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Humoral cross-reactivity between Zika and dengue
viruses: implications for protection and pathology
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Zika virus (ZIKV) is a re-emerging mosquito-borne flavivirus that has recently caused extensive outbreaks in Central and South

America and the Caribbean. Given its association with Guillain–Barré syndrome in adults and neurological and ocular

malformities in neonates, ZIKV has become a pathogen of significant public health concern worldwide. ZIKV shares a

considerable degree of genetic identity and structural homology with other flaviviruses, including dengue virus (DENV). In

particular, the surface glycoprotein envelope (E), which is involved in viral fusion and entry and is therefore a chief target for

neutralizing antibody responses, contains regions that are highly conserved between the two viruses. This results in

immunological cross-reactivity, which in the context of prior DENV exposure, may have significant implications for the generation

of immune responses to ZIKV and affect disease outcomes. Here we address the issue of humoral cross-reactivity between DENV

and ZIKV, reviewing the evidence for and discussing the potential impact of this cross-recognition on the functional quality of

antibody responses against ZIKV. These considerations are both timely and relevant to future vaccine design efforts, in view of

the existing overlap in the distribution of ZIKV and DENV and the likely spread of ZIKV to additional DENV-naive and

experienced populations.
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ZIKA VIRUS EMERGENCE AND CHANGING CLINICAL

FEATURES

Zika virus (ZIKV) is a mosquito-borne flavivirus that was first
discovered in 1947 in the Zika forest in Uganda.1 The virus was
isolated from a febrile rhesus macaque through a yellow fever
surveillance network in the area. A year later, ZIKV was also isolated
from Aedes mosquitoes from the same forest, pointing to a potential
sylvatic transmission cycle involving non-human primates and
mosquitoes.1,2 The first confirmed human ZIKV case was a
laboratory-acquired infection reported in Uganda in 19643 following
which sporadic cases of natural human infection were identified in
Nigeria4,5 and Indonesia.6 However, serological data suggests a wider
geographical distribution, as seroprevalence for ZIKV antibodies has
been documented in several additional countries spanning South and
Southeast Asia and Africa,7,8 as well as in Uganda as early as 1952.2

The first significant human outbreak of ZIKV outside these areas
occurred on the Yap Island of Micronesia in 2007, which was marked
by 49 confirmed infections, 131 probable or suspected cases and an
estimated ZIKV infection rate of 73%.9,10 Thereafter in 2013, the virus
caused a larger epidemic in French Polynesia, with estimates ranging
between 8500 and 19 000 suspected infections.11,12 Until 2013,
symptomatic ZIKV infections were primarily associated with mild
illness involving fever, rash, myalgia, arthralgia and conjunctivitis.7,9

However, during the French Polynesia outbreak, many ZIKV
patients presented with severe clinical manifestations including

Guillain–Barré syndrome, which required hospitalization and medical
interventions.13,14

In 2015, ZIKV was discovered to have spread to Brazil,15–17 which
initiated the largest ZIKV epidemic known to date. Since its emergence
in Brazil, cases of autochthonous ZIKV transmission have been
reported in nearly 50 additional countries and territories in the
western hemisphere,18 including the United States.19 In addition,
ZIKV infections in the Brazilian outbreak have been linked to
complications in pregnancy, and severe ocular and neurological
deformities in neonates born to ZIKV-infected mothers including
microcephaly.20–22 Besides the striking increase in the incidence of
microcephaly reported concurrently with the ZIKV outbreak,23 the
presence of ZIKV in brain tissues of aborted microcephalic fetuses,24,25

as well as in the amniotic fluid of pregnant mothers of microcephalic
fetuses26 demonstrate a causal relationship between ZIKV infection
and this devastating developmental defect.27

Accordingly, ZIKV has now emerged as one of the most critical
arboviruses and is a significant public health concern worldwide.
Given the overlapping presence of DENV in a majority of ZIKV
epidemic regions,18,28,29 there is a pressing need to better understand
the extent and characteristics of DENV–ZIKV immunological cross-
reactivity. Further, the potential impact of this cross-reactivity on the
protective efficacy of ZIKV-induced antibody responses warrants
careful investigation.
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GENETIC AND IMMUNOLOGICAL RELATEDNESS BETWEEN

ZIKV AND DENV

Structural similarities and sequence conservation
ZIKV is a member of the Flaviviridae virus family. Its positive sense,
single-stranded RNA genome is contained within a nucleocapsid core
that is surrounded by an outer envelope made up of two structural
proteins: envelope (E) and pre-membrane (prM). The cryo-EM
structure of ZIKV reveals that the virus has a nearly identical
organizational structure to DENV, including the characteristic her-
ringbone arrangement of E protein head-to-tail homodimers on the
virus surface30,31 (Figures 1A and 1B). In addition to structural
similarities between the viral particles, the main targets for antibody
responses in dengue infections, namely E, prM and the non-structural
protein NS1, share substantial amino-acid sequence identity between
ZIKV and DENV.30,32–34 The considerable structural and genetic
relatedness between ZIKV and DENV (Figure 2) has been hypothe-
sized to cause immunological cross-reactivity between these closely
related viruses, which may make diagnosing patients challenging as
well as potentially impact protective/pathologic immune responses to
these infections.
The E protein is involved in receptor binding, fusion and viral entry,

and is a major target for neutralizing antibody responses in flaviviral
infections. The crystal structure of ZIKV E shows that like other
flaviviral E proteins, it contains three E protein domains (EDs): a
central β-barrel-shaped domain I (EDI), a finger-like domain II (EDII)
and a C-terminal immunoglobulin-like domain III (EDIII). The viral
fusion peptide is located at the tip of EDII, and lies shielded by EDI
and EDIII from the other monomeric subunit within the E protein
dimer35 (Figure 1C). In the context of DENV infection, EDIII was
shown to be an important target for type-specific potently neutralizing
antibodies in mice.36,37 However, serum depletion experiments reveal
that EDIII-specific antibodies make up a small proportion of human
DENV-immune serum.38,39 In contrast, the fusion loop region,
containing the fusion loop epitope (FLE), appears to be more
immunodominant and is a target for less potent but highly cross-
reactive antibodies.40 Another target of significant interest is termed
the envelope dimer epitope (EDE).40 EDE antibodies, directed toward
epitopes that span across the E dimer interface, have been shown to be
conformationally sensitive and broadly neutralizing. These dimer-
dependent epitopes are part of a novel and growing class of complex,
quaternary epitopes that are only present in the intact virion and not
the monomeric form of E.40–44 Recently, mAbs generated from
memory B cells (MBCs) of ZIKV-infected patients were shown to
target virus-specific EDIII as well as the highly conserved fusion loop,
among other sites.33,45,46 In addition, EDE-specific mAbs derived from
DENV-infected patient MBCs potently cross-neutralized ZIKV.47,48

These findings demonstrate the relevance of FLE, EDE and EDIII
epitopes in ZIKV antibody responses. However, additional studies are
required to determine the contribution of such antibodies to the
overall protective capacity of ZIKV-induced humoral immunity.

Evidence of immunological cross-reactivity
During the Yap State outbreak, suspected ZIKV cases were tested for
serum binding and neutralizing (PRNT90) titers to ZIKV and other
flaviviruses including DENV.9,10 Most patients tested were categorized
as flavivirus pre-immune due to the presence of cross-reactive IgG in
their acute-phase (o10 days after symptom onset) sera. A majority of
these presumed secondary flavivirus cases showed measurable DENV
PRNT90 serum titers.10 Although ZIKV was the only detectable
circulating virus during the outbreak (as stated in Lanciotti et al.,10),
DENV infections had been previously reported on the island.49

Similarly, during the French Polynesia outbreak, cross-reactive serum
titers against DENV were observed in ZIKV-probable cases.14 This
may have been in part due to the co-circulation of DENV1 and
DENV3 in French Polynesia at the time of its ZIKV outbreak.12 In
addition, the country has experienced several dengue epidemics,50–52

and moreover, serological surveys in 2011–2013 indicated that nearly
80% of the adult population was DENV seropositive.53 Consequently,
given the possibility of prior/concomitant exposure to DENV, the
presence of cross-reactive antibody titers in patients from the Oceania
outbreaks was not entirely unexpected.
More recently, several studies have addressed the issue of DENV–

ZIKV immunological cross-reactivity by testing sera from ZIKV-
infected individuals against DENV, or dengue sera against ZIKV. In
one such study, sera from both DENV-naive and DENV pre-immune
ZIKV patients strongly bound to ZIKV as well as DENV, with cross-
reactive antibodies targeting both E and NS1 proteins.33 The four
patient samples in this study were from primary ZIKV cases, where
infection occurred during travel to ZIKV-afflicted areas. Similarly,
studies examining secondary dengue sera from endemic regions have
shown cross-reactivity to ZIKV, in both binding and neutralization of
the virus.32,47,48

The studies described above illustrate ample cross-reactivity
between ZIKV sera and DENV and vice versa. However, such analyses
of polyclonal sera alone may not reveal the origin of cross-reactive
antibody responses, or the relative proportion of type-specific versus
cross-reactive antibodies. Especially in flavivirus-experienced popula-
tions, the possibility of multiple independent pools of antibodies
contributing to the apparent serum cross-reactivity, rather than one
common pool that recognizes both DENV and ZIKV also cannot be
easily ruled out. This issue has been addressed by functional studies of
mAbs generated from dengue patient plasmablasts. Our group and
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Figure 1 The ZIKV particle and E protein dimer. Cryo-EM surface structures of (A) immature (PDB 5U4W)31 and (B) mature (PDB 5IRE)30 ZIKV. The
E protein dimer is highlighted in a yellow box. (C) The ZIKV E protein dimer colored by its domain, EDI: red, EDII: yellow and EDIII: blue.30 The fusion loop
is circled in orange. All structural figures in (A–C) were created using PyMol (Schrödinger LLC).
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others have demonstrated that mAbs generated from in vivo activated,
single-cell-sorted plasmablasts isolated during DENV infection can
bind and neutralize ZIKV.32,48 As the source of the mAbs analyzed was
plasmablasts specifically activated in response to DENV infection,
these studies conclusively show that dengue-induced antibodies can

cross-react to a heterologous virus, ZIKV. Additionally, mAb panels
generated from MBCs of DENV-naive primary ZIKV patients have
also been tested against DENV antigens to demonstrate ZIKV–DENV
dual-reactivity at the single-cell level.33

IMPACT OF CROSS-REACTIVE HUMORAL IMMUNITY

Key targets for cross-reactive human antibody responses
The surface glycoproteins E and prM, and the non-structural protein
NS1 have been identified as the main antigenic targets for human
B-cell responses in DENV infections.54–58 Whereas studies examining
convalescent patients have shown the abundance of prM and NS1-
specific MBCs,54,56–58 focused analyses of dengue plasmablast
responses demonstrate that acute-phase antibodies are largely directed
to the E protein.40,59,60 Dengue-induced B-cell responses are domi-
nated by antibodies that are cross-reactive to multiple serotypes, with a
minor proportion exhibiting serotype-specific activity.54,56–58,60

Recently, panels of mAbs from ZIKV-infected patients have been
characterized to study the functional properties of ZIKV antibodies.33

Antibodies generated from the MBCs of primary ZIKV patients
included both ZIKV-specific as well as DENV cross-reactive mAbs.
The subset of NS1 mAbs was largely ZIKV-specific despite the high
cross-reactivity displayed by sera from the same donors. In addition,
mAbs that bound EDIII, or whole virus but not recombinant
E protein, were highly ZIKV-specific and potently neutralizing
in vitro. In contrast, mAbs that were presumably EDI/EDII-specific,
evident by their lack of binding to EDIII but recognition of the
complete E protein, displayed cross-reactive binding to DENV but
poorly neutralized ZIKV.33

Dengue patient plasmablast and MBC-derived mAbs have also been
tested for cross-reactive binding and neutralization to
ZIKV.32,33,47,48,61 Although binding to the virus was more broadly
reported, the potent cross-neutralization of ZIKV by dengue-induced
mAbs appears to be a relatively restricted phenotype.32,48,61 Antibodies
directed to the highly conserved and immunodominant FLE poorly
neutralized ZIKV in vitro.61 In contrast, the dimer-dependent EDE-
specific mAbs were found to neutralize ZIKV potently.47,48,61 The
recognition and potent neutralization of ZIKV by EDE antibodies
suggests that quaternary and other complex epitopes may be
important antibody targets in the ZIKV immune response. Mapping
the epitopes of additional ZIKV-neutralizing mAbs may reveal novel
antigenic sites critical for protection and also inform future vaccine
development efforts.

Antibody-dependent enhancement
Alongside their protective potential, antibody responses in dengue and
other flaviviral infections have also been implicated in exacerbating
disease. Studies have shown that infecting Fcγ-receptor (FcγR)—
expressing cells in the presence of antibodies from flavivirus-immune
donors—can significantly increase the rate of infection.62 This
phenomenon, termed antibody-dependent enhancement (ADE), is
said to occur when cross-reactive antibodies present at sub-
neutralizing concentrations facilitate the uptake of virions by permis-
sive cells, thereby enhancing infection. Rather than inhibiting viral
infection, the immune complexes formed between such antibodies and
viral particles attach to cells and are internalized more efficiently via
FcγR engagement.62 In case of DENV infections, ADE is one of the
several hypotheses proposed to explain the increase in disease severity
associated with repeat heterotypic infections.63,64

ADE of DENV infection has been demonstrated by multiple groups
using sera and mAbs from primary and secondary dengue patients.
Both neutralizing and non-neutralizing mAbs have been shown to
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Figure 2 ZIKV and DENV E proteins share considerable sequence identity.
(A) Phylogenetic tree, showing relatedness based on E protein sequence,
created using MEGA7.67 The evolutionary history between the viruses was
inferred by using the maximum likelihood method based on the JTT matrix-
based model.68 The percentage of trees in which the associated viral
sequences clustered together is shown next to the branches. Branches are
drawn to scale, with lengths measured in the number of substitutions per
site. (B) Heat map showing E protein sequence identity, generated with
ggplot2 in R.69 Sequences were aligned in Geneious version 6.1.70 For
(A) and (B), the ZIKV strains analyzed and their GenBank accession
numbers are: PRVABC59: KU501215, MR766: AY632535, H/PF/2013:
KJ776791, Yap/2007: EU545988 and SPH2015: KU321639. The DENV
strains are DENV1 WestPac: U88535, DENV2 Tonga/72: AY744147.1,
DENV3 Sleman/78: AY648961.1 and DENV4 Dominica/814669/1981:
AF326573.1. In addition, the YFV strain Asibi: KF769016.1 was also
included as an outgroup in the sequence analyses above.
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greatly enhance DENV infection in vitro.54,56,58,60 More recently, a few
studies have also demonstrated that the ADE capacity of dengue-
induced antibodies can also extend to ZIKV.32,48 These studies are
important from an epidemiological perspective, as the vast majority of
regions that have reported ZIKV cases also experience DENV out-
breaks. While timely, the findings of these studies are not entirely
surprising, given the significant biological similarities and abundant
epitopes shared between the two viruses. In one of these studies, EDE
mAbs, shown to potently neutralize all four DENV serotypes40 as well
as ZIKV,48,61 also enhanced ZIKV infection in vitro by ADE. However,
incubating neutralizing concentrations of specific EDE mAbs with
enhancing concentrations of polyclonal dengue sera reduced infection
of FcγR-bearing cells. In contrast, the presence of poorly neutralizing
FLE mAbs did not abrogate the enhancement of infection by serum
antibodies.48 These data suggest that the neutralization potential of
antibodies targeting certain epitopes, such as EDE, may impede the
ADE effect of enhancing antibodies, emphasizing the possible advan-
tages of epitope-based vaccine design.

Protective potential of cross-reactive antibodies
In addition to the in vitro analyses described above, the protective
capacity of several murine and human ZIKV-reactive mAbs has also
been assessed in vivo. The fusion loop-specific murine mAb 2A10G6
(Figure 3A) was found to confer in vivo protection from ZIKV
infection, albeit at a suboptimal dose of 500 μg.35 In another study, the
EDIII lateral ridge-specific murine mAbs ZV-54 and ZV-67 protected
mice from lethal challenge.65 Unlike 2A10G6, the EDIII mAbs were
ZIKV-specific and did not bind to DENV in vitro. Such ZIKV-specific
mAbs may possess a selective advantage over broadly reactive mAb in
their inability to induce ADE of DENV infection.
The human MBC-derived mAb ZIKV-117 was evaluated for its

prophylactic and therapeutic efficacy in a pregnant and non-pregnant
mouse model. In addition to reducing mortality in wild-type adult
mice, in the fetal transmission model, administering ZIKV-117
decreased placental injury, reduced ZIKV infection of placenta and
fetal tissue and improved fetal outcome overall. Epitope mapping of
ZIKV-117 suggested that the mAb binds a quaternary epitope on the E
protein dimer–dimer interface.46 Another group generated a panel of
mAbs from a convalescent ZIKV patient and of the mAbs isolated,
Z23 and Z3L1 demonstrated potent ZIKV-specific in vitro neutraliza-
tion and protected mice from weight loss and mortality after ZIKV
infection. Although Z23 was mapped by cryo-EM to bind to EDIII,
Z3L1 appeared to make contact primarily with EDI residues45

(Figure 3B). Unlike the above mAbs, EDE-specific mAb C10
(Figure 3C) was isolated from a DENV-experienced but presumably
ZIKV-naive donor, and was also shown to protect mice from lethal
challenge.47 Although these results are immensely promising, addi-
tional studies are required to dissect the mechanism of neutralization
of these various mAbs. Moreover, several of these aforementioned
studies were performed in immunocompromised mice, and therefore
a more physiologically relevant characterization of their prophylactic
and/or therapeutic potential merits further investigation in macaque
models.
Sero-epidemiological data from historical ZIKV outbreaks as well as

the findings of recent human serum-based studies may also provide
added insight to the protective potential of immunological cross-
reactivity against ZIKV infection. As demonstrated by in vitro studies,
secondary dengue patient sera can strongly neutralize ZIKV while
primary DENV sera exhibit limited cross-neutralization activity.32,47

This could be explained by the differences in longevity of type-specific
versus cross-reactive antibodies after DENV infection. Although type-

specific responses after primary infection are believed to be long-lived,
cross-protective immunity can wane months after infection. Secondary
heterotypic DENV exposures, on the other hand, may boost cross-
reactive antibody production by reactivating cross-reactive MBCs,
potentially resulting in broader neutralization capacity. Additionally,
while acute or early convalescent (r100 days after symptom onset)
secondary sera were shown to potently neutralize ZIKV, other studies
showed that late convalescent sera exhibited poor-to-moderate ZIKV
neutralization.32,47,48 These data suggest that while recently DENV-
exposed individuals may maintain protective antibody titers against
ZIKV, DENV-seropositive individuals exposed to ZIKV years after
their dengue exposure may not benefit from effective cross-protection.
These findings are consistent with the health outcomes of past and
current ZIKV outbreaks. French Polynesia and Brazil, both countries
with high DENV seroprevalence, experienced significant ZIKV
epidemics with adverse clinical presentations. Cases of birth abnorm-
alities and severe disease have also been reported in numerous DENV-
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Figure 3 Cross-reactive and ZIKV-specific mAbs binding their E protein
epitopes. (A) Murine mAb 2A10G6 binding to the conserved fusion loop on
a ZIKV E monomer.35 (B) Human mAb Z3L1 binding to a ZIKV-specific EDI
epitope.45 (C) Human mAb C10 (ribbon structure) binding to a dimer-
dependent epitope on E protein dimer.71 For (A–C), heavy and light chains
of mAbs are colored red and pink, respectively. All residues conserved
between DENV2 and ZIKV are colored orange. All figures were created using
PyMol (Schrödinger LLC).
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endemic areas28,29,66 suggesting that prior DENV exposure may not
protect against future ZIKV infections. Future studies comparing naive
versus recall human responses may help clarify the role of pre-existing
cross-reactive antibodies during ZIKV disease, shedding more light on
the protective/pathological potential of DENV immunity in the
context of ZIKV infection.
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