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Abstract: Cannabis sativa L. shows potent anti-inflammatory activity, resulting in an inter-
esting pharmacological option for pain management. The aim of the study was to evaluate
the association between pharmacogenetics, neurological and inflammatory biomarkers,
and cannabinoid plasma exposure in patients treated with cannabis. A total of 58 patients
with a diagnosis of neuropathic and chronic pain treated with medical cannabis were
analyzed. Cannabis was administered as a decoction (n = 47) and as inhaled cannabis
(n = 11): 30 patients were treated with cannabis with high THC, while 28 patients were
treated with cannabis with reduced THC (plus CBD). Cannabinoid plasma concentrations
were obtained with UHPLC-MS/MS. Allelic discrimination was assessed by real-time PCR.
Inflammation biomarkers (e.g., interleukin-10) were analyzed by ELISA, neurofilaments
light chain (NFL), and brain-derived neurotrophic factor (BDNF) by Single Molecule Array.
A statistically significant difference in IL-10 (p = 0.009) and BDNF (p = 0.004) levels was
observed comparing patients treated with decoction and inhaled cannabis. BDNF and
NFL results correlated with cannabinoid concentrations. Concerning genetics, the COMT
680 T>C genetic variant influences cannabinoid plasma levels, including ∆9-THC (p = 0.017).
Conclusions: This study shows a possible impact of some genetic variants on cannabinoid
plasma exposure, other than a possible role of medical cannabis on inflammation-related
and neuronal impairment factor levels. Further studies in larger cohorts are required.

Keywords: THC; genetics; cannabinoids; pain; BDNF

1. Introduction
Cannabis sativa L. use has been reported in about 147 million people worldwide [1].

It is one of the most ancient cultivated plants due to its adaptability to a wide range of
habitats and its multiple uses, including food, fiber, and a drug plant [2].

The first evidence of its utilization in humans dates back to about 10,000 years ago:
cannabis fruit and seed fossils have been found in the Okinoshima archeological site of the
Mesolithic Age (Boso Peninsula, central Japan) [3].
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In Italy, the authorization, cultivation, import, export, and distribution of cannabis are
regulated by the Ministerial Decree of 9 November 2015 [4].

The main therapeutic indication for the use of medical cannabis (MC) is analgesia
in pathologies with spasticity associated with pain (such as in multiple sclerosis) and in
chronic pain, in particular in neurogenic pain.

MC contains a large variety of chemical compounds, including the psychoactive
cannabinoid delta-9-tetrahydrocannabinol (∆9-THC) and the non-psychoactive cannabidiol
(CBD). These cannabinoids interact with the endocannabinoid system which plays an
important role in several physiological processes such as nervous functions, neurogenesis,
neuroprotection, depression, memory, cognition, and painful sensation [5–7].

The endocannabinoid system resulted in an interesting pharmacological target for
many diseases, including pain and neurodegenerative conditions [8–10].

Cannabinoid-receptor type 1 (CB1) is present in the central nervous system (in the neo-
cortex, cerebellum, and limbic system) and in the peripheral nervous system. Cannabinoid-
receptor type 2 (CB2) has been identified in lymphocytes, macrophages, and mast cells in
the immune system and in microglia cells and astrocytes in the central nervous system [11].
CB1 activation mediates drug and natural rewards, such as sexual activity, social interac-
tion, and food consumption [12]. CB2 receptor agonists exhibit antinociceptive activity
in models of inflammatory and nociceptive pain, modulating the immune responses and
reducing the release of pro-inflammatory cytokines [13]. These effects may be further
enhanced through interactions with other systems, such as activation of the peroxisome
proliferator-activated receptor α (PPAR-α), and modulation of transient receptor potential
vanilloid type 1 (TRPV1) and α2-adrenoceptor pathways [14–16].

Furthermore, cannabinoids show activity against different types of pain: thermal and
noxious, cancer, postoperative and that related to spinal cord and traumatic nerve injury
and toxic insults [17,18]. These molecules have also potent anti-inflammatory activity:
over-inflammation is present in many pathologies, such as cancer, asthma, rheumatoid
arthritis, multiple sclerosis, hepatitis, colitis, and dermatologic diseases [7]. ∆9-THC and
CBD showed anti-inflammatory and immune-suppressive properties interacting with CB1
and CB2 receptors [19]. In this context, in a study in a murine model [20], the GPR55
receptor modulates proinflammatory cytokines (such as interleukin (IL)-4, IL-10, interferon
gamma), reducing hyperalgesia.

Cannabinoids are able to downregulate the production of cytokines and chemokines,
suppressing inflammatory responses [19]: as an example, CBD could modulate inflamma-
tion influencing the release of some pro-inflammatory cytokines, such as tumor necrosis
factor α (TNF-α) [21]. No data on possible associations between cannabinoid plasma
exposure and inflammation-related biomarkers are present in the literature.

Furthermore, the role of CBD in reducing depression by increasing brain-derived
neurotropic factor (BDNF) has also been suggested [22]. BDNF is a neurotrophin involved
in the survival, activity, and growth of neurons [23]. It has been recognized as an important
pain modulator, regulating central and peripheral synaptic plasticity. It is also involved in
neuropathic and inflammatory pain due to its role in sensory neurotransmission in spinal
and supraspinal level nociceptive pathways. In a study, elderly individuals with higher
peripheral BDNF levels showed reduced chances of developing Alzheimer’s disease [24].
BDNF exposure resulted in changes in other neurodegenerative and mental health dis-
orders [25]. Reduced BDNF levels may indicate a lack of trophic support, potentially
contributing to neuronal degeneration [26]. For these reasons, BDNF has been proposed as
a biomarker of neuroprotection [27,28].

In the context of tailored medicine, pharmacogenomics is a crucial tool for person-
alizing pain treatment with MC [29]. According to the literature, several genes encoding
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enzymes (such as cytochromes P450, CYP) are involved in the cannabinoid biotransforma-
tion [29,30], impacting the absorption, distribution, metabolism and elimination of these
molecules, consequently affecting efficacy and adverse effect risk. THC is first metabo-
lized in the liver by CYPs into 11-Hydroxy-∆9-tetrahydrocannabinol (11-hydroxy-THC)
and then oxidized into 11-Nor-9-carboxy-∆9-tetrahydrocannabinol (THC-COOH), which
may be glucuronidated to 11-nor-9-carboxy-THC glucuronide. The main hepatic enzymes
involved in THC metabolism are CYP2C19, CYP2C9, and CYP3A4. Also, extra-hepatic
tissues express CYPs, such as the brain and small intestine, and have a role in cannabinoid
metabolism [31]. CBD is a substrate of CYP2C19, CYP1A1, CYP3A4, CYP1A2, CYP2C9,
and CYP2D6, and it is mainly hydroxylated into 7-hydroxy cannabidiol (7-OH-CBD) [32].

In addition, the ABCB1 gene encodes the P-glycoprotein, which is an efflux pump
potentially affecting the distribution and bioavailability of MC metabolites [30,33].

Few data are available in this context; thus, the aim of the present preliminary study
was to investigate inflammation-related and neurological marker levels in individuals
treated with MC.

In addition, the impact of pharmacogenetics was evaluated: variants of genes encoding
cytochromes and transporters involved in cannabinoid metabolism and transport were
investigated.

2. Materials and Methods
2.1. Characteristics of Enrolled Patients

Patients with neuropathic and chronic pain treated with MC were enrolled at the “SC
Terapia del Dolore—ASL Città di Torino” at the “Oftalmico” hospital (Turin, Italy). Nine
patients were excluded from the statistical analysis due to incorrect MC decoction intake
(e.g., skipped doses).

The study was performed in compliance with the Declaration of Helsinki and local
review board regulations; all patients gave written informed consent, according to the
local ethics committee standards (“Cannabis terapeutica nei pazienti affetti da dolore
neuropatico: studio osservazionale”, approved by Ethical Committee “A.O.U. CITTA’
DELLA SALUTE E DELLA SCIENZA DI TORINO—A.O. ORDINE MAURIZIANO DI
TORINO—A.S.L. CITTÀ DI TORINO”, n◦ 0131170 del 25/11/2022).

Inclusion criteria were MC treatment for at least 15 days; exclusion criteria included
age under 18 years.

In this study, 47 individuals were treated with oral MC (decoction), while 11 patients
were treated with inhaled MC.

For MC decoction preparation, the following procedure was used: 100 mL of cold
water for every 100 mg of cannabis was used. It was recommended to use 100 mL of water.
Heat to boiling and then let it simmer, covered, for 15 min (not exceeding 30 min total
boiling time). The decoction should cool for about 15 min before filtering and then freshly
consumed.

Inhalation as a route of administration was chosen by patients, in agreement with
the clinician. Indeed, if oral administration (decoction) did not produce the expected
pharmacological effect, or when the physician accounted it appropriate, inhalation was
used as an alternative method of administration with the use of a personal vaporizer with
filtered hot air.

The correct dose for each patient was determined by the clinician, based on the type
of disease and pain severity: MC has been used to induce analgesia in patients resistant to
conventional treatments (e.g., opioids). All the patients were naïve for MC administration.
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Dried cannabis flowers for decoction preparation or for vaporization were provided
by the hospital pharmacy at the institution, as a clinical routine. The frequency of the
administration was once daily.

Patients were treated with cannabis with high THC, while 28 patients with low-THC
cannabis formulations containing CBD.

Following dried flower tops of different varieties of Cannabis were used:

• Bedrocan® (THC level standardized at 19% and with a CBD level < 1%);
• Bediol® (THC and CBD levels standardized at concentrations of 6.5% and 8%, respec-

tively);
• FM2® (THC and CBD levels standardized at concentrations of 5–8% and 7.5–12%,

respectively);
• Pedanios® 22/1 (THC and CBD levels standardized at concentrations of 22% and <1%,

respectively).

Bediol® and Bedrocan® (Bedrocan International BV, Veendam, The Netherlands) were
the main varieties used; when they were not available, FM2® (Military Chemical and
Pharmaceutical Institution of Florence, Florence, Italy) and Pedanios® (AURORA Cannabis
Enterprises Inc., Edmonton, AB, Canada) were administered.

2.2. Pharmacokinetic Analyses

Cannabinoid metabolites were quantified in plasma after reaching the steady state
(at least 15 days after starting therapy): plasma was obtained from blood withdrawals in
EDTA tubes immediately before the dose administration of the day (Ctrough). Whole blood
was centrifuged at 1400× g for 10 min at 4 ◦C, in order to obtain plasma samples which
were stored at −80 ◦C until the analysis. Cannabinoid plasma levels were evaluated using
a previously published fully validated method [34]. The whole chromatographic run was
completed in 10.0 min and an optimal chromatographic separation between all analytes
was obtained. Considered analytes were as follows: ∆9-THC (∆9-tetrahydrocannabinol), 11-
OH-THC (11-Hydroxy-∆9-tetrahydrocannabinol), COOH-THC, COOH-THC-glucuronide,
CBD, 7-OH-CBD, tetrahydrocannabinolic acid (THCA), and cannabidiolic acid (CBDA).

2.3. Genetic Polymorphism Analyses

Whole blood was collected in EDTA tubes: DNA was extracted using the QIAamp
DNA mini kit (Qiagen, Valencia, CA, USA). These kits contain columns allowing DNA
purification starting from 200 µL of whole blood.

Allelic discrimination was performed using RT-PCR (BIORAD, Milan, Italy).
The following allelic variants were analyzed: ABCB1 3435 C>T (rs1045642), ABCB1

2677 G>A (rs2032582), ABCB1 1236 C>T (rs1128503), ABCG2 421 C>A (rs2231142), ABCG2
1194+928 T>C (rs13120400), CYP2D6 4180 C>G (rs1135840), CYP1A1 7294 C>A (rs2606345),
CYP1A2 890 C>T (rs2470890), CYP2C19*2 G>A (rs4244285), CYP1A2 32035 A>C (rs762551),
BSEP T>C (rs2287622), CYP3A4*1B G>A (rs2740574), CYP2C9*3 1075 A>C, CYP2C9*2 430
C>T, COMT 680 T>C (rs4680), GHC1 841 T>C (rs841), OPRM1 971 T>C (rs1799971), TRPV1
080 G>A (rs8065080).

These SNPs were selected because the corresponding genes encode for enzymes, trans-
porters, and receptors involved in the metabolism, transport, and activity of cannabinoids.
They were selected based on their allelic frequency, which is commonly represented in the
Caucasian population.
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2.4. ELISA Tests

In this study, the BT LAB kit direct method (Bioassay Technology Laboratory, Birming-
ham, UK) was used to quantify inflammation-related biomarkers in plasma. IL-6, IL-10,
and TNF-α plasma levels were analyzed.

2.5. SiMoA® Tests

Plasma specimens were analyzed using Single Molecule Array (SiMoA® SR-X,
Quanterix® Billerica, MA, USA) for markers of neuronal damage, signaling, and plas-
ticity: NFL and BDNF were assessed.

2.6. Statistical Analyses

The Shapiro–Wilk test was used to assess the normality of all continuous variables.
The correspondence of each factor, normal or non-normal, was further evaluated using
the Kolmogorov–Smirnov test. Non-normally distributed variables were described using
median and interquartile range (IQR), while categorical variables were reported as counts
and percentages. Kruskal–Wallis and Mann–Whitney tests were used to identify differences
in continuous variables, with two-sided p-values < 0.05 considered statistically significant.
Finally, the predictive power of the variables under investigation was assessed using
univariate (p < 0.05) and multivariate (p < 0.05) linear regression analysis.

All statistical analyses were performed using IBM SPSS Statistics software, version
28.0 for Windows (Chicago, IL, USA).

3. Results
3.1. Characteristics of Enrolled Patients

In this study, 67 patients were enrolled at the “SC Terapia del Dolore—ASL Città
di Torino” at the “Oftalmico” hospital (Turin, Italy); 9 patients were excluded from the
statistical analysis due to incorrect MC decoction intake (e.g., missing doses).

Patients were affected by neuropathic and chronic pain caused by various conditions:
46.6% of patients had fibromyalgia, 8.6% had headaches, 6.9% were oncologic patients, and
65.5% were polytraumatized individuals.

Patient characteristics are reported in Table 1: 47 patients were treated with MC
decoction, and 11 were treated with inhaled MC; no patient received both routes of ad-
ministration. Additionally, 51.7% (n = 30) of patients were treated with MC with high
THC content, while 48.3% (n = 28) received MC with lower THC and standardized CBD
concentrations (6.5% and 8%, respectively).

Table 1. Characteristics of enrolled patients. Abbreviations: IQR = interquartile range (reproduced or
adapted from [35], with permission from publisher Alessandra Manca, 2024).

Characteristics

No. of patients 58
Cigarette smokers, n (%) 19 (32.8%)

Gender (male), n (%) 20 (34.5%)
Caucasian, n (%) 100%

BMI (kg/m2), median (IQR) 20.6 (17.9; 23.4)
Age (years), median (IQR) 61 (52; 67)

Fibromyalgia, n (%) 27 (46.6%)
Headache, n (%) 5 (8.6%)

Cancer, n (%) 4 (6.9%)
Polytraumatized patients, n (%) 38 (65.5%)
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The most common dose range was 0–250 mg of cannabis per day for patients treated
with both oral and inhaled MC. All dosages are reported in Table 2.

Table 2. Cannabis dosages (mg).

Cannabis mg Number of Patients

0–250 mg 25 (43.0%)
300–500 mg 23 (39.7%)

>500 mg 10 (17.3%)

Cannabinoid plasma levels (ng/mL) are reported in Tables 3 and 4.

Table 3. Differences in median and IQR of plasma cannabinoid in patients treated with inhaled and
oral (decoction) cannabis with high levels of THC. IQR = interquartile range (reproduced or adapted
from [35], with permission from publisher Alessandra Manca, 2024).

Medical Cannabis with High Levels of THC

Cannabinoids Inhaled Cannabis,
ng/mL Median (IQR)

Oral Cannabis (Decoction), ng/mL
Median (IQR) p-Value

∆9-THC 14.26 (5.70; 23.99) 5.08 (4.53; 11.04) 0.011
11-OH-THC 0 (0; 11.34) 0 (0; 0) 0.017
COOH-THC 62.99 (27.85; 248.33) 10.53 (6.62; 23.59) 0.004

COOH-THC-glucuronide 511.35 (103.44; 1076.27) 47.92 (7.32; 80.01) 0.003
CBD 5.26 (1.45; 11.45) 2.94 (0.56; 5.73) 0.364

7-OH-CBD 2.26 (0.79; 9.82) 0 (0; 0) <0.001
THCA 0 (0; 2.11) 3.35 (0; 11.75) 0.127
CBDA 0 (0; 0.41) 0 (0; 0.95) 0.546

Table 4. Differences in median and IQR of plasma cannabinoid in patients treated with inhaled
and oral (decoction) cannabis with THC and CBD Level Standardized at Concentration of 6.5% and
8%. IQR = interquartile range(reproduced or adapted from [35], with permission from publisher
Alessandra Manca, 2024.).

Medical Cannabis with THC and CBD Level Standardized at Concentration of 6.5% and 8%

Cannabinoids Inhaled Cannabis,
ng/mL Median (IQR)

Oral Cannabis (Decoction), ng/mL
Median (IQR) p-Value

∆9-THC 5.85 (4.60; /) 4.52 (4.18; 5.48) 0.326
11-OH-THC 0 (0; 0) 0 (0; 1.39) 0.412
COOH-THC 43.76 (5.21; /) 11.43 (4.91; 21.70) 0.517

COOH-THC-glucuronide 197.70 (17.81; /) 35.07 (10.35; 63.88) 0.404
CBD 7.83 (3.44; /) 2.12 (0; 3.72) 0.104

7-OH-CBD 0.96 (0; /) 0 (0; 1.67) 0.667
THCA 0 (0; 0) 4.89 (0; 9.04) 0.100
CBDA 0 (0; 0) 1.05 (0; 5.76) 0.118

Most patients were on polypharmacy, considering their various diagnoses: 20 patients
were treated with antidepressants (39.2%), 16 with anti-inflammatory drugs (31.4%), 21 with
opioids (41.2%), 16 with anticonvulsants (31.4%), 15 with cardiovascular drugs (29.4%),
9 with vitamin D supplementation (17.6%), 17 with anti-anxiety medications (33.3%), and
26 with other drugs (89.7%), as reported in Supplementary Table S1.

3.2. Biomarker Concentrations

TNF-α, IL-6, IL-10, BDNF, and NFL concentrations were quantified in plasma, and
their median concentrations are reported in Table 5.
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Table 5. Median biomarker levels in plasma for all the analyzed patients.

Biomarkers Median (Interquartile Range)

Tumor necrosis factor alpha, (ng/mL) 110.40 (98.43; 140.90)
Interleukin-6, (ng/mL) 73.8 (68.1; 88.4)

Interleukin-10, (pg/mL) 245.3 (222.7; 307.3)
Brain-derived neurotrophic factor, (pg/mL) 1672.6 (912.4; 5384.5)

Neurofilament Light Chain, (pg/mL) 6.96 (4.53; 9.72)

A statistically significant difference in IL-10 (p = 0.009) and BDNF (p = 0.004) levels was
observed between patients treated with decoction (n = 47) and those treated with inhaled
MC (n = 11), as shown in Figure 1.
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Figure 1. Influence of the route of administration (oral and inhaled cannabis) on BDNF levels (Panel
(A), pg/mL) (p = 0.004) and on interleukin-10 levels (panel (B), pg/mL) (p = 0.009). Outliers are
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NFL and BDNF were found to be correlated with cannabinoid levels: specifically,
NFL with THCA levels (p < 0.001 S = 0.572) and BDNF with 11-OH-THC, COOH-THC,
COOH-THC-glucuronide, and 7-OH-CBD levels (p = 0.005, S = 0.367; p = 0.023, S = 0.307;
p = 0.001, S = 0.447).

3.3. Genetics

Single-nucleotide polymorphisms (SNPs) were found to impact cannabinoid concen-
trations (Table 6).

Table 6. Single-nucleotide polymorphisms influence cannabinoid levels (p-values are reported).

Cannabis Metabolites

∆9-THC OH-THC COOH-THC COOH-THC-
Glucuronide CBD 7-OH-CBD THCA CBDA

CYP2D6 4180 CG/GG 0.023

CYP1A1 2794 AA 0.045 0.020

COMT 680 TC/CC 0.017 0.031 0.019 0.031 0.035

BSEP TC/CC 0.037

BSEP CC 0.047

ABCB1 1236 CT/TT 0.040

CYP1A2 890 CT/TT 0.033 0.033

Abbreviations: ∆9-THC = ∆9-tetrahydrocannabinol; CBD = cannabidiol; THCA = tetrahydrocannabinolic acid;
CBDA = cannabidiolic acid.

In particular, the COMT 680 TC/CC variant influences ∆9-THC, OH-THC, COOH-
THC, COOH-THC-glucuronide, and 7-OH-CBD plasma levels. For instance, the effect of
the COMT 680 T>C variant on ∆9-THC plasma exposure is depicted in Figure 2.
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4. Discussion
As reported in a previous study by our group, statistically significant differences

in cannabinoid plasma exposure between inhaled and oral administration were found
in patients with chronic pain treated with MC [35]. In light of this, one of the aims
of the present study was to investigate the influence of cannabinoid plasma levels on
inflammation-related and neurological markers in individuals treated with MC.

Plasma levels of IL-6, IL-10, and TNF-α were measured as markers of inflammation.
Among them, IL-10 levels significantly differed between patients treated with oral and
inhaled MC (p = 0.009), with lower IL-10 levels in patients using inhaled MC. Cannabinoids
play a role in modulating cytokine production within immune cells, since they express the
cannabinoid receptor [36]. Tan et al. [37] highlighted that both CBD and THC can suppress
the extracellular release of pro- and anti-inflammatory cytokines in an in vitro PBMC model.
Notably, treatment with 50 µM cannabidiol significantly reduces the secretion of IL-6 and
IL-10. Consequently, higher cannabinoid concentrations, mostly reached via inhalation, are
probably related to increased cytokine production.

Furthermore, a statistically significant difference in BDNF levels was observed be-
tween patients treated with oral and inhaled MC (p = 0.004), with higher levels de-
tected in the latter group. A correlation between BDNF levels and some MC metabolites
(11-OH-THC, COOH-THC, COOH-THC-glucuronide, and 7-OH-CBD) was highlighted,
suggesting a protective role of cannabinoids. Indeed, BDNF levels in patients treated
with MC (median value 1672.6 pg/mL) were higher than BDNF levels in both healthy
subjects (167.1 ± 171.2 pg/mL) and in patients with fibromyalgia (113.8 ± 149.6 pg/mL),
as reported in the literature [38]. BDNF is involved in neuron growth, development,
and survival, both in the central and peripheral nervous system [39], playing a crucial
role in synaptic plasticity and neurogenesis [40]. Reduced levels of neurotrophic factors
(e.g., BDNF) were described in neurodegenerative disorders [41,42], such as Parkinson’s
disease [43], Alzheimer’s disease [44,45], and multiple sclerosis [46,47]. In the literature, a
decrease in BDNF plasma levels is associated with impaired brain health [48,49], whereas
high levels of BDNF are associated with an improved clinical outcome in patients with
schizophrenia [50,51]. THC can upregulate BDNF expression [52–55]: in fact, in our study,
we found that cannabinoids may exert a significant effect on BDNF levels, especially when
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administered with inhalation. The upregulation of BDNF by THC could be a key mecha-
nism underlying the neuroprotective and neuroplastic effects observed in our patients.

Regarding genetic analysis, SNPs encoding enzymes and transporters associated with
cannabinoid metabolism and elimination were explored. In the literature, genetic studies
suggested that CYP2C9*2 and *3 genotype frequencies in Caucasians are respectively >18%
and 15–20% [29,56]: these gene variants are associated with slower metabolism of THC
compared to the CYP2C9*1 variant [29]. In fact, individuals carrying mutations have
higher THC concentrations than those with normal alleles (200–300%) [56]. However, no
significant association between CYP2C9 polymorphisms and cannabinoid plasma levels
was observed in this cohort, consistent with the findings of Papastergiou et al. [57].

Other enzymes relevant to cannabinoid metabolism include CYP3A4 and CYP2C19:
the first is implicated in THC and CBD metabolism, while CYP2C19 has an important role
in the conversion of CBD in its active metabolite 7-OH-CBD [58], whose formation was
positively correlated with enzyme activity but not with CYP2C19 genotype [58]. In the liter-
ature, no association between 7-OH-CBD levels and CYP2C19 genotype was suggested [58],
as reported in our results.

CYP2D6, a key enzyme in the metabolism of psychotropic agents, such as antipsy-
chotics, antidepressants, and anticonvulsants, is also expressed in the brain. Few works
investigated the associations between CYP2D6 and cannabinoids. In our analysis, the
CYP2D6 840 CG/GG genotype was associated with lower THCA plasma concentrations
compared to the CC genotype.

Regarding drug transporters, P-glycoprotein is an efflux protein belonging to the
ATP-binding cassette subfamily B member 1, encoded by the ABCB1 gene [59].

ABCB1 polymorphisms were studied for their role in cannabis addiction [60,61]: the
ABCB1 3435 SNP was related to cannabis dependence [29,62]. In a study focused on cannabi-
noid blood levels, ABCB1 3435 T allele carriers had lower THC plasma concentrations than
non-T carriers. However, the exact mechanisms were not clarified [63].

COMT encodes for catechol-O-methyltransferase [64] and plays a critical role in
dopamine metabolism. In the literature, COMT impacts MC response, psychosis risk,
and cognitive impairment [29,61]. The role of the COMT Val158Met genotype in modulat-
ing THC effect on cognition and psychosis was described: high activity associated with
the GG genotype (Val/Val) was related with more sensitivity to THC-induced memory
impairments compared to the Met allele [64]. COMT 680 T>C influences all the cannabi-
noids quantified in the present study, except for CBD, CBDA, and THCA: in particular,
∆9-THC plasma levels are higher in the TT genotype and lower in patients with the TC/CC
genotype (p = 0.017).

This study has severe limitations: mainly the small sample size and the imbalance in
the number of patients treated with oral versus inhaled MC, which may affect the broader
relevance of the results. Nevertheless, as a preliminary investigation, these constraints
are understandable and underscore the need for larger, more homogeneous cohorts in
future studies. In addition, patient heterogeneity in terms of underlying pathology and
MC dosage should be considered when interpreting the findings. Moreover, different
pathologies and drug dosages were considered in the study.

5. Conclusions
In conclusion, this study suggests a potential impact of some genetic variants on

cannabinoid plasma exposure. In addition, for the first time, a possible association between
MC treatment, inflammation, and neuronal-related factors was suggested: patients treated
with inhaled MC, showing higher cannabinoid concentrations, had lower IL-10 levels
and higher BDNF levels. These data may help clarify the protective role of cannabinoids.
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Further research is needed to confirm the influence of genetic variants on cannabinoid
metabolism and to explore the newly reported associations with inflammation and neuro-
plasticity biomarkers.
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