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Abstract: This study evaluated the new bone formation potential of micro–macro biphasic cal-
cium phosphate (MBCP) and Bio-Oss grafting materials with and without dental pulp-derived
mesenchymal stem cells (DPSCs) and bone marrow-derived mesenchymal stem cells (BMSCs)
in a rabbit calvarial bone defect model. The surface structure of the grafting materials was
evaluated using a scanning electron microscope (SEM). The multipotent differentiation charac-
teristics of the DPSCs and BMSCs were assessed. Four circular bone defects were created in the
calvarium of 24 rabbits and randomly allocated to eight experimental groups: empty control,
MBCP, MBCP+DPSCs, MBCP+BMSCs, Bio-Oss+DPSCs, Bio-Oss+BMSCs, and autogenous bone.
A three-dimensional analysis of the new bone formation was performed using micro-computed
tomography (micro-CT) and a histological study after 2, 4, and 8 weeks of healing. Homogenously
porous structures were observed in both grafting materials. The BMSCs revealed higher osteogenic
differentiation capacities, whereas the DPSCs exhibited higher colony-forming units. The micro-
CT and histological analysis findings for the new bone formation were consistent. In general,
the empty control showed the lowest bone regeneration capacity throughout the experimental
period. By contrast, the percentage of new bone formation was the highest in the autogenous
bone group after 2 (39.4% ± 4.7%) and 4 weeks (49.7% ± 1.5%) of healing (p < 0.05). MBCP and
Bio-Oss could provide osteoconductive support and prevent the collapse of the defect space for
new bone formation. In addition, more osteoblastic cells lining the surface of the newly formed
bone and bone grafting materials were observed after incorporating the DPSCs and BMSCs. After
8 weeks of healing, the autogenous bone group (54.9% ± 6.1%) showed a higher percentage of
new bone formation than the empty control (35.3% ± 0.5%), MBCP (38.3% ± 6.0%), MBCP+DPSC
(39.8% ± 5.7%), Bio-Oss (41.3% ± 3.5%), and Bio-Oss+DPSC (42.1% ± 2.7%) groups. Nevertheless,
the percentage of new bone formation did not significantly differ between the MBCP+BMSC
(47.2% ± 8.3%) and Bio-Oss+BMSC (51.2% ± 9.9%) groups and the autogenous bone group. Our
study results demonstrated that autogenous bone is the gold standard. Both the DPSCs and
BMSCs enhanced the osteoconductive capacities of MBCP and Bio-Oss. In addition, the efficiency
of the BMSCs combined with MBCP and Bio-Oss was comparable to that of the autogenous
bone after 8 weeks of healing. These findings provide effective strategies for the improvement of
biomaterials and MSC-based bone tissue regeneration.
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1. Introduction

Tissue engineering involves the application of biological and engineering principles
for the repair and functional enhancement of human tissues [1]. In particular, for the
reconstruction of craniofacial bone defects, interdisciplinary methods and concepts, in-
cluding the use of suitable scaffold materials, feasible seed cells, secretome, and bioactive
factors, are considered to be vital in the field of bone regeneration [2–7]. Although the
autogenous bone is considered the gold standard for the reconstruction of bone defects,
several disadvantages limit its clinical application, including the morbidity of the potential
donor site, the requirement of additional surgery, and the low availability of a suitable
autologous material [8,9].

Currently, synthetic bone grafting materials and xenografts are alternative choices that
are gradually being increasingly used for reconstructing bone defects in clinical practice
because of their biocompatibility and osteoconductive properties without the concerns
of immune responses and disease transmission [10–12]. Synthetic bone grafting mate-
rials and xenografts can provide a scaffold for cell attachment, interaction, migration,
and proliferation, and they provide structural support to the newly formed bone [12].
In addition, most bone graft materials are expected to be reabsorbed and replaced as
the natural bone heals over a few months. However, the insufficient osteogenic abil-
ity, low osteoinductive property, and inadequate bone regeneration potential of syn-
thetic bone grafting materials and xenografts reduce their capability in enhancing bone
healing in large bone defects [1,10,13]. On the other hand, a combination of synthetic
and xenograft bone grafting materials (Smartbone®) has been proposed and developed.
Smartbone® is a biohybrid bone substitute constituted of a bovine bone-derived matrix
and a thin poly(L-lactide- co-ε-caprolactone) (PLCL) film integrated with RGD-containing
collagen fragments, which can enhance the cell viability, cell adhesion, and biocompat-
ibility [7].Therefore, stem cell-based therapy has emerged as an alternative strategy in
bone tissue engineering to overcome the limitations of synthetic bone grafting materials
and xenografts.

Mesenchymal stem cells (MSCs) are characterized by their self-renewal, multi-lineage
differentiation, and immunomodulatory capacities in adult tissues [3,14,15]. MSCs can be
isolated from numerous tissues, including the bone marrow, adipose tissue, dental pulp,
peripheral blood, umbilical cord, and skeletal muscle [16]. Bone marrow-derived MSCs
(BMSCs) are the most commonly used source of MSCs and possess more potent osteogenic
and chondrogenic differentiation abilities [17,18]. In addition, BMSCs can effectively
promote bone repair by secreting factors that stimulate endogenous repair processes or by
directly contributing to new bone formation through differentiation into osteoblast-like
cells [15,19]. Moreover, some studies have indicated that BMSCs can regulate inflammation,
ameliorate tissue deterioration, and promote neovascularization, thereby facilitating the
growth of new tissues [19,20].

DPSCs, which are dental pulp-derived MSCs, have been proposed as a potential
cell source for bone tissue engineering because of their high feasibility, easy access, and
noninvasive harvesting without ethical concerns [21,22]. DPSCs have exhibited strong
angiogenic and osteogenic potential in vitro and in vivo with the ability to directly differ-
entiate into or interact with endothelial cells and osteoblasts [18,23–27]. In addition, the
DPSCs demonstrated a strong potential for proliferation and differentiation, along with
paracrine properties; the in vivo implantation of DPSCs promoted bone regeneration and
repaired bone defects [22,28–30]. DPSCs appear to be a promising cell source of MSCs for
craniofacial bone regeneration because of their similar embryonic origins [30,31].
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The efficacy of MSC-based therapy may be affected by the characteristics of bone graft-
ing materials [11,32]. Previous in vivo studies have demonstrated that collagen scaffolds
enriched with periodontal ligament-derived MSCs (PDLSCs) or MSC-derived secretome [4]
and a xenohybrid bone graft (Smartbone®) combined with adipose-derived stromal vas-
cular fraction or lyoseretome can effectively induce new bone formation, stimulate the re-
cruitment of endogenous bone marrow MSCs, and promote an osteoinductive ability [5,7].

Moreover, selecting the most appropriate support scaffold and determining the
optimal source of MSCs before implantation are mandatory for in vivo bone regenera-
tion [32,33]. Therefore, we investigated the interaction between different types of bone
grafting materials and different types of adult stem cells to determine the most favorable
strategy for future clinical applications. The present study comprehensively evaluated
the bone healing capacities of synthetic bone grafting materials (micro–macro biphasic
calcium phosphate (MBCP)) and xenografts (Bio-Oss) with and without DPSCs and BM-
SCs compared with an empty defect and the autogenous bone in a rabbit calvarial bone
defect model.

2. Results
2.1. Characterization of MBCP and Bio-Oss

As shown in Figure 1, the surface structures in both porous MBPC and Bio-Oss were
homogeneous and had different patterns of macropore or micropore dimensions, with
varying distributions and amounts. The two bone graft materials had beaded structurea.
MBCP had a crystalline structure with a moderately rough surface (Figure 1A–C). In
addition, Bio-Oss showed more porosity than MBCP. The surface structure of Bio-Oss
exhibited clearly demarcated grain boundaries and a microporous layer (Figure 1D–F).
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Figure 1. SEM images of MBCP and Bio-Oss at different magnifications (×1000, ×3000, and ×5000).
(A–C) Morphology evaluation of MBCP at increasing magnification. (D–F) Morphology evaluation
of Bio-Oss at increasing magnification.

2.2. Characterization of DPSCs and BMSCs

Both DPSCs and BMSCs presented typical fibroblast-like and spindle-shaped mor-
phologies, respectively, with homogeneous shapes and sizes (Figure 2). Regarding the
multipotent differentiation potential, BMSCs had more osteogenic expression and calcium
deposition staining than DPSCs; however, the chondrogenic differentiation capacity was
similar between the BMSCs and DPSCs. Nevertheless, the number of CFUs of the DPSCs
was higher than that of the BMSCs.

2.3. Micro-CT Measurements

The osteogenic potential of bone grafting materials and MSCs for bone defect repair
was investigated using a rabbit calvarial defect model (Figure 3). A total of 30 mg of MBCP
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and Bio-Oss bone grafting materials containing 1 × 106 DPSCs or BMSCs were implanted
into 6-mm-diameter defects created using a trephine drill. After 2, 4, and 8 weeks of
healing, all bone blocks were collected for micro-CT, histological, and histomorphometric
assessments (Figure 3).
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Figure 3. Schematic representation of the in vivo experiments was demonstrated. (A) A clinical
photograph of the surgery and implantation of bone grafting materials for bone regeneration. Four
circular bone defects measuring 6 mm in diameter were created using a trephine drill in surgical
areas. (B) The bone defects were randomly allocated to eight experimental groups: empty control,
MBCP, MBCP+DPSCs, MBCP+BMSCs, Bio-Oss, Bio-Oss+DPSCs, Bio-Oss+BMSCs, and autogenous
bone. (C) Micro-CT and histological analysis.

As shown in Figure 4, the micro-CT data revealed that the autogenous bone group
showed more favorable growth than the other experimental groups during the whole
healing period. In the control group, few newly formed bones were observed only around
the border of the defects after 2 weeks of healing. At 4 and 8 weeks, new bone formation
gradually increased from the border to the center area. In the MBCP and Bio-Oss groups,
new bone formation was observed that gradually increased not only around the border
of the defects but also in the central area of the defects from 2 to 8 weeks (Figure 4). After
the incorporation of undifferentiated DPSCs or BMSCs, the rate of new bone formation
and the number of bony bridges markedly increased compared with those in the control
or scaffold-only groups. Moreover, from 2 to 8 weeks, the rate of new bone formation
increased, and more bone grafting materials were gradually resorbed.

As shown in Figure 5A, the BV/TV value in the autogenous bone group was 33.1% ± 6.2%,
which was significantly higher than those in the control (10.4%± 2.9%), MBCP (15.9% ± 2.3%),
and Bio-Oss (19.0% ± 5.3%) groups (p < 0.05) after 2 weeks of healing. However, com-
parable results were found in the experimental groups after the incorporation of DPSCs
or BMSCs in MBCP and Bio-Oss. No significant differences in the BV/TV values were
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observed among the MBCP+DPSC (23.5% ± 2.6%), MBCP+BMSCs (26.8% ± 1.2%), Bio-
Oss+DPSCs (25.1% ± 2.0%), and Bio-Oss+BMSCs (24.0% ± 4.9%) groups. In addition, the
MBCP+DPSC and MBCP+BMSC groups exhibited higher BV/TV values than the MBCP-only
group (p < 0.05), whereas the Bio-Oss, Bio-Oss+DPSC, and Bio-Oss+BMSC groups presented
no significant differences (Figure 5A).
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Figure 5. Statistical results of the bone volume/tissue volume (BV/TV) values after 2, 4, and 8 weeks
of healing (* p < 0.05 and ** p < 0.01). (A) The BV/TV values in the autogenous bone group are signifi-
cantly higher than other groups after 2 weeks of healing. (B) The BV/TV values of the MBCP+BMSCs,
Bio-Oss+BMSCs and autogenous bone groups were no significantly different after 4 weeks of heal-
ing. (C) Similar BV/TV values were demonstrated among MBCP+DPSCs, MBCP+BMSCs, Bio-
Oss+DPSCs, Bio-Oss+BMSCs and autogenous bone groups after 8 weeks of healing.

After 4 weeks of healing (Figure 5B), the BV/TV values of the MBCP+BMSC (35.7% ± 2.3%),
Bio-Oss+BMSCs (36.9% ± 1.8%), and autogenous bone (45.4% ± 4.9%) groups were sig-
nificantly higher than that of the empty control group (26.5% ± 4.1%; p < 0.05). The
MBCP+BMSC group (35.66% ± 2.3%) exhibited a higher BV/TV value than the MBCP
group (31.55% ± 0.9%); no significant difference in the BV/TV value was observed between
the MBCP+BMSC (35.66% ± 2.3%) and MBCP+DPSC (32.4% ± 1.2%) groups. Further-
more, no differences were found among the Bio-Oss (33.3% ± 1.7%), Bio-Oss+DPSC
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(36.2% ± 5.0%), and Bio-Oss+BMSC (36.9% ± 1.7%) groups. After 8 weeks of healing
(Figure 5C), the BV/TV values of the MBCP (38.4% ± 1.3%), MBCP+DPSC (41.0% ± 1.4%),
Bio-Oss+BMSC (44.4% ± 1.7%), and autogenous bone (46.4% ± 4.5%) groups were signifi-
cantly higher than that of the empty control group (34.6% ± 1.3%; p < 0.05). In addition, the
Bio-Oss+BMSC group exhibited a higher BV/TV value than the MBCP group. Moreover,
the MBCP+DPSC (41.0% ± 1.4%), MBCP+BMSC (43.0% ± 5.3%), Bio-Oss (39.0% ± 5.1%),
Bio-Oss+DPSC (41.2% ± 3.4%), and Bio-Oss+BMSC (44.4% ± 1.7%) groups showed com-
parable capacities in new bone formation. These results indicated that bone grafting
materials combined with DPSCs and BMSCs could promote new bone formation in calvar-
ial bone defects.

2.4. Histological Observations

In all the bone defect specimens, no signs of inflammation, infection, and necrosis
induced by bone grafting materials or MSCs were observed. The histological findings of
the bone defect samples with new bone formation and surrounding tissues for the eight
experimental groups are shown in Figures 6–8.
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Overall, the histological and histomorphometric results indicated a higher new bone
formation capacity in the MBCP+DPSC, MBCP+BMSC, Bio-Oss+DPSC, Bio-Oss+BMSC, and
autogenous bone groups than in the empty control, MBCP-only, and Bio-Oss-only groups
at week 2 and week 4. However, comparable results were observed among the MBCP-only,
MBCP+DPSC, MBCP+BMSC, Bio-Oss-only, Bio-Oss+DPSC, and Bio-Oss+BMSC groups after
8 weeks of healing (Figures 6–9).
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After 2 weeks of healing, the connective tissue mainly filled the bone defect in the
empty control group (Figure 6A). In the border of the defect, fibrous tissue formation
was evident, with little woven bone formation along the margin of the defect. In the
central area of the defect, the space was almost occupied by connective tissue. By contrast,
the autogenous bone graft group exhibited the highest bone healing capacity, with more
bone bridges and island formation in the whole bone defect (Figure 6H). In the MBCP-
only and Bio-Oss-only groups, even in the central area of the defect, new bone formation
was observed surrounding the bone grafting materials (Figure 6B,E). This phenomenon
indicates that the bone grafting materials exhibited osteoconductive capabilities during
the bone healing process. As shown in Figure 6B–D, comparable new bone formation was
observed among the MBCP-only, MBCP+DPSC, and MBCP+BMSC groups. Close contact
between the new bone and MBCP grafting materials and more new bone growth in the
porous MBCP were observed after incorporating the DPSCs and BMSCs. Moreover, the
Bio-Oss+DPSC and Bio-Oss+BMSC groups showed more new bone formation than the
Bio-Oss-only group (Figure 6E–G).

After 4 weeks of healing, mild new bone formation was observed at the defect mar-
gin of the empty control group (Figure 7A). By contrast, increased new bone formation,
increased bone thickness, and disappearance of the contact line between the autogenous
bone graft and new bone were observed in the autogenous bone group (Figure 7H). In
the MBCP- and Bio-Oss-only groups, moderate new bone formation was noted around
the grafting materials (Figure 7B,E). Furthermore, the grafting material was gradually
resorbed and replaced by the new bone after 4 weeks. The phenomenon of new bone
growth in MBCP was more evident in the MBCP+DPSC and MBCP+BMSC groups than
in the MBCP-only group (Figure 7C,D). Similar new bone formation and a remodeling
tendency were observed in the Bio-Oss+DPSC and Bio-Oss+BMSC groups (Figure 7E,F).
Moreover, an increased number of osteoblastic cells lining the surface of the newly formed
bone and bone grafting materials were observed after incorporating the MSCs. These
findings demonstrated that both the DPSCs and BMSCs enhanced the osteoconductive
capacities of MBCP and Bio-Oss.

After 8 weeks of healing, moderate new bone formation was observed in the whole
bone defect of the empty control group (Figure 8A). By contrast, the autogenous bone
group presented a more compact and mature bone consisting of lamellar bone and mar-
row (Figure 8H). More MBCP and Bio-Oss grafting materials were resorbed and re-
placed by the new bone (Figure 8B,E). In addition, a more compact and mature lamellar
bone was observed in the MBCP, MBCP+DPSC, MBCP+BMSC, Bio-Oss, Bio-Oss+DPSC,
and Bio-Oss+BMSC groups when comparing the histological findings at 2 and 4 weeks
(Figure 8C–G). However, no significant differences in the percentage of the compact lamel-
lar bone were observed among these groups.

2.5. Histomorphometric Results

After 2 weeks of healing (Figure 9A), the percentage of the newly formed bone in
the autogenous bone group (39.4% ± 4.7%) was significantly higher than that in other
groups (p < 0.05), whereas the empty control group had a lower percentage of newly
formed bone (14.9% ± 4.9%). However, no significant differences in the percentage of
the newly formed bone were observed among the MBCP (27.2% ± 5.1%), MBCP+DPSC
(28.3% ± 6.7%), MBCP+BMSC (30.1% ± 3.8%), Bio-Oss (24.7% ± 5.4%), Bio-Oss+DPSC
(31.8% ± 3.7%), and Bio-Oss+BMSC (32.0% ± 2.8%) groups. After 4 weeks of healing
(Figure 9B), the autogenous bone group showed the highest percentage of new bone
formation (49.7% ± 1.5%; p < 0.05). Moreover, the Bio-Oss+BMSC (41.6% ± 5.4%) group
had comparable results with those of the autogenous bone group. The empty control
group showed the lowest percentage of new bone formation (24.7% ± 5.4%); however, their
value did not differ from those of the MBCP (27.7% ± 7.5%) and Bio-Oss (32.6% ± 2.2%)
groups. The results of the MBCP+DPSC (37.5% ± 3.3%) and MBCP+BMSC (38.5% ± 3.8%)
groups were similar to that of the MBCP group, whereas the Bio-Oss+DPSC (39.2% ± 3.6%)
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and Bio-Oss+BMSC (41.6% ± 5.4%) groups showed a significantly higher percentage
of new bone formation than the Bio-Oss group (32.6% ± 2.2%; p < 0.05). Finally, after
8 weeks of healing (Figure 9C), the autogenous bone group (54.9% ± 6.1%) showed the
highest percentage of new bone formation compared to the empty control (35.3% ± 0.5%),
MBCP (38.3% ± 6.0%), MBCP+DPSC (39.8% ± 5.7%), Bio-Oss (41.3% ± 3.5%), and Bio-
Oss+DPSC (42.1% ± 2.7%) groups. Moreover, no significant differences were observed
between the MBCP+BMSC (47.2% ± 8.3%) and Bio-Oss+BMSC (51.2% ± 9.9%) groups
and the autogenous bone group. These results demonstrated that the efficiency of the
BMSC groups combined with MBCP and Bio-Oss was comparable to that of the autogenous
bone group.

3. Discussion

In tissue repair, cells or materials are directly transplanted to the injury site, and they
eventually become part of the patient’s body [34–36]. However, the biological properties
of transplanted materials and cells must be properly evaluated to ensure their successful
integration with the host tissue and to prevent complications [37]. In the present study,
we comprehensively analyzed the effects of MBCP and Bio-Oss scaffolds with or without
DPSCs or BMSCs on the bone regeneration and repair of calvarial bone defects in rabbits
and compared those results with those of the autogenous bone, which is the gold standard.

As shown in Figure 1, the SEM images showed that MBCP is a biphasic calcium phos-
phate synthetic bone grafting material with a unique micro- and macroporous structure [38].
MBCP can gradually dissolve and degrade in the body, and its porous structure becomes
completely infiltrated with and replaced by newly formed bone. In addition, the release
of calcium and phosphate ions can promote new bone formation. By contrast, Bio-Oss
is a natural, nonantigenic, and porous bone mineral matrix produced by removing all
organic components from the bovine bone. The inorganic bone matrix of Bio-Oss contains
macroscopic and microscopic structures with an interconnecting pore system that serves
as a biophysical scaffold for the immigration of osteogenic cells [39] (Figure 1). Due to
its natural structure, Bio-Oss is physically and chemically comparable to the mineralized
matrix and architecture of human bone [40]. The Bio-Oss particles become an integral part
of the newly formed bone framework and preserve BV over the long term [41]. In clinical
practice, both MBCP and Bio-Oss are recommended for dental applications as alternatives
to autogenous bone because of their biocompatibility and higher osteoconductive poten-
tial [42]. Moreover, a comparative study showed that wider peaks in the XRD pattern
of Bio-Oss indicated its less-crystalline nature compared with MBCP [1]. In terms of the
enhancement of bone regeneration, MBCP can release more calcium and phosphate for pro-
moting new bone formation, whereas Bio-Oss depends on the human bone-like structure
for stimulating new bone regeneration. Moreover, the physicochemical properties of MBCP
with micropores and microporosity are essential for osteoconduction, whereas Bio-Oss
with the highest surface area and more amorphous structure induces stronger calcein and
integrin signals to trigger bone formation [43]. Previous studies have also suggested that an
ideal bone grafting material should possess features including an interconnected porosity
with adequate pore size, surface structure, adequate mechanical properties, controlled
biodegradability, sufficient dimensional stability, and the release of active bone-promoting
biomolecules [5,6]. Moreover, achieving a balance between the resorption of bone grafting
materials during the tissue remodeling process and the maintenance of the bone defect
volume for new bone ingrowth will improve osteoinduction [6]. For example, Smartbone®,
a xenohybrid bone graft, is commercially available as a CE-labeled class III medical device
and has shown high levels of bioactivity when loaded with MSCs and lyosecretome [5,7].

In the present study, both the DPSCs and BMSCs had similarly fibroblastic and
spindle-shaped morphology as MSCs. However, the BMSCs showed higher osteogenic
and chondrogenic differentiation potential, whereas the DPSCs showed higher CFU and
proliferation capacities (Figure 2). These results are consistent with those of previous
in vitro studies [27,44–46]. Compared with BMSCs, DPSCs provide the advantages of
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harvesting cells from discarded teeth in a noninvasive manner, a high proliferation rate,
a high odontogenic/osteogenic differentiation potential, and excellent immunomodula-
tory properties [31,47,48]. Simultaneously, the DPSCs exhibited a stronger antiapoptotic
ability under the microenvironment of oxidative stress [45]. However, in vivo studies
have reported controversial results for new bone formation by using DPSCs and BM-
SCs, and their efficiency in comparison with the autogenous bone was not examined in
previous studies [27,44,47,49].

Our Micro-CT and histological analysis results indicated that the empty control group
had the slowest healing ability (Figures 4–9). The implantation of MBCP and Bio-Oss in
bone defects provided osteoconduction capacities and scaffold support for enhancing new
bone formation and preventing the collapse of the 3D healing space in the defect; however,
their regenerative capacities are still far from those of the autogenous bone. Overall, no
significant differences in the regenerative potential were observed between MBCP and Bio-
Oss. However, the combination of MBCP and Bio-Oss with the DPSCs and BMSCs could
exert positive and synergistic effects on bone regeneration. Although this phenomenon was
not evident during the early healing period, comparable outcomes with the autogenous
bone were noted after 8 weeks of healing (Figures 5 and 9). Moreover, the DPSCs and
BMSCs in combination with MBCP and Bio-Oss presented similar healing performances
and tendencies in terms of bone regeneration. As shown in Figure 7, more osteoblast
lining at the interface between MBCP/Bio-Oss and the newly formed bone was observed
after the implantation with MSCs. In addition, a mouse study demonstrated that MBCP
and Bio-Oss showed higher stem cell-carrying potentials [10]. However, the regenerative
capacities of the MBCP+BMSC and Bio-Oss+BMSC groups were similar to those of the
autogenous bone. On the basis of the aforementioned results, the BMSCs appeared to be
more effective in enhancing bone regeneration when used in combination with MBCP and
Bio-Oss compared with the DPSCs. However, the isolation of BMSCs from bone marrow is
often painful and increases the risk of infection. Thus, while selecting an adequate MSC
source, practitioners should consider the advantages and disadvantages of specific MSCs
according to the clinical requirements.

The regeneration process of MSCs involves two potential mechanisms: direct prolif-
eration or differentiation and indirect paracrine function [50,51]. MSCs can proliferate as
undifferentiated stem cells and differentiate into various lineages, depending on the mi-
croenvironment, with the replacement of loose endogenous cells and damaged tissues [51].
Moreover, the secretion of bioactive soluble factors and extracellular vesicles (including
exosomes and microRNAs) through their paracrine effects of MSCs support the survival
of endogenous cells and the improvement of the microenvironment by modulating the
angiogenesis, osteogenesis, and immune responses; suppressing apoptosis; reducing oxida-
tive stress; and recruiting tissue-specific progenitor cells [52–54]. These direct and indirect
mechanisms may work individually or synergistically. After implantation in bone defects,
the biomaterials combined with MSCs and the regenerated bone matrix formed a complex
network resembling the endogenous bone structure, which is critical to facilitate new bone
formation and create an osteoinduction-like environment or niche to improve the bone
healing efficiency of these xenografts and synthetic bone grafts.

Some limitations still exist for obtaining an adequate number of MSCs to meet the
clinical dose requirements, including a low harvesting quantity and the degradation and
aging of MSCs following long-term culturing [55]. Moreover, extrinsic factors such as the
health status of the donor, aging, and a low oxygen level can significantly and negatively
affect the efficiency of clinical cell transplantation [49,55]. Although overcoming extensive
bone loss and improving the therapeutic efficacy remain challenging, novel MSC-based
bone regeneration strategies, including cytotherapy, 3D culture, preconditioning, and cell-
free approaches, appear promising for curing severe large bone defects, irrespective of the
regular or diseased microenvironments [15,27,56].
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4. Materials and Methods
4.1. Characterization of MBCP and Bio-Oss Bone Grafting Materials

MBCP (Biomatlante, Vigneux de Bretagne, France) is a nonstructural bone substitute
with biological activity, and it consists of a homogenous distribution of a 60% hydroxyap-
atite (HA) and 40% β-tricalcium phosphate crystalline structure. The overall porosity and
size of MBCP are 70% and from 0.5 to 1 mm, respectively. Bio-Oss (0.25–1 mm, Geistlich
Pharma AG, Wolhusen, Switzerland) is a bovine-derived xenograft.

The surface morphologies of MBCP and Bio-Oss were evaluated using a scanning
electron microscope (SEM). In brief, MBCP and Bio-Oss were pasted on a conductive tape,
coated with a thin layer of gold by using a sputter coating machine, and observed using an
SEM (SU3500, Hitachi High-Technologies Corporation, Tokyo, Japan) with an accelerating
voltage of 15 kV.

4.2. Isolation and Culture of DPSCs and BMSCs

The DPSCs were isolated from freshly extracted incisors by using the direct outgrowth
method described previously [22,27]. The pulp tissue was carefully removed from each
tooth by using a sterile mortar and pestle. The tissue was washed with phosphate-buffered
saline (PBS) three times, minced into pieces, and then cultured in 3.5-cm-diameter Petri
dishes at 37 ◦C in a 5% CO2 environment. The DPSCs were cultured in alpha minimum
essential medium (α-MEM, Gibco/Invitrogen, Carlsbad, CA, USA) containing 10% fetal
bovine serum (Gibco/Invitrogen), 1% antibiotic–antimycotic solution (Sigma-Aldrich, St.
Louis, MO, USA), 10 mL of antibiotic–antimycotic solution (Sigma-Aldrich), and 0.5%
L-ascorbic acid 2-phosphate. DPSCs were passaged through a detachment with 0.5%
trypsin–EDTA solution when the cell culture reached ≥80% confluence. The DPSCs were
passed through a 70-µm strainer (BD Falcon, San Jose, CA, USA). Subsequently, isolated
DPSCs were collected based on their small size. Harvested DPSCs were cultured in
10-cm-diameter Petri dishes for future investigation.

To isolate the BMSCs, approximately 1 mL of the bone marrow was harvested
through needle aspiration from the tibial or femoral bones of anesthetized rabbits and
suspended in 2 mL of PBS, as described previously [34]. The bone marrow suspension
was layered on 3 mL of Ficoll–Hypaque Plus solution (GE Healthcare BioSciences Corp.,
Piscataway, NJ, USA) for density gradient centrifugation at 400× g for 30 min. The mononu-
clear cell layer was collected and washed twice with α-MEM. Subsequently, isolated
mononuclear cells were cultured in α-MEM containing 1% antibiotic–antimycotic solution
(Sigma-Aldrich, St. Louis, MO, USA), 10 mL of antibiotic–antimycotic solution (Sigma-
Aldrich), and 0.5% L-ascorbic acid 2-phosphate at 37 ◦C in a humidified atmosphere of 95%
air and 5% CO2. After 5 days of culture, nonadherent cells were rinsed away, and fresh
medium was added. The culture medium was changed at day 5 to remove nonadherent
cells and exchanged every 3 days. The culture medium was then changed every 2 to 3 days.
When the cells reached 80–90% confluence, they were subcultured in α-MEM. All cells were
passaged through a detachment with trypsin when the culture reached ≥70% confluence.
Unsorted or otherwise enriched DPSCs and BMSCs were cultured.

Before using the DPSCs and BMSCs in further experiments, their multilineage dif-
ferentiation capacity was confirmed in osteogenic and chondrogenic induction media. In
addition, the colony-forming unit (CFU) efficiency of the DPSCs and BMSCs was examined.
Cells at passages 3–6 were used in experiments to ensure the retention of their stem cell
qualities. Furthermore, cells at passages 2–8 were used in subsequent in vitro experiments
to ensure the retention of their stem cell qualities.

4.3. Animals and Ethics

All animal experimental procedures were performed in compliance with the guide-
lines of and after obtaining ethical approval from the Institutional Animal Care and Use
Committee of Taipei Medical University, Taipei, Taiwan (approval no. LAC-2017-0126)
under the ARRIVE guidelines [35]. In total, 24 adult male New Zealand white rabbits
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weighing between 3.5 and 4.0 kg were used in this study; four 6-mm-diameter calvarial
defects were created in these rabbits. The animals were individually housed in the Central
Animal Facility at Taipei Medical University under standard environmental conditions
(temperature: 22 ◦C ± 2 ◦C, humidity: 30–60% ± 5%, and a 12/12-h light/dark cycle) with
ad libitum access to food and drinking water.

4.4. Animal Experiments and Surgical Procedures

The animals were anesthetized through an intramuscular injection of tiletamine–zolazepam
at a dose of 15 mg/kg (Zoletil 50, Virbac, Carros Cedex, France) and xylazine at a dose of
5 mg/kg. After the application of local anesthesia with 1.8 mL of 2% lidocaine (1:100,000
epinephrine) and disinfection of the surgical site with beta iodine, a midline skin incision
was made, followed by muscle dissection and periosteal elevation. The calvarial bone
was exposed, and a 6-mm-diameter trephine drill was used to create four circular calvar-
ial bicortical bone defects under the copious irrigation of sterile saline (Figure 3a). Care
was taken to prevent injury of the dura. The following eight treatment modalities were
randomly allocated to bone defects: (1) empty control, (2) MBCP, (3) MBCP+DPSCs, (4)
MBCP+BMSCs, (5) Bio-Oss, (6) Bio-Oss+DPSCs, (7) Bio-Oss+BMSCs, and (8) autogenous
bone. The DPSCs and BMSCs (1.0 × 106) in 0.5 mL of PBS were homogeneously mixed
with MBCP and Bio-Oss (30 mg) before implantation in bone defects. After surgery, the
muscle layer was closed using a bioresorbable suture (Vicryl 4.0, Ethicon, Somerville, NJ,
USA), and the skin layer was sutured using a nylon suture. Antibiotics (Baytril, Bayer,
Leverkusen, Germany) (5.0 mg/kg, SC, BID) and analgesics (Rimadyl, Pfizer, New York,
NY, USA) (4.0 mg/kg, SC, BID) were administered postoperatively for 3 days to prevent
wound infection and relieve pain. The surgical wounds, food intake, and activity of the
animals were monitored daily.

4.5. Micro-Computed Tomography Measurements

To examine the new bone formation, after 2, 4, and 8 weeks of healing, the rabbits were
sacrificed, and their tissue blocks were harvested. After fixation in 10% neutral-buffered
formalin for 3 days, the samples were processed and scanned using micro-computed
tomography (micro-CT) equipment (Bruker Skyscan 1172, Bruker, Kontich, Belgium) at
a voltage of 50 kV, an electric current of 100 mA, and a pixel resolution of 18 µm with a
0.5-mm aluminum filter. Subsequently, reconstructed three-dimensional (3D) image models
were imported into the analysis software (CTAn, Bruker, Billerica, MA, USA) to calculate
the bone volume (BV). The optimal thresholds were set for segmenting the micro-CT images
to differentiate the newly formed bone from the connective tissue and grafting materials.
Finally, the percentage of BV to the total tissue volume (TV) (BV/TV%) within the volume
of interest (VOI) was evaluated and expressed as the mean ± standard deviation.

4.6. Histology and Histomorphometric Analyses

After the micro-CT measurements, the harvested samples were prepared for the histo-
logical and histomorphometric analyses. The samples were decalcified in Plank-Rychlo’s
solution (MUTO Pure Chemicals Co., Tokyo, Japan) for 5 days, dehydrated in graded
ethanol concentrations, and then embedded in paraffin. The embedded samples were
longitudinally cut into 4-µm-thick sections and stained with hematoxylin and eosin (H&E;
Sigma, St. Louis, MO, USA). For the qualitative analysis of the bone regenerative process,
the stained samples were evaluated, especially in the border and center areas, using a stan-
dard light microscope (Leica DM500, Leica Microsystems, Wetzlar, Germany) connected to
a SPOT digital camera (Diagnostic Instruments, Inc., Sterling Heights, MI, USA). Four sites
in each sample were randomly selected to calculate the new bone formation percentage by
using Image-Pro Plus 6.0 software (Media Cybernetics, Silver Spring, MD, USA).
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4.7. Statistical Analysis

The statistical analyses were performed using SPSS for Windows (Version 19, SPSS Inc.,
Chicago, IL, USA). The results were presented as the mean ± SD. The differences among all
the experimental groups were examined using a one-way analysis of variance (SPSS Inc.,
Chicago, IL, USA), followed by Tukey’s honest significant difference test. The data were
considered to be significantly different if the p-values were <0.05.

5. Conclusions

In summary, our Micro-CT and histological findings demonstrated that the autogenous
bone is the gold standard for bone regeneration in a rabbit calvarial bone defect model.
Moreover, the space maintenance ability of bone grafting materials and the bioactivity of
MSCs can synergistically enhance new bone formation. Furthermore, this effective and
clinically translatable approach will eventually be referring to the major world systems
(US-FDA, EU, China, etc.).
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