is only one aspect of a 
more complex story (Figure 1).

Cost of sequencing versus cost of computation
The National Human Genome Research Institute (NHGRI) 
has tracked the cost of sequencing in the centers it funds. 
Analyzing the data revealed a stunning picture [12]. From 
2008, the cost of sequencing dropped faster than what 
would have been expected from Moore’s law (a term used 
to describe a trend in the computer industry). Moore’s 
law states that the number of transistors of an integrated 
circuit doubles approximately every 2 years, but it is also 
applicable to several other digital electronic devices 
[13,14]. This implies that while we will be able to generate 
more and more sequence bases at a fixed cost, we will 
soon lack the facilities to store, process, analyze and 
maintain the data generated (Figure 2). However, the 
NHGRI survey ignores other cost components, including 
the following ‘non-production’ activities: quality assess
ment/control for sequencing projects, technology develop
ment to improve sequencing pipelines, development of 
bioinformatics/computational tools to improve sequenc
ing pipelines or to improve downstream sequence analy
sis, management of individual sequencing projects, infor
matics equipment, and data analysis downstream of 
initial data processing (for example, sequence assembly, 
sequence alignments, identifying variants and interpre
tation of results) [12]. These are obviously integral to any 
sequencing project, and need to be accounted for in the 
overall costs. Moreover, the economic impact of these 
activities is likely to play a different role depending on the 
users: the costs of streamlining the sequencing pipeline 
can affect data providers in different ways, whereas 
downstream analysis costs have a similar impact irres
pective of the investigators.

Here we highlight the relevance and important of these 
often unaccounted costs using examples from a typical 
whole-genome sequence and RNA-seq project (Table 1) 
We consider the associated costs incurred during a 
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Figure 1. Contribution of different factors to the overall cost of a sequencing project across time. Left, the four-step process: (i) experimental 
design and sample collection, (ii) sequencing, (iii) data reduction and management, and (iv) downstream analysis. Right, the changes over time 
of relative impact of these four components of a sequencing experiment. BAM, Binary Sequence Alignment/Map; BED, Browser Extensible Data; 
CRAM, compression algorithm; MRF, Mapped Read Format; NGS, next-generation sequencing; TAR, transcriptionally active region; VCF, Variant Call 
Format.
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Figure 2. Cost of 1 MB of DNA sequencing. Decreasing cost of sequencing in the past 10 years compared with the expectation if it had followed 
Moore’s law. Adapted from [11]. Cost was calculated in January of each year. MB, megabyte.
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four-step process: (i) sample collection and experimental 
design, (ii) sequencing the sample, (iii) data reduction 
and management, and (iv) downstream analyses (that is, 
the complex analyses enabled by NGS and by the experi
mental design) (Figure 1, Table 1).

Experimental design and sample collection
As the cost of producing sequence reads decreased, more 
and more applications have been designed to exploit this 
technology. In addition to ‘traditional’ whole genome and 
exome sequencing, and traditional functional genomics 
experiments, such as transcriptome analysis (small and 
long RNA-seq) and chromatin immunoprecipitation 
(ChIP-seq), other applications of NGS have been designed: 
array-capture followed by sequencing (for example, en
riching for transposable elements), fosmid pools sequen
cing (to facilitate haplotype phasing) [15], metagenomics 
sequencing, bisulfite sequencing and methylated DNA 
immunoprecipitation (MeDIP-Seq) to study DNA methy
lation patterns [16,17]. Some of these cutting-edge experi
mental designs require complex molecular and cellular 
biology experiments, such as chromosome sorting, to 
prepare the library for sequencing, thus adding con
siderably to the overall experimental costs.

In addition to the experimental design, the nature of 
the sample used can significantly alter the overall budget 
for a sequencing project. In the past, cell lines were the 
preferred biological material to sequence for obvious 
reasons: unlimited availability, well-known properties, 
and they are ideal for calibration and comparison with 
more traditional techniques. The advantages of these cell 
lines outweighed the noise introduced by the artifacts of 
immortalized cell lines. With an improved and more 
reliable sequencing technology, the questions addressed 
by researchers have also become more challenging, 
ranging from assessing human genetic variability to under
standing the underlying biology of complex diseases, 
necessitating more time-consuming collection of clini
cally relevant samples, For example, studying ‘trios’ (that 
is, father, mother and child) to search for rare variants 
requires a considerable effort in terms of coordinating 
the experimental design compared with collecting blood 
samples from normal healthy volunteers. Similarly, the 
collection of matched cancer and normal frozen tissues 
needs proper standardized protocols to obtain high-
quality biological material for sequencing. Working with 
a standard cell line, such as HeLa, requires less effort 
than working with brain tissue samples (where the 
dissection takes about 8  h and requires at least two 
people; Table 1).

If clinically relevant samples from patients are to be 
used, then we must consider the costs associated with 
protecting patients’ rights. As more genomes are se
quenced and we become better at identifying personal 

information from them, the protection of the raw and 
analyzed data is crucial to avoid compromising even 
traditional research studies because patients are wary of 
donating their samples for research. Therefore, appro
priate sample collection, informed consent procedures 
and the development of infrastructure and security 
required to protect patients’ data need to be considered. 
Institutional review boards (IRBs) or ethics committees 
are often charged with overseeing these tasks. However, 
IRBs may constrain or limit the nature of whole-genome 
sequencing projects in light of concerns over downstream 
usage of genomic data. When faced with high-risk 
studies, IRBs may prevent a researcher from conducting 
a particular study, or request that the investigator seek 
approval from governmental agencies, potentially 
resulting in bureaucratic delays, which should be factored 
in to project budgets in advance.

Furthermore, technological advancements over the 
course of the research project, while providing exciting 
new avenues of research, might effectively render the 
initial informed consent agreement moot, either requir
ing the acquisition of a new consent or the curtailment of 
a promising research program due to lack of consent.

Once private data are collected there are significant 
costs in maintaining a secure and functioning archival 
system. Compared with a similar heavy-data scenario, 
such as picture archiving and communication systems 
(PACS) in radiology departments, the costs could easily 
reach a few million US dollars [18]. This becomes even 
more complicated if the laboratory storing the data also 
wants to provide secure access to a wider audience over 
the web in terms of the actual cost of the infrastructure 
and software, and also the man-hours necessary to 
maintain the system updated [19].

Sequencing the sample
Sequencing entails the preparation of the library from the 
sample and running the sequencer to generate sequence 
reads. Streamlining the sequencing pipeline is an impor
tant aspect, especially for large-scale data-producing 
centers (for example, genomics centers, core sequencing 
centers at universities), which can benefit the most by 
leveraging economies of scale. However, the solutions 
implemented by large-scale data producers are different 
from those required by smaller centers. Standardized 
sample collection and identification procedures, and 
library preparation according to best practices, are the 
mainstay of large-scale data producers, where the main 
effort is to optimize and automate the entire process for 
many sequencing projects. This approach ensures high-
quality and reproducible data, but it also requires a large-
scale infrastructure. The main challenges are to accom
modate the needs of multiple users, to achieve a low 
down-time of the sequencers, to adapt to new reagents 
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and experimental protocols quickly, and to reorganize 
the efforts of technicians based on newer, faster machines 
in an efficient manner. These issues can be addressed in 
large-scale centers by using robots to automate the 
process. It is likely that the initial costs of implementing 
this infrastructure will be partially offset by the 
sequencing ‘running’ costs, which are decreasing.

At the opposite end of the spectrum are smaller groups 
and individual investigators, perhaps with only one 
sequencer. They do not need a complex infrastructure to 
successfully complete their sequencing process, and the 
current solutions offered by the vendors are sufficient. In 
this scenario, a major burden is represented by the acqui
sition of the technical expertise to run the sequencer and 
keep up with the new protocols.

Data reduction and management
The basic output of a sequencing run is the set of 
sequence reads (in our example, about 6 billion sequence 
reads corresponding to approximately 600 billion nucleo
tides - approximately 187× coverage of the human 
genome; Table 1). Typically, this information is captured, 
rather inefficiently, in FASTQ files, which include the 
quality scores of each base. Three types of computation 
need to be distinguished: the first aims to efficiently 
manage this wealth of data by generating compressed 
data structures of the low-level raw data that can be easily 
accessed; the second aims at automatically extracting 
high-level summaries from these low-level raw data; and 
the third includes all downstream analyses that one can 
devise.

Data management: storage and transfer
In the first category, the alignment of those reads to a 
reference is the initial computational step. Different 
strategies can be adopted, but the final result is the 
assignment of the reads to their genomic location (while 
mapping to a known reference is the simplest procedure, 
some strategies may perform de novo assembly of the 
reads; we believe that this comprises a small fraction of 
experiments). Thus, files including mapped and un
mapped reads can be considered the basic archival unit 
of an NGS experiment, since one can perform all the 
downstream analyses starting from the mapped reads, as 
well as extract all the reads and use a different alignment 
approach. Clearly, efficient compression strategies (such 
as Binary Sequence Alignment/Map (BAM) [20]) are 
desperately needed to reduce the size of those files. The 
amount of raw data generated will increase as sequencers 
will provide longer reads in the future. Indeed, the 
massive amounts of data constitute a major burden from 
several viewpoints. The capacity for storing and archiving 
the data is increasing at a slower pace (that is, following 
Moore’s law) than sequencing throughput, suggesting 

that re-sequencing a sample is more cost-effective than 
keeping the data archived. However, this solution is 
justifiable only when working with immortalized cell 
lines or model organisms. It is not an option with very 
valuable samples, such as clinical tissues or limited 
amounts of antibodies.

Large datasets also pose a problem in terms of data 
transfer. Computational biologists have been taking full 
advantage of the ‘open-world’ paradigm, where datasets 
are freely shared among investigators via centralized 
repositories, such as Gene Expression Omnibus, Array
Express, UniProt and others [21-23]. However, this 
practice is challenged by the vast amount of data that 
would need to be piped through the existing networking 
infrastructure for uploading and downloading the data to 
and from those repositories. For example, at a network 
bandwidth of approximately 10 megabytes (MB)/s, it 
would require approximately 8.5 h to transfer 300 giga
bytes (GB) [24]. Recently, a reference-based compression 
algorithm (CRAM) has been proposed that addresses 
both issues of storing and transferring data [25]. Inspired 
by video compression, this method currently achieves a 
considerable reduction in storage space required: 10-fold 
to 30-fold. Briefly, it keeps only the differences with 
respect to a reference and considers the relative location 
of a read based on the location of the previous read. 
Moreover, unmapped reads are assembled ‘on the fly’ to 
achieve even higher compression rates; this is a strategy 
that might also lead to novel discoveries. An irreducible 
fraction of reads, however, will not be mapped. This 
observation leads to a paradox: most of the disk space is 
required to store ‘noise’ (that is, the unmapped reads; 
obviously, this is an oversimplification, as not all un
mapped reads can be considered as noise and some 
might actually lead to new discoveries). In the future, by 
identifying what information we can afford to lose, we 
could achieve higher levels of compression (approxi
mately 200-fold), helping us to catch up with the 
decreased cost of sequencing [26].

Following our example, data storage, transfer and 
mapping would cost about $40 for about 12 h of compute 
work for whole-genome sequencing, or about $5 and a 
few hours for RNA-seq (Table 1).

Data reduction: high-level summaries
The second computational category regards the process
ing of the reads in order to obtain meaningful high-level 
summaries. For example Variant Call Format (VCF) files 
[27] describe genomic variants, including SNPs, short 
indels, structural variations (deletions, duplications and, 
more recently, inversions and translocations), Browser 
Extensible Data (BED) files report binding sites for ChIP-
seq experiments, and tab-delimited files can provide 
RPKM values quantifying gene and exon expressions 
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[28]. Here, it is clear what types of output one aims to get 
(VCF files, BED files, and so on), although there is not yet 
a fixed set of computational algorithms to achieve this 
goal. The creation of these high-level summaries is analo
gous to what is commonly performed in other fields. For 
example, protein structures are now encoded in Protein 
Data Bank (PDB) files [29]. Very few people would 
analyze the raw diffraction images from which the PDB 
files were generated. Similarly, raw digital images acquired 
with modern smart phones undergo a tremendous level 
of processing to produce an MPEG4 compressed video 
that can be immediately shared with friends; and no one 
needs the raw high-definition images to enjoy their 
friends’ pictures.

These high-level summaries are likely to become the 
most valuable piece of information from sequencing 
experiments. Many researchers interested in genomic 
variants would need only the VCF files, which are 
considerably smaller than the whole set of mapped reads: 
about 170 MB for approximately 3 million SNPs, about 
8 MB for 300,000 indels, and about 0.2 MB for approxi
mately 1,500 structural variations. Similarly, the files with 
expression levels from RNA-seq or binding sites from 
ChIP-seq are quite small: about 0.5 MB for approximately 
25,000 genes (RNA-seq), about 4 MB for approximately 
230,000 exons (RNA-seq), and about 3 MB for approxi
mately 80,000 binding sites. The generation of these files 
takes about 1 day and about $35 each for whole-genome 
sequencing and a few hours and about $6 for RNA-seq 
(Table 1).

Complexity of data reduction: hybrid solutions
In addition to their smaller, almost negligible size, high-
level summaries also have the advantage of reducing the 
potential privacy issues related to NGS data, which are 
more revealing of the underlying individual and include 
the potential for a full characterization. Although this 
solution seems attainable for most final users, it is not 
viable for researchers developing the computational tools 
to mine the data, who would still need the raw sequence 
data. A hybrid solution is to use compressed intermediate 
summaries, such as Mapped Read Format (MRF) [30]. 
Similar to CRAM, MRF focuses on encoding the location 
of the reads. In addition, it can protect the most sensitive 
information (that is, the sequences) by separating them 
from the alignment information. This has the advantage 
of enabling all the primary analyses where only the read 
locations are needed, such as quantifying expression 
levels, and of considerably reducing the file size.

The lack of agreed standards is a problem for data 
reduction approaches. One of the main benefits of 
centralized repositories has been to define standardized 
metadata and data formats that proved to be quite useful 
for the final users of those data. However, it has also 

introduced an additional burden to the data providers to 
generate those metadata and prepare the data submission 
in the proper format. A ‘broker’ who has expertise in data 
processing can efficiently deal with all these aspects, and 
its costs should thus be taken into account, especially for 
smaller groups.

To the cloud!
With the majority of computational tools for NGS data 
analyses being open source, computational-related costs 
are typically only hardware infrastructure (data storage 
and computational power) and human resources to 
properly set up the computational environment and run 
the processing pipeline. There are currently three solu
tions for this type of computational analysis: subscribing 
to sequencing-as-a-service offerings by sequencing 
companies, processing the data in-house, and using cloud 
computing services.

A few sequencing companies, such as Complete 
Genomics, DNANexus and Spiral Genetics among others, 
provide data reduction services, some also following 
whole-genome DNA sequencing. These data reduction 
pipelines are proprietary NGS data processing facilities 
and their cost to the customer is minimal in addition to 
the sequencing service (a few thousand dollars per 
genome). The nature of the data processing pipeline 
confers customers less control on the quality, repro
ducibility and other details of the data reduction pipeline.

A common aspect for analyzing the vast amount of 
data is the use of parallel computing. Typically, this would 
entail the use of a computer cluster, a facility not available 
to everyone, which requires a significant amount of 
investment that easily reaches thousands or millions of 
dollars. While large-scale centers might benefit from 
economies of scale, smaller institutions or individual 
laboratories might be priced out of these facilities.

An alternative to building in-house hardware infra
structures is to resort to commercialized cloud comput
ing services or computation-as-a-service [24,31]. In this 
scenario, users ‘rent’ computational power to perform 
the analysis over the Internet. Amazon.com was one of 
the first to offer these general-purpose cloud services 
with the Amazon Web Services. Several service providers 
now offer solutions based on this computing paradigm, 
including Microsoft Windows Azure, The Rackspace 
Cloud and the US Federal Government, among others 
[31-34]. This solution might appeal to smaller groups as 
well as large-scale genomics centers. Smaller groups can 
delegate the burden of implementing, maintaining and 
running complex infrastructures and security protocols 
to the service providers while concentrating on obtaining 
meaningful results from their data. Similar to our illus
trative example reported in Table 1, Langmead and 
colleagues [35] were able to re-align a human genome 
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and detect SNPs for a cost of the cloud use of approxi
mately $113: $28 for transferring and storing the raw 
data, the remaining $85 to run the analyses on 320 central 
processing units in about 2.5 h. Larger organizations, 
which might already have their own computer clusters, 
can still make use of these services. Indeed, some service 
providers allow ‘hybrid’ solutions where private resources 
can be securely extended into the cloud. This solution is 
particularly useful to address ‘spikes’ in computer usage 
(that is, when simultaneous requests for computational 
resources exceed the local cluster capacity).

Another advantage of cloud computing is that stan
dardized computational tools can be made available 
through the cloud such that even casual users can execute 
their analysis using state-of-the-art approaches (Galaxy, 
Myrna, JCVI BioLinux, and so on [31,36-39]). Although 
cloud computing seems quite attractive, there are other 
aspects that one must consider. First, cloud computing is 
particularly effective when a lot of computation, such as 
molecular dynamic simulations, is required. However, in 
genomics, processing is tightly linked to the large amount 
of data. Transferring massive amounts of data to the 
cloud may be time consuming and prohibitively expen
sive for small laboratories in research institutions with 
standard network bandwidth (approximately 10 MB/s). 
Moreover, by transferring the data to the cloud, one 
would create a redundancy that is not efficient, unless the 
output from the sequencers is directly transferred to the 
cloud. Reference-based compression can ameliorate 
some of these issues. A 10-fold reduction of a 300 GB 
BAM file (whole-genome sequence; Table 1) will reduce 
the overall cost to approximately $4 for transferring the 
data to the cloud and storing them for 10 days, in addition 
to reducing the transfer time considerably (approximately 
1  h). Second, ensuring that data from human subjects 
remains private is important. Guaranteeing that the 
sequence data are handled according to the individual 
consent and protected in accordance with the various 
regulations is mandatory, particularly when using 
government funding. Although some companies already 
provide tools to deal with these issues in the cloud, the 
legal aspects of handling genomic data are still in flux. 
For example, in the USA, depending on the source of 
genetic information, Health Insurance Portability and 
Accountability Act (HIPAA) rules may or may not fully 
apply (that is, direct-to-consumer genomics companies 
probably do not need to comply with HIPAA privacy 
protections). Moreover, it is not clear whether the Fourth 
Amendment right against search and seizure for genomic 
data is maintained in the cloud.

A solution to the privacy issues may be that govern
mental funding agencies, such as the National Institutes 
of Health in the USA, create a ‘private’ cloud environment 
where a researcher can conduct his/her genomics 

research in accordance with the legal framework. This 
approach may also help in lowering the share of the 
agency’s budget spent on funding the computational 
infrastructure of various research organizations. In this 
scenario, an important aspect is the definition of a shared 
common legal and ethical framework if data are shared 
internationally.

Downstream analyses
Whether the sequencing and initial data analyses are 
carried out externally or in house, researchers have to 
face the downstream analyses of NGS tailored to specific 
research projects. Hundreds of tools have been developed 
to unravel the complexity of biological mechanisms 
hidden in the sequence reads. Whole-genome DNA 
sequencing enables analyses such as looking for natural 
selection in genomic elements [40], investigating demo
graphic history changes by comparing with the Neander
thal genome [41], and studying cross-species conserva
tion, recombination hotspots and gene conversion [42]. It 
also allows us to perform phasing (family-, population- or 
physical-based) and construct diploid personal genomes 
[43]. A single RNA-seq experiment can be exploited to 
investigate not only gene expression levels, but also 
transcript expression levels, to identify differentially ex
pressed ‘elements’ [44]. It can further provide informa
tion about novel transcriptionally active regions or novel 
splice sites [45], identify the presence of chimeric trans
cripts [46,47], and investigate the extent of RNA editing 
or allele-specific expression [48-50]. Moreover, the inte
gration of multiple assays allows researchers to address 
more complicated questions with both a resolution and a 
breadth that was unforeseeable only a few years ago. For 
example, combining genotyping information (perhaps 
obtained from whole-genome sequencing) and RNA-seq 
data, it is possible to investigate expression quantitative 
trait loci [49,50]. Analyzing and combining ChIP-seq 
experiments allows the determination of putative 
functional elements, such as enhancers and promoters, 
and the generation of regulatory networks to study their 
static and dynamic aspects.

In contrast to the cost of hardware, the cost of human 
resources is hardly quantifiable at the current state of the 
art. No streamlined, standardized approach is yet avail
able for the users, either an experienced or a casual one. 
Hence, considerable efforts are required to properly 
install, configure and run the computational pipeline to 
perform the data reduction as well as the more complex 
data analyses described here.

Some computational frameworks, such as Galaxy, 
provide users with several tools to perform data analysis 
[36]. However, as pointed out by the Galaxy developers in 
the ‘Know what your doing’ section of the framework 
[51]: ‘There is no such thing (yet) as an automated 
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gearshift in (...)’ (replace (...) with your favorite analysis: 
for example, short read mapping, splice-junction 
identification). Moreover, the time and effort considered 
for the data analysis pipeline in Table 1 includes only the 
estimation of actual computing time (that is, ‘machine 
time’). There is an unpredictable amount of extra ‘human 
time’ spent on comparing and choosing suitable and 
reasonable software tools, learning how to install, 
configure and execute them, estimating the effects of 
tuning the parameters, interfacing input/output formats 
for serial modules in the pipeline, and debugging and 
streamlining. Sometimes, this latter phase is more time 
consuming than the actual processing time.

Finally, as pointed out by Elaine Mardis, the inter
pretation of the results, in many cases, requires a multi
disciplinary team to make sense of all the primary data 
[52]. Linking a genetic variation to a phenotype, 
especially a clinically relevant one, requires a lot of 
expertise and effort, first to identify highly confident 
variants; second, to estimate their functional impact; 
third, to select from among the functional ones those that 
are correlated to the phenotype. None of these steps can 
be carried out in an automated fashion. This, in turn, 
further supports why no streamlined data analysis pipe
line currently exists and the needs to customize and 
tailor the process to each research project. A team of 
bioinformaticians, statisticians, geneticists, biologists and 
physicians is required to translate the information in the 
primary data into useful knowledge to understand the 
impact of genomic variants in biological systems; this can 
often take weeks or months of extensive experimental 
validations using animal models or cell lines.

Future scenarios
The impressive advances made possible by the intro
duction of NGS are rapidly pushing the scientific 
community toward uncharted territories. NGS is 
currently quite expensive and mainly tailored to a 
research setting. However, the rapid decrease in its basic 
operational costs will make their utilization affordable by 
a larger group of investigators and in a diagnostic setting. 
New experimental protocols, new equipment tailored to 
interrogate smaller portions of the genome (for example, 
Ion Torrent Personal Genome Machine PGM, Illumina 
MiSeq) and new applications of sequencing will further 
broaden the user base of these technologies. In turn, this 
means that more ‘challenging’ samples will be analyzed 
with more complex experiments thus increasing the 
fraction of cost due to sample collection and experimental 
design (Figure 1).

The cost of sequencing is decreasing rapidly (that is, 
faster than Moore’s law; Figure 2) in contrast to storage, 
which is decreasing in line with Moore’s law. The bottle
neck represented by data storage, maintenance and 

transfer should be addressed by better data compression 
algorithms, and by standardized high-level summary 
data. These summaries should be sufficiently expressive 
as to enable additional analyses and to be easily integrated 
with other data sets for comparative analysis. However, 
this approach would tackle only one aspect of the NGS 
data complexity. The full interpretation of the primary 
data is going to constitute a major expense (Figure 1).

In conclusion, the rapid decrease in the cost of ‘data 
generation’ has not been matched by a comparable 
decrease in the cost of the computational infrastructure 
required to mine the data. Cloud computing is one 
promising direction for smaller groups and large-scale 
organizations to address some of the underlying issues, 
with the former clearly benefiting the most. However, 
careful considerations about privacy of the data and 
network bandwidth must be taken into account. The 
major burden, however, will be represented by the down
stream analysis and interpretation of the results. The 
bioinformatics and computational biology community 
needs to design and develop better computational algor
ithms and approaches to speed up the ‘knowledge 
generation’ pipeline, taking advantage of the possibilities 
opened up by the cloud. More automated and more 
reliable tools to process and analyze NGS data are 
certainly needed and constitute essential steps towards 
the realization of personalized genomics and medicine, 
one of the main challenges of the 21st century.
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