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Abstract: Gastric cancer (GC) was the fourth deadliest cancer in the world in 2020, and about 770,000
people died from GC that year. The death of patients with GC is mainly caused by the metastasis,
recurrence, and chemotherapy resistance of GC cells. The cancer stem cell theory defines cancer stem
cells (CSCs) as a key factor in the metastasis, recurrence, and chemotherapy resistance of cancer. It
considers targeting gastric cancer stem cells (GCSCs) to be an effective method for the treatment of
GC. For GCSCs, genes or noncoding RNAs are important regulatory factors. Many experimental
studies have found that some drugs can target the stemness of gastric cancer by regulating these
genes or noncoding RNAs, which may bring new directions for the clinical treatment of gastric cancer.
Therefore, this review mainly discusses related genes or noncoding RNAs in GCSCs and drugs that
target its stemness, thereby providing some information for the treatment of GC.
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1. Introduction

GC is a common malignant tumor. In 2020, cancer caused 10 million deaths in the
world, and GC accounted for 7.7% (770,000), ranking the fourth cause of death after lung
cancer, colorectal cancer, and liver cancer [1]. Although there are various treatments for
GC, the survival rate of many advanced GC patients with metastasis, recurrence, and
chemotherapy is quite low [2–9]. Therefore, new therapies are urgently required to improve
the survival rate of advanced GC patients.

Many researchers find that cancer stem cells may be a key factor in the treatment
of advanced cancer. For instance, T Lapidot et al. found that a large number of cell
colonies that they called leukemia-initiating cells could be generated by transplanting a
small number of CD34+CD38- leukemia cells into mice [10]. T Reya et al. believed that
CSCs are the key to cancer treatment. If the CSCs are not killed, but only ordinary cancer
cells are killed, the cancer will soon relapse [11]. American Association for Cancer Research
(AACR) in 2006 defined that CSCs in tumors have the ability to self-renew and generate
heterogeneous tumor cells. Experts at the meeting believed that this cell subset may be
resistant to classical treatments, and new drugs need to be developed to selectively target
cancer stem cells to treat cancer [12]. With the gradual deepening of research on CSCs, it
has been discovered that CSCs are the initiating cells of malignant tumors. They play a key
role in cancer metastasis, recurrence, and chemotherapy resistance [13–16]. In view of the
important role of CSCs in GC, many scholars believe that the key to the treatment of GC is
to completely eliminate CSCs in gastric cancer [17–19] (Figure 1). In order to improve the
prognosis of patients with advanced GC, finding new drugs to target GCSCs may be the
direction of therapy [20,21]. Genes can regulate the stemness of GC cells, and some drugs
target the stemness of GC cells by changing the expression of these gastric, cancer, stem
cell-related genes [22–26]. Therefore, in this review, we focused on related genes in GCSCs
and drugs and provide some information to treat GC by targeting its stemness.
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mouse model of Helicobacter-induced GC may also be a source of GCSCs. Meanwhile, 
BMDCs are considered to be the most primitive uncommitted adult stem cells [29]. There-
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At present, there are three mainstream methods for the isolation of GCSCs. The first 
method is that GCSCs can be separated from side population (SP) cells using nuclear flu-
orescent dyes. GCSCs have the ability to expel Hoechst33342 so they cannot be stained. 
The main group of cells is the smaller cell group at the lower left; they are often located in 
the dot plot of flow analysis. According to this characteristic, the GCSCs can be obtained 
and collected by selecting the appropriate wavelength of ultraviolet excitation light by the 
flow cytometer with a sorting function [20]. The second method is to use the surface mark-
ers of GCSCs for cell sorting. By applying magnetic strain-activated cell sorting (MACS) 
technology, Shigeo Takaishi et al. used CD44+ as the surface marker of GCSCs to separate 
them. The specific mechanism is that the CD44 antibody is fixed on the separation column, 
and the CD44 positive cells can be adsorbed on the CD44 antibody on the separation col-
umn to avoid being repelled from the separation system by the magnetic field [30]. Of 
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Figure 1. GCSCs are also considered to be a key factor in GC recurrence and chemotherapy resistance.

2. The Origin, Isolation, Surface Markers, and Related Signaling Pathways of GCSCs

The origin of GCSCs is currently somewhat controversial. Many researchers held the
view that GCSCs might be derived from gastric stem cells. S M Karam et al. found that
TFF1 knockout mouse gastric stem cells contribute to gastric carcinogenesis [27]. Lang Yang
et al. proved that GC stem-like cells possess higher capability of invasion and metastasis
in association with a mesenchymal transition phenotype [28]. These evidences indicated
that GCSCs may be derived from gastric stem cells. However, bone marrow-derived cells
(BMDCs) discovered by Shigeo Takaishi et al. during their research using a mouse model
of Helicobacter-induced GC may also be a source of GCSCs. Meanwhile, BMDCs are
considered to be the most primitive uncommitted adult stem cells [29]. Therefore, the
source of GCSCs may be gastric stem cells or BMDCs.

At present, there are three mainstream methods for the isolation of GCSCs. The first
method is that GCSCs can be separated from side population (SP) cells using nuclear
fluorescent dyes. GCSCs have the ability to expel Hoechst33342 so they cannot be stained.
The main group of cells is the smaller cell group at the lower left; they are often located in the
dot plot of flow analysis. According to this characteristic, the GCSCs can be obtained and
collected by selecting the appropriate wavelength of ultraviolet excitation light by the flow
cytometer with a sorting function [20]. The second method is to use the surface markers
of GCSCs for cell sorting. By applying magnetic strain-activated cell sorting (MACS)
technology, Shigeo Takaishi et al. used CD44+ as the surface marker of GCSCs to separate
them. The specific mechanism is that the CD44 antibody is fixed on the separation column,
and the CD44 positive cells can be adsorbed on the CD44 antibody on the separation
column to avoid being repelled from the separation system by the magnetic field [30]. Of
course, there are also other surface markers GCSCs that will be discussed later. The third
method is to isolate GCSCs by serum-free low-adherence culture. When being cultured in
a serum-free, low-adherence medium supplemented with growth factors, GCSCs can form
spheroid cells and maintain self-renewal properties, while normal GC cells cannot survive.
Spheroid formation assay is considered as a convenient way to obtain GC [20].

It is currently believed that the common surface markers of GCSCs include CD44,
CD133, LGR5, MIST1, ALDH1, and AQP5. CD44, CD133, and ALDH1 are also markers
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for many other cancer stem cells. LGR5 is a G protein-coupled receptor with a seven-pass
transmembrane structure. It is considered to be enriched in gastric cancer stem cells. Gastric
stem cells expressing Mist1 are thought to have a propensity to transform into gastric cancer
stem cells. AQP5 is thought to be enriched in distal gastric cancer stem cells [18,31–34].
GCSCs can be isolated by fluorescence-activated cell sorting (FACS) or MACS using the
above surface markers.

There are many signaling pathways involved in GCSCs. The most common ones in-
clude WNT signaling pathway, NOTCH signaling pathway, Hedgehog signaling pathway,
and HIPPO signaling pathway [35–38]. It is well known that the most common signaling
pathways of CSCs are WNT, NOTCH, and Hedgehog [39–43]. Aberrant Wnt/β-catenin
signaling promotes CSCs renewal, cell proliferation, and differentiation, so they play a criti-
cal role in tumorigenesis and therapeutic response [44]. In various cancer types, NOTCH
signaling triggers CSCs phenotypes that develop resistance to various therapies, thus po-
tentially leading to cell dormancy and relapse [45]. Hedgehog signaling, a developmental
pathway that is mostly inactive in adult tissues except for stem cells, is frequently found to
be upregulated in various tumors and is associated with CSCs maintenance [46]. However,
in GCSCs, HIPPO signaling pathway is also a very common signaling pathway [47].

3. The Role of Protein-Encoding Genes in GCSCs

Targeted therapy improves the prognosis of cancer patients and brings hope to
them [48]. For example, trastuzumab, which targets the HER2 gene, improves the survival
rate of patients with HER2-positive breast cancer [49]. Gefitinib could target EGFR to
improve the survival rate of patients with small cell lung cancer [50], and VEGFR-targeting
bevacizumab improves the survival rate of colorectal cancer patients [51]. Although there
are currently no marketed drugs targeting CSCs, researchers have found that targeting
CSCs is a feasible way to treat tumors [15]. Rui Su et al. discovered that small molecules
CS1 and CS2 targeting FTO can inhibit the renewal of tumor stem cells [24]; Cheng Wang
et al. found that anti-CD276 antibody inhibits squamous cell carcinoma stem cells [52];
Yufeng Shi et al. found that gboxin is an oxidative phosphorylation inhibitor that targets
glioblastoma [53]. The above results showed that targeting genes with inhibitors or an-
tibodies to inhibit CSCs has potential in treating tumors, which is also applicable in GC.
Chien-Hsing Lee et al. found that liquiritigenin inhibited the stem cell-like characteristics
of GC by down-regulating the expression of glucose-regulated protein 78 and inhibiting
the growth of GC [54]. Therefore, inhibiting GC stemness by inhibiting the expression of
GCSCs-related genes is also a method for treating GC.

The protein-encoding gene plays a very important role in the regulation of GCSCs.
From the introduction, the common signaling pathways of GCSCs include WNT, NOTCH,
Hedgehog, and HIPPO signaling pathways. These genes that regulate GCSCs were divided
into two parts: through these above common signaling pathways and not through the
above common signaling pathway.

3.1. Related Protein-Encoding Genes in GCSCs through WNT, NOTCH, Hedgehog, and HIPPO
Signaling Pathway

Many genes can regulate the stemness of GC cells by affecting WNT, NOTCH, Hedge-
hog, and HIPPO signaling pathways (Table 1). The WNT signaling pathway is a very im-
portant pathway in GCSCs. Based on Kaiyun Guo et al., tumor necrosis factor-α-inducible
protein (Tipα) promotes the tumor stem cell-like properties of GC cells by activating the
Wnt/β-catenin signaling pathway, thereby accelerating the progression of GC, and target-
ing Tipα may be the strategy to treat GC [55]. According to Chengdong Ji et al., capillary
morphogenesis gene 2 (CMG2) is highly expressed in GC, and CMG2 interacts with LRP6 in
GCSCs to activate the Wnt/β-catenin pathway. Their results revealed that CMG2 promotes
GC by maintaining GCSCs progression and may serve as a new prognostic marker and
target for human GC therapy [56] (Figure 2). Yunhe Gao et al. found that the expression
of ring finger protein 43 (RNF43) was decreased in GCSCs. RNF43 could inhibit the stem-
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ness of GC cells by inhibiting the Wnt/β-catenin pathway, the specific mechanism is that
RNF43 upregulates the expression of Lgr5 protein, an upstream activator of WNT signaling
pathway [57].
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NOTCH signaling pathway also plays an important role in GCSCs. Yan Dou et al.
found that the expression of NOTCH1 was increased in GC, the overexpression of NOTCH1
increases the stemness of GC cells, and the knockdown of NOTCH1 reduces the stemness
of GC cells. They believed that targeting inhibition of NOTCH signaling pathway on the
human GCSCs has drug resistance [58]. Zhi-Feng Miao et al. proposed that the expression
of DLL4 was increased in 383 GC tissue samples and was associated with the risk of distant
metastasis. DLL4 silencing inhibited the self-renewal of GCSCs and enhanced the multi-
differentiation ability, which was achieved through the NOTCH signaling pathway [59].

Hedgehog and HIPPO signaling pathway also affects GCSCs. Yixun Lu et al. found
that GLI2 is highly expressed in GC and promotes the stemness of GC cells through the
Hedgehog signaling pathway [60]. According to Yunhe Gao et al., the expression of stearoyl-
CoA desaturase 1 (SCD1) was increased in metastatic GC, and SCD1 promoted the stem
cell-like properties of GCSCs, which was achieved by affecting the expression of YAP and
promoting the HIPPO pathway. Therefore, they believe that targeting SCD1 may be a new
therapeutic strategy, especially to inhibit GC metastasis and improve chemosensitivity [61].

Many other genes affect GCSCs through WNT, NOTCH, Hedgehog, and HIPPO
signaling pathways, which we have summarized in Table 1 [62–69].
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Table 1. Related protein-encoding genes in GCSCs through WNT, NOTCH, Hedgehog, and HIPPO
signaling pathways.

Genes Functions Mechanism Reference

Tipα Promote stemness Wnt/β-catenin signaling pathway [55]
CMG2 Promote stemness Wnt/β-catenin signaling pathway [56]
RNF43 Inhibit stemness Wnt/β-catenin signaling pathway [57]

NOTCH1 Promote stemness NOTCH signaling pathway [58]
DLL4 Promote stemness NOTCH signaling pathway [59]
GLI2 Promote stemness Hedgehog signaling pathway [60]
SCD1 Promote stemness HIPPO signaling pathway [61]
RORβ Inhibit stemness Wnt/β-catenin signaling pathway [62]
PIGF Promote stemness Wnt/β-catenin signaling pathway [63]

NANOGP8 Promote stemness Wnt/β-catenin signaling pathway [64]
HES1 Promote stemness NOTCH signaling pathway [65]
PAR1 Promote stemness HIPPO signaling pathway [66]
WNT1 Promote stemness Wnt/β-catenin signaling pathway [67]

Dickkopf-1 Inhibit stemness Wnt/β-catenin signaling pathway [68]
TAK1 Promote stemness HIPPO signaling pathway [69]

3.2. Genes Related to GCSCs-Encoded Proteins with Unspecified Mechanisms or Not Acting
through WNT, NOTCH, Hedgehog, and HIPPO Signaling Pathways

Researchers also found many genes related to GCSCs-encoded proteins with unspeci-
fied mechanisms or not acting through WNT, NOTCH, Hedgehog, and HIPPO signaling
pathways. Some related gene researchers have not explained the mechanism through
metabolism, other signaling pathways, hypoxia induction, autophagy, etc.

On the basis of Li-Fei Sun et al., HER2 knockdown in GCSCs reduced the self-renewal,
proliferation, colony formation, chemoresistance, and invasion and migration abilities of
GCSCs [70]. Natalia Pajuelo-Lozano et al. found that MAD2 is important for the stemness of
GCSCs, and its downregulation in GCSCs plays a central role in the occurrence of GC [71].
In addition, other researchers have discovered the role of TRAF6, TAZ, α2δ1 subunit,
LINGO2, ALDH, B7-H1, RegIV, and CDK5RAP3 in GCSCs. However, the mechanism is
currently unknown, and we have summarized them in Table 2 [72–79].

It is currently believed that the metabolism of CSCs is heterogeneous, and the four
key metabolisms of CSCs are glucose metabolism, glutamine metabolism, mitochondrial
metabolism, and lipid metabolism [80–82]. Kai Nie et al. found that GCSCs consume more
glutamine than ordinary GC cells. The glutamine transporter SNAT2 is highly expressed in
GCSCs, and SNAT2 overexpression significantly increases the stemness of GC cells [83].
Ting Yang et al. found that Enolase 1 is highly expressed in GCSCs, and Enolase 1 promotes
the stemness, metastatic ability, and chemoresistance of GC cells through glycolysis [84].

Many other signaling pathways are also involved in the progression of CSCs, such as
ERK, JAK/STAT, and NF-KB signaling pathways [85–87]. Jun Lu et al. found that TBL1XR1
promotes the stemness and metastatic ability of GC cells through the ERK signaling path-
way [88]. Xiao-Feng Xu et al. discovered that BMX-ARHGAP fusion protein can promote
the stemness of GC cells through the JAK/STAT3 signaling pathway. The mechanism is that
BMX-ARHGAP activates JAK/STAT signaling by increasing the expression of BMX-SH2
protein, which contains SH2 domain by binding to phosphorylated tyrosine residues [89].
Y-X Jiang et al. also argued that IL-17 promotes GC stemness through STAT3 signaling
pathway [90]. Myoung-Eun Han et al. found that NRG1 secreted by CAFs promotes the
self-renewal of GCSCs through the NF-KB signaling pathway [91].

Many studies have indicated that hypoxia can induce the enrichment of CSCs and
promote the stemness of cancer cells [92]. Shi-Wei Yang et al. found that after hypoxia
treatment, compared with normoxic controls, some GCSCs significantly exhibited the
increased expression of hypoxia-inducible factor 1α (HIF-1α), increased migration and
invasion abilities, and up-regulated HIF-1α that caused GC recurrence and metastasis by
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activating Snail [93]. Zhi-Feng Miao et al. also found that HIF-1α can promote the stemness
of GC cells [94].

Autophagy is the non-selective degradation of cells and the phagocytosis of damaged
and denatured proteins, lipids, organelles, and intracellular pathogens in the cytoplasm.
Use of degradation could produce energy and raw materials [95]. Autophagy is activated
in CSCs, and autophagy promotes the stemness of cancer cells [96]. Shingo Togano et al.
agreed that GCSCs survive in stress environments via their autophagy system [97]. Sarah
Courtois et al. found that autophagy induced by Helicobacter pylori infection is necessary
for GCSCs emergence [98]. Hitoshi Tsugawa et al. found that CagA autophagic degradation
is specifically inhibited in cancer stem-like cells [99].

The above discussion does not cover all; we have summarized the remaining genes in
Table 2 [100–106].

Table 2. Genes related to GCSCs-encoded proteins with unspecified mechanisms or not acting
through WNT, NOTCH, Hedgehog, and HIPPO signaling pathways.

Genes Functions Mechanism Reference

HER2 Promote stemness - [70]
MAD2 Promote stemness - [71]
TRAF6 Promote stemness - [72]

TAZ Promote stemness - [73]
α2δ1 Promote stemness - [74]

LINGO2 Promote stemness - [75]
ALDH Promote stemness [76]
B7-H1 Promote stemness - [77]
RegIV Promote stemness - [78]

CDK5RAP3 Promote stemness - [79]
SNAT2 Promote stemness glutamine [83]

Enolase 1 Promote stemness glycolysis [84]
TBL1XR1 Promote stemness ERK signaling pathway [88]

BMX-ARHGAP Promote stemness JAK/STAT3 signaling pathway [89]
IL-17 Promote stemness STAT3 signaling pathway [90]
NRG1 Promote stemness NF-KB signaling pathway [91]
HIF-1α Promote stemness Snail [93]
CagA Promote stemness autophagy [99]

METTL3 Promote stemness PARP1 [100]
NME2 Promote stemness apoptosis [101]

KDM4C Promote stemness ALDH1A3 [102]
E2F1 Promote stemness CD44 [103]

SNAIL Promote stemness CCN3, NEFL [104]
SLC34A2 Promote stemness miR-25/Gsk3β [105]
ATOH1 Inhibit stemness differentiation of CSCs [106]

4. The Role of Related Non-Coding RNAs in GCSCs

Noncoding RNAs play important regulatory roles in various diseases, such as can-
cers [107–111].

Nadya Dimitrova et al. found that miR-143/145 promotes lung cancer progression
by targeting CAMK1D [112]. Yina Qiao et al. found that Lnc-408 acts as a sponge for
miR-654-5p to alleviate miR-654-5p inhibition of its target LIMK1 and promote breast
cancer cell invasion and metastasis [113]. Of course, non-coding RNAs also play regulatory
roles in CSCs. For example, Junko Mukohyama et al. found that MIR-221 enhanced the
tumorigenicity of human colorectal CSCs by targeting QKI. The regulation of non-coding
RNA in GCSCs is mainly miRNA and LncRNA, and there are almost no reports on circular
RNA. As such, we will discuss the role of non-coding RNA in GCSCs from miRNA and
LncRNA, respectively.
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4.1. The Role of MiRNA in GCSCs

MiRNAs are RNAs approximately 22 nucleotides in length that silence gene expression
post-transcriptionally by binding to the 3′ untranslated region of the target mRNA [114].
The mechanism of the action of miRNA in GCSCs is mostly by inhibiting the expression of
GC cell stemness genes.

Chen Shen et al. found that miR-15a-5p was down-regulated in GCSCs, and inhibited
the stemness of GC cells by targeting ONECUT2 [115]; Yixun Lu et al. found that miR-144-
3p was down-regulated in GC and combined with the 3′ untranslated region-AUACUGU
of 1689–1696 of GLI2 to inhibit the stemness of GC cells [60]. Panpan Zhan et al. found
that miR-98-5p was down-regulated in GCSCs and inhibited the self-renewal, invasion,
tumorigenicity, and paclitaxel chemosensitivity of GCSCs by targeting BCAT1 [116]. Haiwei
Ni et al. found that miR-375 mainly targets SLC7A11 to attenuate the stemness of GC
cells [117].

There are currently a variety of miRNA-derived clinical nucleotide drugs (mdCND)
in clinical trials, and it is believed that mdCND can benefit patients clinically in the near
future [118]. Many other miRNAs also play a role in GCSCs, and we have summarized this
in Table 3 [119–132].

Table 3. Related miRNAs in GCSCs.

miRNAs Functions Mechanism Reference

miR-15a-5p Inhibit stemness ONECUT2 [115]
miR-144-3p Inhibit stemness GLI2 [60]
miR-98-5p Inhibit stemness BCAT1 [116]
miR-375 Inhibit stemness SLC7A11 [117]

miR-451b Inhibit stemness - [119]
miR-17-5p Promote stemness MKL-1 [120]

miR-6778-5p Promote stemness YWHAE [121]
miR-7-5p Inhibit stemness Smo, Hes1 [122]

miRNA-598 Inhibit stemness RRS1 [123]
miRNA-193a-3p Promote stemness SRSF2 [124]

miRNA-19b/20a/92a Promote stemness E2F1, HIPK1 [125]
miR-132 Promote stemness SIRT1 [126]

miR-196a-5p Promote stemness Smad4 [127]
miRNA-145 Inhibit stemness CD44 [128]
miR-501-5p Promote stemness DKK1, NKD1, GSK3β [129]
miR-483-5p Promote stemness - [130]
miR-106b Promote stemness Smad7 [131]

miR-34 Inhibit stemness Bcl-2 [132]

4.2. The Role of IncRNA in GCSCs

Long non-coding RNA (lncRNA) is a non-coding RNA with a length of more than 200
nucleotides. There are many mechanisms of the action of lncRNA, and the most common
mechanism is to act as a miRNA sponge to relieve the inhibitory effect of miRNA on target
genes [133–135].

Yuanjian Hui et al. found that the expression of LncRNA FEZF1-AS1 was increased
in GC tissues and cells. The inhibitory effect of miR-363-3p on HMGA2 was relieved by
adsorbing miR-363-3p, which promoted the progress of GCSCs [136]. Haiyang Zhang et al.
found that lncFERO can inhibit the stemness of GC cells by promoting the expression of
SCD1 [137]. Shuai Wang et al. also found that lncRNA ROR promoted the stemness of GC
cells [138] (Table 4).
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Table 4. Related lncRNAs in GCSCs.

lncRNAs Functions Mechanism Reference

LncRNA FEZF1-AS1 Promote stemness miR-363-3p [136]
lncFERO Inhibit stemness SCD1 [137]

lncRNA ROR Promote stemness - [138]

5. Current Therapies Targeting CSCs

Although there are currently no FDA-approved drugs for clinical use in CSCs, many
drugs targeting CSCs that are in clinical trials have shown promising results (Table 5).

Vantictumab is an antagonist of the WNT signaling pathway, and its specific mecha-
nism is that it can bind to the extracellular segment of the FZD receptor conserved antigen
to inhibit WNT signaling induced by multiple WNT family members. Austin Gurney et al.
found that vantictumab can reduce tumor-initiating cell frequency [139]. A combination of
vantictumab and taxane sensitizes CSCs to taxanes [140]. The combination of vantictumab
and paclitaxel demonstrated significant efficacy in a phase Ib clinical study in patients
with metastatic breast cancer [141]. Ipafricept is also an anticancer stem cell drug that acts
through the WNT signaling pathway [142]. Ipafricept in combination with gemcitabine
and paclitaxel demonstrates a high rate of clinical benefit in phase Ib trial in patients with
stage IV pancreatic cancer [143].

MK0752 is an inhibitor of NOTCH signaling pathway, and its specific mechanism
is to inhibit the activation of NOTCH intracellular segment by inhibiting γ-secretase,
thereby inhibiting the expression of NOTCH downstream genes. In a clinical trial of 30
breast cancer patients treated with MK0752 in combination with docetaxel, reductions in
CD44(+)/CD24(−), ALDH(+) and mammosphere formation efficiency were observed in
their tumors [144].

Hedgehog inhibitor vismodegib was approved by the FDA in 2012 for the treatment
of basal cell carcinoma [145]. Edward J Kim et al. found that in a clinical trial of vismodegib
combined with gemcitabine in patients with metastatic pancreatic cancer, the expression of
GLI1 and PTCH1 was down-regulated, but there was no significant change in pancreatic
cancer stem cells [146].

The results of the above clinical trials targeting CSCs are a promising therapeutic
approach, which requires more large-scale clinical trials to validate.

Table 5. Current therapies targeting CSCs.

Drugs Functions Mechanism Phase of
Clinical Reference

Vantictumab Inhibit stemness WNT Ib [141]
Ipafricept Inhibit stemness WNT Ib [143]
MK0752 Inhibit stemness NOTCH clinical trial [144]

vismodegib Inhibit stemness Hedgehog clinical trial [146]

6. Drugs for GC Treatment by Targeting Its Stemness

The emergence of chemotherapy drugs has greatly improved the survival rate of pa-
tients with cancer. The aforementioned trastuzumab, gefitinib, and bevacizumab have ben-
efited many patients with cancer [48–51]. Although there are currently no FDA-approved
drugs or drugs entering clinical trials, many basic experiments have shown that drugs or
new material can play a role in the treatment of GC by targeting the stemness of GC. We
will discuss that separately below.
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6.1. Drugs for GC Treatment by Targeting Its Stemness

The researchers have discovered many drugs that could target the stemness of GC,
including marketed chemotherapy drugs, clinical drugs for other diseases, small molecule
drugs, and traditional Chinese medicines (TCM).

Other cancer chemotherapy drugs also play a role in GCSCs. Wanshuang Cao et al.
found that Apatinib can inhibit the stemness of GC cells through the Hedgehog signaling
pathway. The specific mechanism is that Apatinib acts by inhibiting the key protein SMO
in the Hedgehog signaling pathway [147]. P H Nguyen et al. found that all-trans retinoic
acid targets GCSCs and inhibits patient-derived gastric carcinoma tumor growth. The
mechanism is that all-trans retinoic acid downregulates the expression of CSC markers,
CD44 and ALDH, and stemness genes, such as Klf4 and Sox2, and induces tumorsphere
differentiation [148]. ERBB2 is overexpressed in approximately 25% of gastric primary
tumor models, which correlates with higher levels of CD90 expression in these tumors,
and CD90(+) cells have a higher ability to initiate tumors in vivo. J Jiang et al. found that
trastuzumab inhibits the stemness of GC cells by inhibiting ERBB2 signaling [149]. The
stemness inhibitory effect of cisplatin in GC was discovered by Yang Han et al. [150].

Drugs clinically used for non-tumor therapy can also inhibit the stemness of GC cells.
Atsushi Shiozaki et al. found that amlodipine and verapamil inhibited the growth of
GCSCs [151]; Julie Giraud et al. found that Verteporfin inhibited the tumorigenic properties
of GCSCs by targeting YAP1/TAZ-TEAD transcriptional activity [152] (Figure 3); Jixian
Xiong et al. also found that Verteporfin over-regulated HSP90 function to inhibit the
stemness of GC cells [153]; and Hassan Akrami et al. found that ibuprofen can inhibit
the stemness of GC cells by inhibiting the Wnt/β-catenin signaling pathway [154]. The
researchers also found that metformin and pantoprazole inhibit GC stemness, though the
authors did not explain the mechanism by which metformin inhibits the stemness of GC,
while the mechanism by which pantoprazole inhibits the stemness of GC is through the
EMT/β-catenin pathway [155,156].

Cells 2022, 11, x FOR PEER REVIEW 11 of 19 
 

 

. 

Figure 3. Verteporfin inhibits tumorigenic properties of GCSCs by targeting YAP1/TAZ transcrip-
tional activity. 

6.2. New Material for GC Treatment by Targeting Its Stemness 
Many new materials have played a huge role in treating cancer. For example, Doxil, 

the first FDA-approved liposome drug, has shown great success in the treatment of ovar-
ian cancer and breast cancer [169–172]. Vincristine sulfate liposome injection Marqibo was 
also FDA-approved for the treatment of adults with advanced, relapsed, and refractory 
Philadelphia chromosome-negative ALL [173,174]. The emergence of these drugs proved 
that new materials drugs have great potential in cancer treatment. Therefore, many re-
searchers have pointed out that new materials drugs can inhibit GC cells by targeting the 
stemness of GC cells, which provides a research basis for the treatment of GC. 

Hongjuan Yao et al. found that Gli1 siRNA nanoparticles inhibited the stemness of 
GC cells by inhibiting the Hedgehog signaling pathway, which provided a promising tar-
geted therapy strategy for the treatment of GC [175]; Han Chen et al. found that nanopar-
ticles CD44/CD133-ATRA-PLPN can inhibit the proliferation of GCSCs [176]; Feng Yang 
et al. found that CD44 targeting USP22 small interfering RNA-loaded nanoliposomes can 
target and eradicate GCSCs [177]; Weifeng Yang et al. found that HA-coated nanoparti-
cles, co-encapsulating plasmid METase, and 5-Fu showed enhanced application in target-
ing GCSCs [178]. Many other new material drugs could inhibit the stemness of GC cells 
[179–181]. These new materials have also shown very good therapeutic effects in experi-
ments targeting GCSCs (Table 7), and it is expected that they will benefit cancer patients 
like Doxil. 

Table 7. New materials for GC treatment by inhibiting its stemness. 

New Materials 
Drugs Functions Mechanism Reference 

Gli1 siRNA na-
noparticles Inhibit stemness Hedgehog signaling pathway [175] 

CD44/CD133-
ATRA-PLPN Inhibit stemness - [176] 

USP22-NLs-
CD44 

Inhibit stemness - [177] 

Figure 3. Verteporfin inhibits tumorigenic properties of GCSCs by targeting YAP1/TAZ transcrip-
tional activity.

Many newly discovered small-molecule drugs also play a role in suppressing the
stemness of GC cells. Yun-Shen Tai et al. found that 4′-bromoresveratrol (4-BR) inhibited
GC cell stemness through the SIRT3-c-Jun N-terminal kinase pathway [157]; Yao-Dong Zhu
et al. found that Celastrus orbiculatus extract (COE) inhibited the stemness of GC cells
by regulating the expression of PDCD4 and EIF3H [158]; Xinsheng Shen et al. found that
Quercetin triggered mitochondrial apoptosis-dependent growth inhibition by inhibiting
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PI3K/Akt signaling to play a role in suppressing the stemness of GC cells [159]. Of
course, the researchers have also discovered many other small molecule drugs to inhibit
the stemness of GC cells, which provided an experimental basis for the treatment of
GC [160–166] (Table 6).

It has also been reported that TCM could inhibit the stemness of GC cells. Yue-Jun
Li et al. found that Sijunzi Decoction inhibited the stemness of GC cells by inhibiting the
transcriptional activity of β-Catenin [167]. Furthermore, Bing Yan et al. found that Xiaotan
Sanjie decoction inhibited GC cell stemness and angiogenesis through Notch1 [168].

Although the drugs described above have not entered clinical trials, they have shown
good therapeutic effects targeting GCSCs during in vivo and in vitro trials. It is believed
that some of the above drugs would enter clinical trials and be approved by the FDA in the
near future and benefit GC patients.

Table 6. Drugs for GC treatment by inhibiting its stemness.

Drugs Functions Mechanism Reference

apatinib Inhibit stemness Hedgehog signaling
pathway [147]

all-trans retinoic acid Inhibit stemness - [148]
trastuzumab Inhibit stemness ERBB2 signaling [149]

cisplatin Inhibit stemness - [150]
amlodipine verapamil Inhibit stemness - [151]

Verteporfin Inhibit stemness YAP1/TAZ [152]
Verteporfin Inhibit stemness HSP90 [153]

ibuprofen Inhibit stemness Wnt/β-catenin signaling
pathway [154]

Metformin Inhibit stemness - [155]
pantoprazole Inhibit stemness EMT/β-catenin pathways [156]

4-BR Inhibit stemness SIRT3-c-Jun N-terminal
kinase pathway [157]

COE Inhibit stemness PDCD4, EIF3H [158]
Quercetin Inhibit stemness PI3K/Akt signaling [159]

PTPRU Inhibit stemness Hippo/YAP Signaling
Pathway [160]

Sulforaphane Inhibit stemness hedgehog pathway [161]
DFOG Inhibit stemness FoxM1 [162]

Evodiamine Inhibit stemness Wnt/β-catenin signaling
pathway [163]

DAPT Inhibit stemness Notch pathway [164]
Atractylenolide I Inhibit stemness Notch pathway [165]

Genistein Inhibit stemness ERK [166]

Sijunzi Decoction Inhibit stemness transcriptional activity of
β-Catenin [167]

Xiaotan Sanjie decoction Inhibit stemness Notch1 [168]

6.2. New Material for GC Treatment by Targeting Its Stemness

Many new materials have played a huge role in treating cancer. For example, Doxil,
the first FDA-approved liposome drug, has shown great success in the treatment of ovarian
cancer and breast cancer [169–172]. Vincristine sulfate liposome injection Marqibo was
also FDA-approved for the treatment of adults with advanced, relapsed, and refractory
Philadelphia chromosome-negative ALL [173,174]. The emergence of these drugs proved
that new materials drugs have great potential in cancer treatment. Therefore, many re-
searchers have pointed out that new materials drugs can inhibit GC cells by targeting the
stemness of GC cells, which provides a research basis for the treatment of GC.

Hongjuan Yao et al. found that Gli1 siRNA nanoparticles inhibited the stemness of GC
cells by inhibiting the Hedgehog signaling pathway, which provided a promising targeted
therapy strategy for the treatment of GC [175]; Han Chen et al. found that nanoparticles
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CD44/CD133-ATRA-PLPN can inhibit the proliferation of GCSCs [176]; Feng Yang et al.
found that CD44 targeting USP22 small interfering RNA-loaded nanoliposomes can tar-
get and eradicate GCSCs [177]; Weifeng Yang et al. found that HA-coated nanoparticles,
co-encapsulating plasmid METase, and 5-Fu showed enhanced application in targeting GC-
SCs [178]. Many other new material drugs could inhibit the stemness of GC cells [179–181].
These new materials have also shown very good therapeutic effects in experiments targeting
GCSCs (Table 7), and it is expected that they will benefit cancer patients like Doxil.

Table 7. New materials for GC treatment by inhibiting its stemness.

New Materials Drugs Functions Mechanism Reference

Gli1 siRNA nanoparticles Inhibit stemness Hedgehog signaling
pathway [175]

CD44/CD133-ATRA-
PLPN Inhibit stemness - [176]

USP22-NLs-CD44 Inhibit stemness - [177]
METase/5-Fu

co-encaspulated NPs Inhibit stemness - [178]

miR-34a delivery system Inhibit stemness CD44 [179]
CD44v6-GNS nanoprobes Inhibit stemness - [180]

SAL-SWNT-CHI-HA
complexes Inhibit stemness - [181]

7. Conclusions

GC is a disease that plagues the world. The metastasis, recurrence, and chemotherapy
resistance of GC are very fatal to GC patients. According to the GCSCs theory, GCSCs
play a key role in the metastasis, recurrence, and chemotherapy resistance of GC, and GC
stemness genes can regulate GCSCs. It may serve as a way to treat GC by targeting the
expression of GC stemness genes. Therefore, we have summarized the related genes or
noncoding RNAs in GCSCs and drugs for GC treatment by targeting its stemness, which
could provide some information for the clinical treatment of GC.
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