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Abstract
For postnatal growth and regeneration of skeletal muscle, satellite cells, a self-renewing pool of
muscle stem cells, give rise to daughter myogenic precursor cells that contribute to the formation
of new muscle fibers. In addition to this key myogenic cell class, adult skeletal muscle also
contains hematopoietic stem cell and progenitor cell populations which can be purified as a side
population (SP) fraction or as a hematopoietic marker CD45-positive cell population. These
muscle-derived hematopoietic stem/progenitor cell populations are surprisingly capable of
differentiation into hematopoietic cells both after transplantation into irradiated mice and during in
vitro colony formation assay. Therefore, these muscle-derived hematopoietic stem/progenitor cells
appear to have characteristics similar to classical hematopoietic stem/progenitor cells found in
bone marrow. This review outlines recent findings regarding hematopoietic stem/progenitor cell
populations residing in adult skeletal muscle and discusses their myogenic potential along with
their role in the stem cell niche and related cell therapies for approaching treatment of Duchenne
muscular dystrophy.
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Muscle Satellite Cells
Myogenic satellite cells are a stem cell population that contributes to postnatal muscle
growth and regeneration that reside beneath the basal lamina of adult skeletal muscle,
closely juxtaposed to the muscle fibers. Satellite cells are normally mitotically quiescent, but
following injury or exercise, they initiate proliferation and give rise to daughter myogenic
precursor cells [1–3]. After multiple rounds of cell division, these myogenic precursor cells
exit their cell cycle and fuse with each other to terminally differentiate into multinucleated
myotubes. The self-renewal capacity within the satellite cell compartment was proven when
considering the fact that the number of quiescent satellite cells in adult muscle remains
relatively constant over multiple cycles of degeneration and regeneration [4,5]. In addition,
recent work demonstrates that a small number of satellite cells can robustly contribute to
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regenerating muscle maintenance of the satellite cell compartment, confirming the proof of
concept for stemness of satellite cells [6].

A decade ago, satellite cells were considered monopotent stem cells, with the ability to give
rise only to cells of the myogenic cell lineage. Indeed, both quiescent satellite and myogenic
precursor cells express markers for myogenic cells such as M-cadherin, Pax3, Pax7, and
Myf5 during the quiescent state, and M-cadherin, Pax7, Myf5, MyoD and desmin during
myogenic proliferation [7–11]. However, recent experiments have demonstrated that
satellite cells possess multipotential differentiation capability. Upon induction, satellite cells
are capable of differentiation into adipocytes and osteocytes in vitro [9,12] and fibroblast in
vivo [13], indicating a mesenchymal differentiation potential of satellite cells. However, in
vivo situation, the ability of adipogenic or osteogenic potential for satellite cells is very
limited, and satellite cells may only contribute to skeletal myogenesis in normal situation
[14–16]. More recently, satellite cells have been induced to generate induced Pluripotent
Stem (iPS) cells by transduction of iPS cell-inducing transcription factors, Oct4, Sox2, cMyc
and Klf4 [17–20].

Muscle-derived HSCs
Current work demonstrates that adult skeletal muscle-derived cells exhibit the capacity to
reconstitute the entire hematopoietic repertoire following intravenous injection into lethally
irradiated mice [21–29]. Myogenic cells have also been found to form multiple types of
hematopoietic colonies by in vitro hematopoietic colony forming assay [25–30]. However,
these muscle-derived hematopoietic stem cells (HSCs) and hematopoietic progenitor cells
(HPCs) were confirmed as a distinct population from satellite cells [30].

During mouse embryogenesis, the process of primitive hematopoiesis begins in the yolk sac
on embryonic day 7.5 (E7.5). Thereafter, definitive HSC activity is first detectable in the
aortagonad-mesonephros (AGM) region on E10, and then fetal liver and yolk sac.
Subsequently, the fetal liver becomes the main tissue for definitive hematopoiesis by E12.
During late embryogenesis, the HSC population in the fetal liver migrates to the bone
marrow, which then remains the major site of hematopoiesis throughout adult life [31]. In
adult, HSCs and HPCs originating from bone marrow readily colonize the adult spleen.
However, it was initially controversial whether HSCs/HPCs exist outside of bone marrow or
spleen. Bartlett [32,33] first reported that a significant amount of hematopoietic colony
forming units(spleen, CFU-s), were present in mouse adult brain. The average number of
CFU-s obtained per dissociated adult brain-derived cells was significantly higher than those
of other adult tissues including lung, kidney, heart, thymus and blood. However,
Hoogerbrugge et al. [33] failed to obtain such high number of CFU-s in adult brain.
Therefore, they concluded that the CFU-s detected by Bartlett in preparations of mouse
brain did not originate from the brain tissue. Recent work has challenged this question and
revealed that HSCs/HPCs clearly exist in several adult tissues besides bone marrow and
spleen [30,34]. For example, not only fetal liver but also adult liver has been shown to
contain HSCs that reconstitute the entire hematopoiesis lineage in lethally irradiated animals
[35,36]. In addition, adult lung contains large numbers of alveolar macrophages derived
from progenitors [37]. Furthermore, T cell differentiation occurs in extra-thymic sites, such
as intestine and liver [38,39]. For teleosts (fishes), the kidneys are the major hematopoietic
organs containing hematopoietic stem cells which are able to be fractionated as side
population (SP) cells, and can give rise to all lines of hematopoietic differentiation including
erythropoiesis, granulopoiesis, and lymphopoiesis [40,41]. Finally, it was also reported that
adult skeletal muscle too contains HSCs and HPCs [21,23].
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HSCs in adult skeletal muscle were first discovered by Gussoni et al. [21]. Gussoni et al.
[21] purified SP cells positive for HSC marker Sca-1 from adult skeletal muscle,
intravenously injected these muscle SP cells into lethally irradiated mice, and observed
whole hematopoietic contribution in the recipient mice. These resultant data strongly
indicated that muscle SP fraction contains HSCs. SP cells exclude Hoechst 33342 DNA-
binding dye through the activity at the cell surface of multi-drug resistance (MDR) pomp
proteins such as ABCG2/BCRP1(see in review) [1], which was first reported by Goodell et
al. [42]. They also discovered that HSCs in bone marrow from many different species can be
isolated as SP cells by fluorescence activated cell sorting (FACS). In vitro hematopoietic
colony formation assays confirmed that adult muscle contains a remarkably high level of
HPCs that differentiate into multiple types of hematopoietic colonies including myeloid
cells, B cells and erythrocytes (see in review) [1,26,30,34,40,43,44]. These muscle-derived
HPCs can also be enriched in the muscle SP fraction as they are in bone marrow-derived SP
cells [30,34,40,43]. In addition, only CD45(+) muscle-derived cells display the capacity to
give rise to hematopoietic cells in vitro and reconstitute the entire hematopoietic repertoire
following intravenous injection into lethally irradiated mice [1,21,24,45], strongly indicating
that muscle-derived HSCs and HPCs are indeed of bone-marrow origin. Therefore,
circulating HSCs and HPCs originating from bone marrow may reside within skeletal
muscle during developmental stages. In this case, marrow-derived cells migrate into skeletal
muscle via activity of hepatocyte growth factor (HGF) and its receptor, c-met [46].
Interestingly, Single-cell-sorted muscle SP/CD45(+) cells displayed robust proliferative
activity [29]. These amplified clonal cell populations displayed multilineage differentiation
capability, including myeloid, lymphoid and NK cells. Therefore, similar to bone marrow-
derived cells, a single cell in muscle-derived hematopoietic cells exhibits major proliferative
potential and multi-lineage differentiation capability.

With the current understanding of muscle-related hematopoietic status, there are several
intriguing questions. 1) How does the muscle niche maintain HSCs/HPCs that possess such
a remarkable capability for hematopoietic differentiation potential? 2) Can muscle-derived
HSCs/HPCs contribute to muscle regeneration through their direct myogenic differentiation?
3) Can bone marrow-derived HSCs/HPCs contribute to regenerating muscle fibers through
their direct myogenic differentiation?

For the muscle niche, a recent paper showed that HPCs occurred in cachectic muscle with a
statistically significant enrichment in Sca-1(+) CD45(+) [47]. Since HSC recruitment is
stimulated by muscle injury or other insults [48–50], this phenomenon can be interpreted as
a response to signals released by the atrophying fibers to maintain HPCs. Muscle-derived
HSCs/HPCs must be abundant in muscle on a whole body basis since muscle is the largest
tissue set in the body. Interestingly, Tsuboi et al. demonstrates that frequency of
hematopoietic stem cells in human muscle is approximately four times greater than in
peripheral blood, suggesting an additional function of human skeletal muscle as a reservoir
of HSCs [51]. The presence of HSCs/HPCs in adult muscle raises the possibility that such
stem cells locally contribute to host myogenesis when exposed to the correct environment
during regeneration. In addition, an interesting question is to what extent non-satellite cells,
including muscle-derived HSCs and HPCs, can contribute to regenerating muscle fibers in
normal and diseased muscle. Recent work clearly demonstrates that the muscle-derived
HSCs/HPCs have been shown to possess myogenic potential, and to contribute to muscle
repair by low-level fusion into multinucleated muscle fibers. Regenerative signals in the
muscle recruit resident muscle-derived HSCs or HPCs to progress down a myogenic lineage
through Wnt signaling and subsequent Pax7 expression [49,52], indicating the participation
of muscle-derived HSCs/HPCs in myogenic regeneration.
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Myogenic Contribution of HSCs
Currently, muscle-derived HSCs/HPCs are believed to originate from bone marrow and
probably from homing cells of circulating HSCs/HPCs. Several papers have demonstrated
the myogenic contribution of bone marrow-derived HSCs/HPCs after intramuscular or
intravenous transplantation [21,50,53–64]. Strikingly, single HSC transplantation into
lethally irradiated mice demonstrates the clear myogenic contribution of HSCs through
intermediate stage myeloid cell differentiation of the engrafted HSCs [56,60–68]. In these
cases, the ongoing muscle regeneration and inflammatory cell infiltration are required for
HSC-derived contribution. Interestingly, bone marrow-derived CD45(+)/Sca-1(+) cells
carrying reporter genes controlled by muscle-specific regulatory elements from the Myf5,
myosin light chain (MLC3F), or MCK genes, are induced by myoblasts to activate muscle-
specific genes [69]. However, these cells undergo incomplete myogenic specification and
differentiation independently from Pax7 and MyoD. Analysis of muscle chimerism in
unirradiated animals joined surgically by parabiosis revealed that contributions of
circulating cells to myofibers in the skeletal muscle are injury-dependent and that at least
some circulating cells have the potential to contribute to regenerating muscle derived from
bone marrow [48]. There are two potential mechanisms for the adoption of a myogenic
differentiation fate by the progeny of HSCs. First, myogenic differentiation potential of
HSCs could be induced by local muscle environments. Alternatively, the formation of
heterokaryons between HSCs and myoblasts and/or regenerating muscle fibers through cell
fusion could lead to nuclear reprogramming [60]. Latter case is most likely since circulating
HSC-derived myeloid progenitor cells, in response to inflammatory cues, migrate to
regenerating skeletal muscle and stochastically incorporate into mature myofibers possibly
by direct cell fusion process. Potential mechanism for fusion process of myeloid cells may
be mediated by the fusogenic ability of macrophages [56]. However, more primitive HSC
derivatives, such as myelomonocytic progenitors, but not CD11b-Cre-positive macrophages,
neutrophils and natural killer cells, can incorporate into regenerating muscle fibers [68].
Therefore, in the future, the exact mechanism for this heterokaryon formation should be
elucidated.

The Kuwana et al. [70] reported the discovery of a primitive cell population termed
monocyte-derived multipotential cells (MOMCs), which has a fibroblast-like morphology in
culture and a unique phenotype positive for CD14, CD45, CD34 and type I collagen, and
were found to originate from HSC-derived circulating CD14(+) monocytes. MOMCs
contain progenitors with capacity to differentiate into a variety of nonphagocytes, including
bone, cartilage, fat, skeletal and cardiac muscle, neuron, and endothelium, indicating the
involvement of MOMCs in repair and regeneration of the damaged tissue [70,71]. Currently,
several studies have cautioned us about the potential of bone marrow-derived HSCs/HPCs
for muscle regeneration [48,72–74]. In addition, bone marrow-derived cells isolated from
Tie2-GFP mice do not engraft into skeletal muscle microvasculature but promote
angiogenesis after acute injury [75]. Furthermore, recent experiments using transgenic mice
for developmental and conditional Pax7 gene knockout strongly indicates that satellite cells
are a major cell source for the postnatal muscle regeneration [76,77].

Tissue Resident HSCs
Many adult tissues besides skeletal muscle, such as brain, heart, lung, kidney, and small
intestine contain different amounts of HSCs and/or HPCs that can be also enriched in the
CD45(+) and SP fraction [30,34]. Therefore, the HSCs and/or HPCs are normal residents in
many adult tissues and might contribute to tissue regeneration. It should be elucidated
whether other adult tissue-derived HSCs/HPCs also exhibit the potential of hematopoietic
reconstitution of irradiated mice. In vitro hematopoietic colony forming assays demonstrate
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that bone marrow, skeletal muscle, spleen and liver appear to contain more undifferentiated
multipotential myeloid progenitors than the other tissues (brain, heart, lung, kidney, and
small intestine), which contain more committed myeloid progenitors, such as macrophages
and granulocytes [1,30,34]. This observation implies that there are unique characteristics
about the skeletal muscle niche that allows it to support the survival and maintenance of
HSCs/HPCs. Comparison of mRNA levels in skeletal muscle- and fat tissue-derived
CD45(+) SP cells revealed that although they expressed many of the same genes including
hematopoietic markers (CD45, CD34, CD14, CD68, Thy-1, VCAM-1 and Sca-1) and other
genes (Notch, Cdkn1a/p21, Hes1 and Akt1), fat tissue-derived CD45(+) SP cells expressed
higher levels of c-kit, whereas muscle-derived CD45(+) SP cells possessed a clear
enrichment for several endothelial specific transcripts such as (Endoglin, VE-cadhein,
Caveolin-1, ABCG2, PECAM and Flk-1) and other genes (Jag1 and Sparc/Osteonectin),
indicating that muscle-derived CD45(+) SP cells are distinct from those isolated from fat
tissue. Thus, CD45(+) SP cells do not simply represent a common pool of circulating
progenitors, but seems to possess characteristics likely specified by the tissue niche in which
they reside [78]. Recent work demonstrates that stem cells are closely associated with
vascular niche in the tissues. For example, satellite cells are positioned in a juxtavascular
manner while reciprocally interacting with endothelial cells during differentiation to support
angio-myogenesis [79,80]. In addition, HSCs reside in a perivascular niche (endothelial cells
and perivascular stromal cells) in which multiple cell types express factors that promote
HSC maintenance [81].

DMD Therapy by Bone Marrow Transplantation
In considering translational research of angiogenic and myogenic progenitors, biological
relevance in treating muscle dystrophies is a sought after bridge to clinical application.
Duchenne Muscular Dystrophy (DMD) is the most common muscular dystrophy in which
mutations are found in the dystrophin gene that encodes the primary membrane anchor
protein essential for skeletal muscle stability [82]. Definitive skeletal muscle treatment for
muscular dystrophy will then likely require restoration of the dystrophin protein complex in
all affected muscle groups. One promising approach used to restore dystrophin and
regenerate muscle fibers is cell therapy. Looking at the summary of the current state of
understanding for cell therapies, bone marrow or HSCs/HPCs transplantation is the potential
therapeutic approach for treating muscular dystrophy. With the capacity of this therapy
many groups have examined transplantation of bone marrow-derived cells into muscular
dystrophy animal models. As a result, several papers showed some contributions of bone
marrow-derived cell transplantation to skeletal muscle fibers in several muscular dystrophy
model and spinal muscular atrophy model mice [21,83–92], while other papers reported
negative results [72,93,94]. Interestingly, the Gussoni et al. [95] reported the analysis of
muscle biopsies from a DMD patient who received bone marrow transplantation at age 1
year for severe combined immune deficiency. Analysis of muscle biopsies from this patient
at age 12 years revealed the presence of donor nuclei within a small number of muscle
myofibers (0.5–0.9%), indicating the contribution of donor-derived bone marrow cells to
DMD host muscle fibers [95]. In addition, bone marrow transplantation in a human patient
with Diamond-Blackfan anemia and co-existing DMD demonstrated that in a patient with
100% donor chimerism of the hematopoietic system, muscle tissue presented 8% to 10.4%
of cells being of donor origin, indicating promising effects for bone marrow transplantation
to muscular dystrophy [96].

The muscle-derived HSCs/HPCs are capable of differentiation into hematopoietic cells in
vitro and in vivo, and thus these muscle-derived HSCs/HPCs appear to have characteristics
similar to classical hematopoietic stem/progenitor cells found in bone marrow. Clearly,
further experimentation is required to investigate the origin, biological significance and the
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cellular niche for the HSCs/HPCs within non-hematopoietic tissues. A new and encouraging
route in this investigation is the possibility to find wider application for the use of muscle-
derived and/or bone marrow-derivedHSCs/HPCs as a potential cell therapy for muscular
dystrophy.
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